High Affinity Transport of CO₂ in the Cyanobacterium Synechococcus UTEX 625¹

George S. Espie^{2*}, Anthony G. Miller, and David T. Canvin

Department of Biology, Concordia University, Montreal, Quebec, Canada H3G 1M8 (G.S.E.); Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada B2G 1C0 (A.G.M.); and Department of Biology, Queen's University Kingston, Ontario, Canada K7L 3N6 (D.T.C.)

ABSTRACT

The active transport of CO₂ in Synechococcus UTEX 625 was measured by mass spectrometry under conditions that preclude HCO₃⁻ transport. The substrate concentration required to give one half the maximum rate for whole cell CO₂ transport was determined to be 0.4 \pm 0.2 micromolar (mean \pm standard deviation; n = 7) with a range between 0.2 and 0.66 micromolar. The maximum rates of CO₂ transport ranged between 400 and 735 micromoles per milligram of chlorophyll per hour with an average rate of 522 for seven experiments. This rate of transport was about three times greater than the dissolved inorganic carbon saturated rate of photosynthetic O2 evolution observed under these conditions. The initial rate of chlorophyll a fluorescence quenching was highly correlated with the initial rate of CO₂ transport (correlation coefficient = 0.98) and could be used as an indirect method to detect CO2 transport and calculate the substrate concentration required to give one half the maximum rate of transport. Little, if any, inhibition of CO2 transport was caused by HCO₃⁻ or by Na⁺-dependent HCO₃⁻ transport. However, ¹²CO₂ readily interfered with ¹³CO₂ transport. CO₂ transport and Na⁺dependent HCO₃⁻ transport are separate, independent processes and the high affinity CO₂ transporter is not only responsible for the initial transport of CO₂ into the cell but also for scavenging any CO₂ that may leak from the cell during ongoing photosynthesis.

The efficient assimilation of CO_2 by cyanobacteria during photosynthesis depends upon the concurrent operation of a mechanism to concentrate CO_2 at the site of carboxylation (15, 28). Unlike photosynthetic cells of higher plants which rely primarily on CO_2 diffusion (9), cyanobacteria acquire DIC³ from their environment through the active transport of CO_2 and HCO_3^- (3, 6, 18, 23). These transport processes lead to the accumulation and maintenance of a large intracellular pool of DIC from which CO_2 is fixed by Rubisco (15, 28). In cells in which the CO_2 -concentrating mechanism is highly induced, intracellular [DIC] in excess of 1000 times the extracellular [DIC] has been observed (6, 15).

The mechanism by which DIC permeates cyanobacterial cells has been the subject of recent discussions (3, 23, 27). It now appears that both CO_2 and HCO_3^- serve as substrates for a DIC transport system (1, 3, 13, 14, 18, 22, 31). Transport is light dependent, requires Na⁺, and is blocked by inhibitors of energy metabolism such as DCMU, carbonyl cyanide mchlorophenylhydrazone, and diethylstilbestrol (13, 18, 21, 23, 28). During steady-state photosynthesis, uptake of both DIC species occurs simultaneously against their electrochemical potentials (3, 12, 23). The ability of cyanobacteria to transport and accumulate DIC is, however, greatly influenced by the DIC concentration experienced during growth. Cells grown at high [DIC] (e.g. 2 mm) primarily transport CO₂ (2, 7, 19), have a low apparent photosynthetic affinity for DIC ($K_{\frac{1}{2}}$ 200 μ M at pH 8.0), and accumulate DIC to approximately 10- to 50-fold that present in the surroundings. Growth at low [DIC] (<500 μ M) induces an ability to transport HCO₃⁻ (1, 6, 18), a high apparent photosynthetic affinity for DIC ($K_{1/2}$ 3–5 μ M), and a large DIC accumulation ratio.

Several mechanisms for DIC transport have been proposed to account for these observations (3, 14, 25, 27). In low DICgrown cells of Synechococcus PCC 7942 (3, 25) a "front-end" mechanism with vectorial, CA-like properties is thought to convert extracellular HCO_3^- to CO_2 for use by a CO_2 -utilizing transporter. The transporter itself converts this CO₂ back to HCO_3^- during passage across the membrane so that as originally proposed in Anabaena (31) it is HCO₃⁻ that is released inside the cell. The CO₂ transporter also uses CO₂ directly from the medium. This may be the transport unit that is retained when cells are grown in high levels of DIC, whereas loss of HCO₃⁻ transport activity results from loss of the front end. In Anabaena variabilis (31), it has been suggested that CO₂ transport activity may be due to a front-end mechanism that converts extracellular CO_2 to HCO_3^- for use by a HCO_3^- utilizing pump. This pump also uses HCO₃⁻ directly from the medium. Conceivably, loss of the pump's ability to directly utilize HCO₃⁻ may account for the loss of HCO₃⁻ transport activity in high DIC-grown cells.

With Synechococcus UTEX 625, we have recently found that carbonyl sulfide (22) and H_2S (14) inhibit CO₂ transport without greatly affecting Na⁺-dependent HCO₃⁻ transport, and monensin, Li⁺, and the lack of millimolar concentrations of Na⁺ inhibit HCO₃⁻ transport much more effectively than CO₂ transport (13, 21). Because CO₂ and Na⁺-dependent

¹ Supported by grants from the Natural Sciences and Engineering Research Council of Canada.

² Present address: Department of Botany, Erindale College, University of Toronto, Mississauga, Ontario, Canada L5L 1C6.

³ Abbreviations: DIC, dissolved inorganic carbon (CO₂ + HCO₃⁻ + CO₃²⁻); BTP, 1,3-bis(tris[hydroxymethyl]methylamino)-propane; CA, carbonic anhydrase; EZA, ethoxyzolamide; K_{v_3} , substrate concentration required to give one-half the maximum rate.

 HCO_3^- transport can be separated into discrete events in this cyanobacterium, we have proposed that two distinct paths for DIC entry into the cell exist (14). One is constitutive and utilizes CO_2 from the medium, whereas the other is inducible and utilizes HCO_3^- from the medium. The possibility of frontend mechanisms associated with the two paths of DIC entry in this cyanobacterium remains to be evaluated, as does Na⁺independent HCO_3^- (10).

To understand further the nature of the CO₂ transport process and its relationship to HCO₃⁻ transport, we established in this study conditions necessary for the preferential uptake of CO_2 into cells that are capable of both CO_2 and HCO₃⁻ transport. We also examined the effects of [HCO₃⁻] on CO₂ transport and analyzed the kinetics of CO₂ transport, separate from that of HCO₃⁻ transport. As shown by MS, the affinity of the transport system for CO_2 is much higher than previously thought, and there is sufficient capacity to support maximum rates of photosynthesis even in the absence of HCO₃⁻ transport. Bicarbonate proved to be an extremely weak inhibitor of CO₂ transport, although ¹²CO₂ effectively inhibited ¹³CO₂ uptake. Transport of CO₂ was also accompanied by substantial quenching of Chl a fluorescence. A strong, positive correlation between the initial rate of fluorescence quenching and the initial rate of CO₂ transport was found. It is concluded that fluorescence measurements provide a convenient, noninvasive means of following the kinetics of the formation of the internal inorganic carbon pool.

MATERIALS AND METHODS

Organism and Growth

The unicellular cyanobacterium Synechococcus UTEX 625 (S. leopoliensis, University of Texas Culture Collection, Austin, TX) was grown with air bubbling (0.05%, v/v, CO₂) in a modified, unbuffered Allen's medium at 30°C as described previously (10, 13). Cells were harvested at a [Chl] of 6 to 9 μ g·mL⁻¹ at which time the culture pH was between 9.5 and 10.2. The [DIC] in the growth medium at harvest time was between 25 and 100 μ M. Cells grown in this manner generally possess the Na⁺-dependent mechanism for HCO₃⁻ transport with little Na⁺-independent HCO₃⁻ transport capability (10). However, we routinely tested all batch cultures to ensure that this was the case.

Experimental Conditions

Cells were washed three times by centrifugation (1 min at 10,000g, Beckman Microfuge B) and resuspended (7.5 to 9.5 μ g Chl mL⁻¹) in 25 mM BTP/23.5 mM HCl buffer, pH 8.0, which was essentially free of DIC (15 μ M) and Na⁺ (5 μ M). Washed cells (6 mL) were subsequently placed in a thermostatted (30°C) glass reaction vessel (20 mm diameter) and purged with N₂ to reduce the [O₂] to <75 μ M. The chamber was then closed to the atmosphere and the cells were allowed to temperature equilibrate for several minutes in darkness. The cell suspension was continuously stirred with a magnetic stirrer. Actinic light was provided by a tungsten-halogen projector lamp with 210 μ mol·m⁻²·s⁻¹ PPFD incident upon the front surface of the cuvette. The [Chl] of cell suspensions was

determined spectrophotometrically at 665 nm after extraction in methanol (10) and ranged between 7.5 and 9.5 μ g·mL⁻¹.

Aqueous solutions of CO_2 were prepared by continuously bubbling acidified (2 mM HCl) ice-cold distilled H₂O with 5%, v/v, CO₂. The concentration of the stock CO₂ was measured with MS as described previously (14) and found to be between 3.6 and 3.9 mM.

MS

The concentration of dissolved ${}^{12}\text{CO}_2$ (m/e = 44), ${}^{13}\text{CO}_2$ (m/e = 45), and O₂ (m/e = 32) in cell suspensions was determined with a magnetic sector mass spectrometer (VG Gas Analysis, Middlewich, England; model MM 14–80 SC) equipped with a membrane-covered inlet system. The inlet tube was inserted into a port in the reaction vessel which permitted continuous measurement of dissolved gas concentrations (12, 20). The output signal from the mass spectrometer was directed to a chart recorder (14). Calibration for CO₂ and O₂ was performed as described previously (12, 20). The mass spectrometer measures dissolved CO₂, not HCO₃⁻ or CO₃²⁻ because these ions cannot cross the dimethyl silicone inlet membrane.

CO₂ Transport

Cells were assayed for CO_2 transport activity as described previously (14).

Chl a Fluorescence Yield

Changes in Chl a fluorescence yield, which occurred as a result of CO_2 and/or HCO_3^- transport (21, 24), were measured with a pulse amplitude modulation fluorometer (PAM-101, H. Walz, D-8521, Effeltrich, FRG). Actinic light to drive photosynthesis and DIC transport was provided at a photon flux of 210 μ mol \cdot m⁻² \cdot s⁻¹, and fluorescence yield was monitored by a weak pulse modulated beam (approximately 2 μ mol·m⁻²·s⁻¹ PPFD at 100 KHz) provided simultaneously by a light-emitting diode. For illuminated Synechococcus UTEX 625 cells, near-maximum fluorescence yield (F_m^*) was achieved in the complete absence of DIC following a brief (1 s) flash of high intensity (1600 μ mol \cdot m⁻² \cdot s⁻¹ PPFD) white light. Changes in fluorescence yield are expressed as a percentage of the variable fluorescence (F_v) , where $F_v = F_m^* - F_m^*$ F_0 . The F_0 was determined with dark-adapted cells as the fluorescence that occurred during illumination of cells with the weak modulated beam alone. The fluorescence yield and the flux of CO_2 or O_2 were measured simultaneously by placing one end of the fiber optic system of the fluorometer at the surface of the mass spectrometer reaction cuvette.

RESULTS

The ability of cyanobacteria to transport CO_2 can be determined by providing cells with a "pulse" of CO_2 and following its disappearance from the medium with MS (Fig. 1). In darkened cell suspensions or in buffer alone, the [CO_2] in the reaction vessel rapidly increased to a maximum level within a few seconds of CO_2 addition and then decreased to near the initial level as the CO_2 was converted nonenzymatically to

Figure 1. Simultaneous measurements of the effect of CO₂ or HCO⁻₃ (10 μ M) additions on ChI *a* fluorescence yield (a, d, f, and h) and extracellular [CO₂] (b, c, e, g, and i) in illuminated *Synechococcus* cells (210 μ mol·m⁻²·s⁻¹, 9.2 μ g ChI *a*·mL⁻¹) at the CO₂ compensation point, either in the absence or presence of 25 mM NaCl. Arrow, Time of each addition. Before additions, fluorescence yield was near the maximum level. CO₂ was added to the cell suspension as a small volume of acidified water (2 mM HCl) saturated at 0°C with 5% CO₂. Dashed curve (c), change in [CO₂] following its addition to cells in the dark. Bicarbonate was added from a stock of K₂CO₃. Assays were performed at 30°C in BTP/HCl buffer, pH 8.0, containing 100 μ M NaCl.

HCO₃⁻ (Fig. 1c). At pH 8, only 1.6% of the added CO₂ would remain as such at equilibrium (8). With illuminated cells at the CO_2 compensation point (Fig. 1b), the increase in $[CO_2]$ following the CO₂ pulse was much smaller, and the [CO₂] decreased to near zero much more rapidly than in the dark control, indicating a light-dependent uptake of CO₂. Immediately, when CO_2 was added, a large and rapid decrease in Chl a fluorescence yield also occurred (Fig. 1a). In previous work (21), we have shown that the extent of this fluorescence quenching is directly correlated to the magnitude of the intracellular DIC pool and is independent of C assimilation. Thus, the initial uptake of CO_2 can also be followed through fluorescence measurements when transport leads to the formation of an intracellular DIC pool (21, 24). When the DIC was assimilated, fluorescence recovered to the starting level. Initiation of the recovery phase coincided with depletion of CO₂ from the medium, but complete recovery was achieved only after the intracellular DIC pool had been consumed in photosynthesis. In this experiment, the reaction medium (Fig. 1) contained 100 μ M Na⁺, which is required for maximum rates of CO₂ transport (13, 19). When 10 μ M HCO₃⁻ was added to illuminated cells under these conditions, very little change in fluorescence yield occurred, suggesting that the HCO₃⁻ transport system was incapable of forming a substantial intracellular DIC pool (Fig. 1d). In Synechococcus UTEX 625 at pH 8, high rates of HCO₃⁻ transport are achieved in the presence of 25 mM Na⁺ (13). Addition of 25 mM NaCl to the cell suspension resulted in a substantial decrease in fluorescence (Fig. 1d). The extracellular [CO₂], however, remained close to zero (Fig. 1e). With time, the fluorescence yield recovered completely and this coincided with the cessation of photosynthetic O_2 evolution (not shown). Now, in the presence of 25 mM Na⁺, the addition of either CO_2 (Fig. 1f) or HCO_3^- (Fig. 1h) caused quenching of fluorescence which recovered to the initial value after the DIC was consumed in photosynthesis. In the case of HCO_3^- addition, the change in fluorescence yield was not accompanied by any change in extracellular $[CO_2]$ (Fig. 1i), whereas an obvious change in [CO₂] occurred when CO₂ was added (Fig. 1g). Subsequent addition of Na⁺ to the suspension in the absence of DIC did not cause any fluorescence quenching (not shown), indicating that the guenching that occurred when Na⁺ was initially added (Fig. 1d) was a result of the formation of an intracellular DIC pool mediated by Na⁺-dependent HCO₃⁻ transport (13, 18, 21, 24). Such a transport system capable of generating a large intracellular DIC pool has been previously demonstrated in several cyanobacteria (1, 3, 11, 23). Because both CO₂ and HCO₃⁻ additions caused fluorescence quenching (Fig. 1, f and h), it appears that at higher $[Na^+]$ both CO₂ and HCO₃⁻ transport occurred (13, 18, 23) but that at 100 μ M Na⁺ only CO₂ transport occurred.

Accurate estimates of the initial rate of CO₂ transport from CO₂-pulsing experiments (Fig. 1b) are complicated by the large decrease in [CO₂] during the first 10 s of the experiment, the lack of a full response to the added CO₂, and the simultaneous hydration of CO₂. To overcome these problems, for transport studies we assessed whether or not preferential uptake of CO₂ occurred in a reaction medium containing 100 μ M Na⁺ and the enzyme CA, which catalyzes the equilibration of CO₂ and HCO₃⁻.

In the past, we have assumed that the increase in the magnitude of the intracellular DIC pool and rate of photosynthesis that occurred when CA was added to cell suspensions was a consequence of increased CO₂ transport, which was facilitated by CA maintaining the $[CO_2]$ in the medium at equilibrium with $[HCO_3^-]$ (18). This view is supported by the results shown in Figure 2. In this experiment, cells were provided with 50 to 60 μ M DIC. During illumination, the cells caused the $[CO_2]$ to decrease to near zero, although a considerable amount of HCO₃⁻ remained in the medium, out of chemical equilibrium with CO₂. Addition of CA to the suspension resulted in an increase in $[CO_2]$ which increased through the CA-mediated dehydration of HCO_3^- (Fig. 2B). At the same time, a corresponding decrease in fluorescence yield occurred, signifying the formation of an intracellular DIC pool (Fig. 2A). Because the $[HCO_3^-]$ declined (1.6%) by the same amount as the $[CO_2]$ increased when CA was added, it seems likely that pool formation was mediated by CO₂ rather than HCO₃⁻ transport, particularly because [Na⁺] was far below the optimum for HCO_3^- uptake. Following the initial decline, a new steady-state level of fluorescence was established which reflected the quenching due to carbon fixation and the steady-state intracellular [DIC] (Fig. 2A). Ultimately, fluorescence returned to its initial level as the CO₂ was consumed, and this coincided with the depletion of CO_2 (DIC) from the medium (Fig. 2, A and B).

It is possible that CA (Fig. 2) in some way mimicked the effect of Na⁺ on HCO₃⁻ transport and that the intracellular DIC pool was, in fact, formed by this transport system instead. Figure 2, C and D, however, shows that it is the catalytic activity of CA, rather than some other property, that is necessary to elicit the decrease in Chl *a* fluorescence yield

Figure 2. The effect of CA, CA + EZA, and Na⁺ on Chl *a* fluorescence yield and extracellular [CO₂]. Cell suspensions containing 50 to 60 μ M DIC were illuminated (L⁺; 210 μ mol·m⁻²·s⁻¹) and allowed to selectively deplete the medium of CO₂ (B, dashed line). At this point, 25 μ g·mL⁻¹ CA was added and changes in Chl *a* fluorescence yield (A) and extracellular [CO₂] (B) were simultaneously recorded by the PAM-101 fluorometer and MS. In a similar experiment, fluorescence yield (C) and extracellular [CO₂] (D) were measured simultaneously following the addition of CA previously incubated with 50 μ M EZA. NaCl was subsequently added to give a final concentration of 25 mm. The CO₂ depletion phase is not shown in D. Note the different scales for fluorescence. Cell suspensions originally contained 100 μ M NaCl and 9.0 (A and B) or 8.3 (C and D) μ g Chl *a*·mL⁻¹.

(Fig. 2A). Initial conditions were established as before. Then the cells were provided with CA previously incubated with EZA. EZA is a potent inhibitor of CA which binds to the catalytically essential Zn within the active site. Addition of inhibited CA caused no increase in CO₂ concentration and only a small change in fluorescence yield (Fig. 2, C and D). The ability of cells to transport HCO₃⁻ in the presence of CA + EZA appeared to be normal because the addition of 25 mm Na⁺ elicited a large change in fluorescence yield without an increase in extracellular [CO₂] (Fig. 2, C and D). The presence of low levels of EZA (20-50 μ M) alone had no significant effect on CO₂ or Na⁺-dependent HCO₃⁻ transport (data not shown), which is in agreement with previous findings for Synechococcus PCC 7942 (5, 26). Collectively, the data indicate that, in the presence of CA and 100 μ M Na⁺, HCO₃⁻ transport does not occur and CO₂ transport is the predominant means of organic carbon uptake by Synechococcus cells at pH 8.

Kinetics of CO₂ Transport

The transport of CO₂ was measured either as CO₂ disappearance from the medium or, indirectly, by monitoring the formation of the intracellular DIC pool using fluorescence quenching as an indicator (Fig. 3). Transport was initiated by the addition of K₂CO₃ to illuminated cell suspensions containing $25 \,\mu g \cdot m L^{-1}$ CA and $100 \,\mu M$ Na⁺. Because equilibrium between CO₂ and HCO₃⁻⁻ was maintained by CA, the instantaneous [CO₂] for kinetic experiments was calculated as 1.6% of the DIC added. Under these conditions, it was found that the [CO₂] increased to the expected level and then remained constant when DIC was added to darkened cells (Fig. 3A). With illuminated cells the [CO₂] did not reach the same level as with darkened cells, and a few seconds after DIC addition

a rapid decline in $[CO_2]$ occurred (Fig. 3A). The decline during the first 15 s was taken as the initial rate of CO₂ transport. The change in $[CO_2]$ during this period, however, was much less than that which occurred in the absence of CA (compare Figs. 1 and 3). Because of the response time (2-3 s) of the mass spectrometer and the cell densities used, a full response to the DIC added to illuminated cells was not observed. Extrapolation of the initial uptake curve back to time zero yielded a $[CO_2]$ close to that expected from the dark control, indicating that CO₂ transport did not occur at a significantly faster rate during the unresolved time (5 s) than that used (5– 15 s) to estimate the initial rate.

The disappearance of CO_2 from the medium involves contributions from both transport and CO_2 fixation. Fixation during the initial phase of CO_2 disappearance, however, was only a very minor component of the total (Fig. 3C). As judged by fluorescence quenching, the intracellular DIC pool was at a maximum value 24 s after DIC addition (Fig. 3B). At this time, about 65% of the CO_2 (DIC) had been removed from the medium, but, as indicated by O_2 evolution, <10% had been fixed. Even less fixation would have occurred during the first 15 s. That photosynthesis was in fact a minor component

Figure 3. Simultaneous measurements of the initial rate of CO₂ transport (A) and fluorescence quenching (B) along with parallel measurements of photosynthetic O₂ evolution (C). *Synechococcus* cells (9.5 μ g Chl a·mL⁻¹) were suspended in 25 mM BTP/HCl buffer, pH 8.0, containing 100 μ M NaCl and 25 μ g·mL⁻¹ CA. Illuminated (210 μ mol·m⁻²·s⁻¹) cells were allowed to go to the CO₂ compensation point as indicated by the cessation of O₂ evolution or the return of Chl a fluorescence to near-maximum yield. In this example, CO₂ transport was initiated by the addition of 17 μ M DIC (arrows). A, Changes in [CO₂] measured with MS at m/e = 44 in the light and dark (as indicated). Dashed line, Initial rate of CO₂ transport, fluorescence quenching, or O₂ evolution was determined during the first 15 s of the time course. The response time of MS to CO₂ and O₂ was 2 to 3 s.

in the initial disappearance of CO_2 was verified with cells in which the Calvin cycle was inhibited by iodoacetamide (Fig. 4). In inhibited and noninhibited cells, the initial rate of CO_2 uptake was similar, as was the initial change in fluorescence yield. During darkening, the CO_2 removed from the medium by iodoacetamide-poisoned cells was released back into the medium, demonstrating that only transport, but not fixation, had occurred.

The rate of CO₂ transport as a function of extracellular [CO₂] is shown in Figure 5. These measurements were made without iodoacetamide present in the medium because the initial rates of CO₂ transport were usually >100-fold greater than the initial rate (at 15 s) of photosynthetic O_2 evolution (Fig. 5). The CO₂ uptake curve showed saturation characteristics, and maximum rates were obtained between 1.0 and 1.5 μM CO₂. In seven different experiments, the maximum rate of transport was between 400 and 735 μ mol CO₂·mg⁻¹ Chl· h^{-1} and averaged 522 μ mol CO₂·mg⁻¹ Chl·h⁻¹. This rate was about three times greater than the DIC-saturated rate of photosynthetic O₂ evolution typically observed under these conditions. In five of seven cases, the maximum rate of transport predicted from Lineweaver-Burke plots was within 10% of the observed value and deviated by <60% in the remaining cases. The $K_{\frac{1}{2}}$ for CO₂ transport was estimated to be $0.4 \pm 0.2 \mu M$ (mean \pm sD; n = 7) and was found to range between 0.2 and 0.66 µM (e.g. Fig. 5, inset).

When the initial rate of fluorescence quenching, as a percentage of the maximum rate, is normalized to the maximum rate of CO_2 transport and plotted as a function of $[CO_2]$ (Fig. 5), it can be seen that the kinetics of fluorescence quenching tracks that of CO_2 transport. This relationship holds only

Figure 4. Effect of photosynthetic carbon fixation on Chl *a* fluorescence quenching (A) and CO₂ transport (B). The assay was initiated by adding 17 μ M DIC to an illuminated (210 μ mol·m⁻²·s⁻¹, 8.5 μ g Chl $a \cdot mL^{-1}$) cell suspension containing 100 μ M NaCl and 25 μ g·mL⁻¹ CA, in the absence or presence of 3.3 mM iodoacetamide (IAc) to inhibit carbon fixation (20). Iodoacetamide-poisoned cells were subsequently placed in darkness (B), and reappearance of CO₂ in the medium was monitored. B, increase in [CO₂] following addition of 17 μ M DIC to darkened cells.

Figure 5. The initial rate of CO₂ transport (**●**), photosynthesis (**▲**), and fluorescence quenching (**□**) as a function of [CO₂]. The initial rates were determined in the presence of 100 μ m NaCl and 25 μ g·mL⁻¹ CA from the first 15 s of time-course experiments as described in Figure 3. The data are from one of seven experiments. Fluorescence quenching data are plotted as a percentage of the maximum rate of fluorescence quenching. The 100% value was set to correspond to the maximum rate of CO₂ transport. Inset, Double reciprocal plot of rate *versus* [CO₂] for CO₂ transport (**●**) and fluorescence quenching data (**□**). Results are from an experiment conducted at pH 8.0, 30°C, 210 μ mol·m⁻²·s⁻¹ and 8.2 μ g Chl a·mL⁻¹.

during the initial phase of CO_2 uptake and is likely due to a close coupling between CO₂ transport and pool formation, which then elicits a change in fluorescence yield rather than to any direct relationship between transport rate and fluorescence quenching (21). The transient nature of the relationship is also evident in the experimental results shown in Figure 3, where after the initial decline in fluorescence the yield began to increase even though CO₂ transport continued. Nevertheless, because pool filling resulted in fluorescence quenching and was mediated solely by CO₂ transport, under our conditions, fluorescence measurements provide a convenient alternate means of estimating the $K_{1/2}$ for CO₂ transport (Fig. 5, inset). Based on this approach, a $K_{1/2}$ of 0.25 \pm 0.1 μ M (mean \pm sD; n = 7) was calculated. Because the initial rate was measured as a change in fluorescence in this case, a value for V_{max} in units of μ mol CO₂·mg⁻¹ Chl·h⁻¹ could not be calculated.

Accurate estimates of CO_2 efflux from the cells during the initial phase of pool formation are difficult to make, but the reduction in the initial rate of CO_2 disappearance from the medium due to the leakage factor can be minimized if measurements are made during as short an interval as possible. Also, if, as suggested for *Anabaena variabilis* (31) and *Synechococcus* PCC 7942 (25), the transported CO_2 arrives on the inner side of the membrane as HCO_3^- or is quickly converted to HCO_3^- , the initial back flux of CO_2 will be small and our measurement of the initial rate of CO_2 transport will not significantly underestimate the actual rate.

Effect of [HCO3⁻] on CO2 Transport

The possibility of HCO_3^- inhibition of CO_2 transport (31) in *Synechococcus* cells was evaluated at various $[H^{13}CO_3^-]$

Figure 6. The effect of $[H^{13}CO_3^-]$ concentration on ${}^{12}CO_2$ transport. lodoacetamide (3.3 mM) poisoned cells (8.3 μ g Chl a mL⁻¹) at the CO₂ compensation point were provided with increasing amounts of $H^{13}CO_3^-$ in the medium, and their ability to transport CO₂ was assessed following the addition of 4.3 μ M ${}^{12}CO_2$. Changes in [${}^{12}CO_2$] relative to the dark control were measured using an aqueous inlet mass spectrometer set at m/e = 44. Assays were performed in the presence of 25 mM NaCl to permit full HCO₃⁻ transport activity. CA was not added in this experiment.

using the ¹²CO₂-pulsing technique as an assay for CO₂ transport (Fig. 6). Advantage was taken of the fact that the cells normally deplete the medium of CO₂ at pH 8, creating a disequilibrium between CO_2 and HCO_3^- (e.g. Fig. 2B). Consequently, [H¹³CO₃⁻] can be increased (by DI¹³C addition) without a corresponding increase in the bulk [13CO2]. For the cells to maintain the [¹³CO₂] near zero they must continually transport ¹³CO₂ at a rate equal to the uncatalyzed rate of $H^{13}CO_3^{-}$ dehydration. Thus, in these dual isotope experiments, ${}^{12}CO_2$ transport (m/e = 44) was assayed for on an increasing background of ${}^{13}CO_2$ uptake (m/e = 45). At 150 $\mu M H^{13}CO_3^{-}$, for example, a rate of $^{13}CO_2$ transport equivalent to 20% of V_{max} would be required to maintain [¹³CO₂] near zero. The H¹³CO₃⁻ was maintained at constant levels by blocking photosynthetic carbon assimilation with iodoacetamide. These procedures permit the competition experiments to be performed under steady-state conditions and provide a continuous record of CO₂ disappearance from the medium over the range of $[CO_2]$ (4.3–0 μ M) experienced by the cells during a single assay. In most experiments, 25 mm Na⁺ was included to maximize HCO3⁻ transport and, therefore, any inhibitory effect of Na⁺-dependent HCO₃⁻ transport may have on CO_2 transport. The range of $[H^{13}CO_3^{-}]$ used was sufficient to support rates of H¹³CO₃⁻ transport from zero to $V_{\rm max}$ (500 $\mu {\rm mol} \cdot {\rm mg}^{-1}$ Chl $\cdot {\rm h}^{-1}$) and intracellular accumulation in excess of 40 mm (13, 20). Transport of HCO₃⁻ in the presence of iodoacetamide was indicated by Na⁺-dependent fluorescence quenching (18) and by Na⁺-dependent HCO_3^- accumulation measured by MS (13, 20) or the silicone fluid filtration technique (not shown).

The control level for CO₂ transport (0% inhibition) was taken as the peak height for the CO₂ uptake curve in the absence of H¹³CO₃⁻. The cells had previously been allowed to go to the compensation point to reduce $H^{12}CO_3^{-1}$ to a low level as well. For most of the range of [H¹³CO₃⁻] tested, no appreciable difference in CO2 uptake was observed compared with the control (Fig. 6). Even at low $[^{12}CO_2]$ (0.1–0.5 μ M) along the uptake curves, the apparent rates of CO₂ disappearance from the medium were similar over the range of $[H^{13}CO_3^{-}]$ tested. Progressive inhibition of CO₂ transport by increasing $[H^{13}CO_3^{-}]$ would be expected to result in the CO₂ uptake curves becoming more like the dark control, with extensive tailing of the curves occurring at low [12CO₂] and high [H¹³CO₃⁻]. Only at the highest [H¹³CO₃⁻] tested was there evidence for some interference with CO₂ uptake (Fig. 6). A plot of a number of transport assays (n = 64) revealed a slight inhibitory effect of $H^{13}CO_3^-$ on CO_2 uptake (Fig. 7). Statistical analysis (t test) indicated that the slope of the regression line was significantly (P = 0.0007) different from zero, but the computed value of r^2 (0.11) indicated that only about 11% of the observed variability in CO₂ transport was actually explained by increasing [H¹³CO₃⁻]. From the regression equation, we calculated that CO₂ transport declined by about 5.9% per 100 μ M H¹³CO₃⁻. This small effect of a large increase in HCO₃⁻ flux across the membrane indicates that Na⁺-dependent HCO₃⁻ transport was either not inhibitory toward CO_2 transport or a poor inhibitior with an extremely high K_i . Uptake of CO₂ occurred in the presence and absence of 25 mm Na⁺ (Fig. 1). Similar, but less extensive, results to those shown for 25 mM Na⁺ have also been obtained in the presence of 100 μ M Na⁺ (Fig. 7) where HCO₃⁻ transport activity would be minimal (Fig. 1). These results suggest that the HCO_3^- ion itself does not interfere with CO_2 uptake.

Figure 7. Summary of the effects of $[H^{13}CO_3^{-1}]$ on ${}^{12}CO_2$ transport. The $[H^{13}CO_3^{-1}]$ was varied from 0 to 150 μ M, and ${}^{12}CO_2$ uptake was assayed as in Figure 6. The difference in the peak heights between the control and the experimental curves were plotted as a percentage of the control level of CO₂ transport ($[H^{13}CO_3^{-1}] = 0$ taken as 0%). Experiments were conducted in the presence of 25 mM NaCl ($\textcircled{\bullet}$) or 100 μ M NaCl (\bigcirc) and 3.3 mM iodoacetamide in BTP/HCl buffer, pH 8.0, and 30°C. Linear regression analysis yielded an equation of the form $y = -0.059 \times +5.2$ (r = 0.33) for the 25 mM NaCl data. The results are from seven experiments.

Inhibition of CO₂ Transport

Although H¹³CO₃⁻ was relatively ineffective in inhibiting $^{12}CO_2$ uptake, $^{12}CO_2$ did prove to be an effective inhibitor of ¹³CO₂ uptake (Fig. 8). In this experiment, iodoacetamidepoisoned cells were provided with 100 μ M K₂¹³CO₃ in the presence of 100 µM Na⁺ (no HCO₃⁻ transport) and allowed to selectively deplete the medium of ¹³CO₂ as before. Subsequently, the cells were presented with pulses of varying amounts of ¹²CO₂, and the fate of both ¹²CO₂ and ¹³CO₂ were followed simultaneously with the MS. The addition of a pulse of ${}^{12}CO_2$ to buffer alone showed that the CO₂ contained only the expected natural abundance (1.1%) of ${}^{13}CO_2$ (Fig. 8A, curve 5). With darkened cells (1.6 μ M ¹³CO₂ in the medium), a pulse of ¹²CO₂ caused only a very small increase in [¹³CO₂] above that found for the buffer control (Fig. 8A, curve 4). This increase was likely due to simple exchange of intracellular ${}^{13}CO_2$ for ${}^{12}CO_2$, because CO_2 transport does not occur at an appreciable rate in the dark (20). The $[^{13}CO_2]$ subse-

Figure 8. Effect of pulses of ¹²CO₂ on ¹³CO₂ transport by Synechococcus cells. Iodoacetamide (3.3 mm) poisoned cells (7.6 µg Chl a. mL⁻¹) at the CO₂ compensation point were provided with 100 μ M $K_2^{13}CO_3$ in the presence of 100 μ M NaCl and were allowed to selectively deplete the medium of ${}^{13}CO_2$ in the light (210 μ mol·m⁻²· s⁻¹) as in Figure 2B. Subsequently, the cells were presented with increasing amounts of ¹²CO₂ (arrows), and the fate of both ¹³CO₂ (A, curves 1-3; m/e = 45) and ${}^{12}CO_2$ (B, curves 1-3; m/e = 44) were simultaneously followed with MS. Curves having the same number in A and B are results from the same experiment (CO₂ pulse). Curves 4 and 5 (A) show the effect of ¹²CO₂ additions (not shown in B) on [¹³CO₂] for cells in the dark or for buffer alone containing no added ¹³C. The dark controls for curves 1 to 3 (B) are shown; **♦** represent to curve 2, and the lower to curve 3. Uppermost also represents the level of ¹²CO₂ provided for the experiments shown in curves 4 and 5 (A). Experiments were conducted at pH 8.0, 30°C, and CA was not added.

quently decreased because some of it was converted to $H^{13}CO_3^{-}$. With illuminated cells (about 0.1 μM ¹³CO₂ left in the medium), pulses of increasing amounts of ¹²CO₂ (Fig. 8B, curves 1-3) resulted in the transient appearance of increasing amounts of ${}^{13}CO_2$ in the medium. With the highest $[{}^{12}CO_2]$ used, the [¹³CO₂] increased to about one-half the level expected for ${}^{13}\text{CO}_2$ in equilibrium with the 100 μ M K $_2{}^{13}\text{CO}_3{}^{-1}$ originally added. Darkening the cells resulted in the reappearance of all of the 1.6 μ M ¹³CO₂ expected (not shown). The increase in [¹³CO₂] is most easily explained if it is assumed that ¹²CO₂ competed with ¹³CO₂ for uptake. The ¹³CO₂ transiently appearing in the medium could have arisen either from within the cells or from external dehydration of $H^{13}CO_3^{-}$. In the first case, ${}^{13}CO_2$ within the intracellular pool returns to the medium during the course of the normal pumpleak cycle (14, 22). In the absence of ${}^{12}CO_2$, the ${}^{13}CO_2$ leaking from the cells would be transported back into the cells by the high affinity transport system, and its concentration would remain near zero. However, because the pulse increased the initial $[^{12}CO_2]$ in the medium to a level substantially higher than the [13CO₂], ¹²CO₂ transport would be favored over transport of ¹³CO₂. Thus, the [¹²CO₂] declined while the ¹³CO₂] increased in the medium. Not until the medium contained similar levels of ¹²CO₂ and ¹³CO₂ did ¹³CO₂ begin to disappear from the medium again. This behavior is consistent with a competition between ${}^{12}CO_2$ and ${}^{13}CO_2$ for uptake.

It is also possible that the increase in $[{}^{13}CO_2]$ may be due to a simple one to one exchange of ${}^{12}CO_2$ for ${}^{13}CO_2$ not involving the activity of the CO₂ transport system. In this case, the intracellular $[{}^{13}CO_2]$ would be no higher than 1.6 μ M, resulting from the diffusion of ${}^{13}CO_2$. If all of this was exchanged from an intracellular volume of 380 μ L·L⁻¹ medium (58 μ L·mg⁻¹ Chl [13]), then the ${}^{13}CO_2$ transiently appearing in the medium would be no higher than 0.61 nM or 1200-fold lower than observed (Fig. 8A).

The transient appearance of ¹³CO₂ (Fig. 8A) could also come from H¹³CO₃⁻ dehydration in the medium. For the cells to maintain the $[^{13}CO_2]$ near zero, as they do, it must be taken up at the same rate as it was produced from $H^{13}CO_3^{-1}$ dehydration. Appearance of ${}^{13}CO_2$ in the medium meant that ¹³CO₂ uptake lagged behind H¹³CO₃⁻ dehydration. Both the intracellular pool and extracellular H13CO3⁻ dehydration likely contributed to the increase in [¹³CO₂], but regardless of the source, inhibition of ¹³CO₂ transport was a necessary requisite for the appearance of ¹³CO₂ in the medium. Furthermore, conversion of the ¹²CO₂ to H¹²CO₃⁻ was not required to inhibit ¹³CO₂ uptake, as was evidenced by increased 13 CO₂ uptake as the 12 CO₂ disappeared (Fig. 8). In the presence of ongoing HCO₃⁻ transport (25 mM Na⁺), ¹³CO₂ appearance in the medium following a ¹²CO₂ pulse was no greater than in its absence (Fig. 9), further indicating a lack of interaction between the two mechanisms of DIC acquisition.

DISCUSSION

It is important, when determining rates of transport or the affinity of the transport system for its substrate, that only the species of inorganic carbon of interest is, in fact, transported.

Figure 9. Effect of ongoing HCO_3^- transport on ${}^{12}CO_2$ and ${}^{13}CO_2$ transport in *Synechococcus* cells. Illuminated cells (600 μ mol·m⁻². s⁻¹, 8.2 μ g Chl a·mL⁻¹), in the presence of iodoacetamide (3.3 mM) and 125 μ M DIC (42 μ M DI¹²C + 83 μ M DI¹³C) were allowed to selectively deplete the medium of CO₂. Pulses of ${}^{12}CO_2$ were subsequently provided to the cells, and the fates of ${}^{13}CO_2$ (A, curves 1 and 2) and ${}^{12}CO_2$ (B, curves 1 and 2) were simultaneously followed by MS. Curves having the same number in A and B are results from the same experiment (CO₂ pulse). Experiments were conducted in the presence of 100 μ M NaCl (curve 1, A and B: no HCO₃⁻ transport) or 25 mM NaCl (curve 2, A and B: ongoing HCO₃⁻ transport). \blacklozenge , Peak height for the dark control (B, +25 mM NaCl); the corresponding effect on [${}^{13}CO_2$] with cells in the dark is shown by curve 3 (A). CA was not added in this experiment.

Hence, if CO_2 is the species of interest, CO_2 transport must be measured directly and HCO_3^- transport must be absent.

It is now well established that air-grown cells of Synechococcus UTEX 625 can actively transport both HCO_3^- and CO_2 (10, 12, 14, 18, 22). CO_2 transport, however, only requires micromolar concentrations of Na⁺ (13, 19, 20), whereas HCO_3^- transport requires millimolar concentrations (13). HCO_3^- transport then can be effectively prevented by only including a low concentration of Na⁺ in the reaction medium (Fig. 1). In these circumstances the cells are confined to transporting CO_2 .

The active transport of HCO_3^- or CO_2 , even when fixation of CO_2 is prevented, causes the quenching of Chl *a* fluorescence (21), and the degree of quenching is highly correlated with the size of the internal pool of inorganic carbon (21, 24). Hence, quenching of fluorescence can conveniently be used as an indirect indication of transport, and it shows (Fig. 1) that in the presence of low levels of Na⁺, as expected, only CO_2 is being transported.

To determine the affinity of the CO_2 transport system for its substrate, it is necessary to measure initial rates of transport as a function of the concentration of CO_2 . Silicone fluid centrifugation experiments have previously been used (6, 31) to estimate the affinity of the CO_2 transport system for CO_2 . With this technique, the inorganic carbon is added as CO₂ and the cells are separated from the reaction medium by spinning them through a layer of silicone fluid. Two major problems with this technique preclude the measurement of the initial rate of CO₂ transport, however. First, because of its conversion to HCO_3^- (see Fig. 1C), the CO_2 concentration quickly decreases far below the concentration that was initially added. Uptake by cells in the light greatly accelerates CO₂ disappearance to the point where after 10 s only about 10% of the initial [CO₂] remains. Second, although 5-s sampling times have been used (31), the usual first reliable sampling point is 10 s (3, 5, 20). By this time the internal inorganic carbon pool is largely filled (5, 6, 20) and, at low concentrations of CO_2 , most of the CO_2 has been removed from the external medium (1, 20). Consequently, considerable uncertainty will exist as to the actual [CO₂] experienced during the transport assay.

A continuous record of the rate of transport or uptake of CO_2 can be obtained with MS, with which the 69% response time is about 3 s. Even with MS, however, initial rates of transport as a function of CO_2 concentration cannot be obtained with CO_2 -pulsing experiments. (These CO_2 -pulsing experiments are analogous to the addition of CO_2 in the silicone fluid centrifugation technique.) As mentioned, both the conversion of CO_2 to HCO_3^- and CO_2 uptake by the cells caused the $[CO_2]$ to quickly decline far below the initial level within 10 s. Even in the dark, the expected $[CO_2]$ in the reaction mixture is not observed because of the conversion of CO_2 to HCO_3^- within the resolving time of MS (Fig. 1C).

To obtain reliably the expected CO₂ concentrations in the dark, it is necessary to add CA to quickly establish the $HCO_3^{-}/$ CO_2 equilibrium (Fig. 3). This, of course, completely defeats the rationale of CO_2 -pulsing experiments, but the quantitative shortcomings of those experiments have already been described. There are no problems with the use of CO₂ pulsing in comparative or qualitative experiments. When CA is present in the light, the CO_2 approaches that expected (Fig. 3), and a tangent to the initial rate of CO₂ disappearance does, in fact, extrapolate through the expected zero time CO₂ concentration (Fig. 3). We thus believe that with the technique described (Fig. 3) we are able to measure the initial rates of transport of CO₂. The addition of CA also, of course, prevents the precipitous decrease of CO₂ concentration (Figs. 1, B and C, and 2B) that is observed in its absence and hence maintains the CO₂ concentration closer to the added concentration for a longer period of time.

The addition of CA did not alter the specificity of transport, because only CO₂ was still transported (Fig. 2), and hence the stimulatory affect of CA addition on internal pool filling or photosynthesis was, as assumed earlier (18), entirely due to the greater availability of CO₂ due to the maintenance of the HCO_3^-/CO_2 equilibrium.

Using the procedure and technique illustrated in Figure 3, we have determined the initial rates of transport of CO_2 by the CO_2 transport system as a function of the CO_2 concentration. It must be emphasized that the uptake of CO_2 from the medium that we measure is not due to the fixation of CO_2 ; it represents essentially only the transport of CO_2 from the exterior of the cell to the interior of the cell. The initial transport of CO_2 is not greatly affected when fixation of CO_2 is inhibited with iodoacetamide, and the CO_2 can be fully recovered in the medium if the inhibited cell is darkened (Fig. 4). If CO_2 assimilation is not inhibited, the rate of transport is at least 100 times the initial rate of photosynthesis (Figs. 3 and 5), and even at steady-state photosynthesis the rate of CO_2 transport is at least three times the rate of photosynthesis. CO_2 uptake clearly precedes O_2 evolution (Fig. 3), and this is consistent with the CO_2 uptake forming the internal pool of inorganic carbon which will support O_2 evolution or photosynthesis (4, 28).

From a large number of experiments, such as that illustrated in Figure 3, the relationship between the transport rate of CO₂ and the substrate concentration was derived (Fig. 5). The K_{ν_2} (CO₂) for CO₂ transport in Synechococcus UTEX 625 was 0.4 $\pm 0.2 \mu$ M and maximum rates of transport ranged from 400 to 735 μ mol·mg⁻¹ Chl·h⁻¹. These rates of transport were about three times the maximum rates of photosynthesis that were observed with saturating DIC concentrations. One should also note that the initial rate of fluorescence quenching (Fig. 3B), when expressed as a percentage of the maximum rate of change, closely follows the points for CO₂ transport (Fig. 5). The data concerning the initial rate of fluorescence quenching can also be used to calculate a K_{ν_2} (CO₂) for CO₂ transport (Fig. 5, inset), and this value is similar to that determined from the direct measurements of CO₂ transport. The correlation between the initial rate of CO₂ transport and the initial rate of fluorescence quenching was high (r = 0.98), as was the correlation between the extent of quenching and the size of the internal inorganic carbon pool (r = 0.99) (24). Hence, in cyanobacteria, fluorescence quenching can be used to indirectly estimate initial rates of CO₂ transport and the size of the internal pool. In both cases, quenching seems to be due to the development of the internal carbon pool, but the mechanism of the quenching is not understood.

An earlier report (15) indicated that the K_m (inorganic C) for the transport system in low CO₂-grown Anabaena was 141 μ M. Subsequently, Volokita et al. (31) reported a K_{V_2} (CO₂) for CO₂ transport of 17 μ M, and Badger and Price (7) reported a value of 7 μ M for Synechococcus PCC 7942. Both of these results were obtained using the silicone fluid centrifugation technique, and although Volokita et al. (31) used an exceptionally short sampling time of 5 s, the shortcomings of the technique that we have elaborated still apply. Anabaena may well be different from Synechococcus, but given that the K_{V_2} (DIC) for whole cell photosynthesis was 10 μ M (0.16 μ M CO₂) (15), it is difficult to understand how this could be achieved with inorganic carbon transporters with such low affinity.

The active transport of CO₂ was first demonstrated in 1982 by Badger and Andrews (4) in a marine *Synechococcus*. Since then, active transport or preferential utilization of CO₂ has been shown in a number of cyanobacteria (11, 12, 23, 31). The preferential use of CO₂ has also been demonstrated for number of green algae (30) and directly measured in *Chlamydomonas* (29). The apparent K_{V_2} (CO₂) for CO₂ transport in low CO₂-grown *Chlamydomonas* was 0.2 μ M, and this was similar to the apparent K_{V_2} (CO₂) for photosynthesis (29). In low inorganic carbon-grown *Synechococcus*, the K_{V_2} (CO₂) for photosynthesis was <1.0 μ M (6, 16, 17), a concentration similar to the concentration of the $K_{\frac{1}{2}}$ (CO₂) of the CO₂ transporter reported here. Below the maximum rate of photosynthesis, the rate of photosynthesis is determined by the availability of CO_2 at the site of fixation (16). The delivery of CO₂ to this site in cyanobacteria and microalgae will ultimately depend upon the capacity and the affinity of the transport systems for inorganic carbon, and hence under inorganic carbon limitation, the affinity and capacity of the transport systems will limit the rate of photosynthesis (16). It has been shown that the rate of photosynthesis and the rate of transport as a function of [DIC] are highly correlated (16). Because [CO₂] is normally maintained in the reaction medium at levels approaching zero, the affinity of the CO₂ transporter must be equal to or less than the $[CO_2]$ that would be in equilibrium with the [DIC] that is determining the rate of photosynthesis. Hence, although direct measurements of the affinity of the transport system for CO_2 are essential, at pH 8.0 (at which most is known about the transport system), the $K_{\frac{1}{2}}$ (CO₂) for photosynthesis may give an indication of the $K_{\frac{1}{2}}$ of the CO₂ transport system.

Inhibition of CO₂ Transport

Volokita et al. (31) presented results showing competition between CO₂ uptake and HCO₃⁻ uptake in Anabaena. On the basis of these results, they proposed that there was only a HCO₃⁻ transporter and that CO₂ transport occurred via its conversion to HCO₃⁻ by a front-end CA-like moiety. Competition between CO₂ and HCO₃⁻ for uptake is also predicted in the DIC transport model proposed by Price and Badger (25) for Synechococcus PCC 7942. In this scheme CO₂ from the medium and CO₂ generated from HCO₃⁻ dehydration within the membrane by an associated front-end mechanism both provide substrate for the CO₂ transport system, which facilitates passage across the membrane along a common path. The contribution of each source to the supply of CO_2 for uptake will depend on the concentration of substrates and the kinetic parameters of the systems (7). In our experiments with Synechococcus UTEX 625, we were not able to demonstrate any significant inhibition of CO₂ uptake by HCO₃⁻ over a range of [H¹³CO₃⁻] and transport rates (Figs. 6 and 7). We conclude that the Na⁺-dependent mechanism for DIC uptake cannot be a significant source of CO₂ for the CO₂ transport system. Rather, the results suggest that CO₂ transport and Na⁺-dependent HCO₃⁻ transport are separate processes, consistent with previous results (14, 18, 22).

Very high concentrations of HCO_3^- inhibit CO_2 uptake at most about 6% (Fig. 7). Even this inhibition is probably not due to HCO_3^- transport but rather is due to the increasing amounts of ${}^{13}CO_2$ that would accompany the increasing amounts of $H^{13}CO_3^-$.

That ${}^{12}CO_2$ can inhibit ${}^{13}CO_2$ transport is clearly shown in Figures 8 and 9. Without the addition of ${}^{12}CO_2$, any ${}^{13}CO_2$ that leaks from the cells or is produced from the dehydration of $H^{13}CO_3^-$ is transported into the cells by the efficient CO_2 pump. When ${}^{12}CO_2$ is added to the reaction mixture, the ${}^{13}CO_2$ from the above sources appears in the medium both in the absence of HCO_3^- transport (Fig. 8) or in the presence of HCO_3^- transport (Fig. 9). As expected, for competitive inhi-

bition, increasing amounts of ${}^{12}\text{CO}_2$ cause increasing amounts of ${}^{13}\text{CO}_2$ to appear in the reaction medium.

Within the limited number of cyanobacteria examined in detail, active CO_2 transport would appear to be constitutive because it is present in both high DIC (CO₂) grown cells (2, 5, 19, 25) and low DIC (CO₂) grown cells (2, 5, 10, 20, 25). The CO₂ transport system not only functions in the initial transport of CO₂ into the internal pool but also acts as an effective scavenger of any CO₂ that leaks from the cells during active transport of inorganic carbon. This is quite clearly demonstrated when the CO₂ transport system is inhibited with another isotopic species of CO_2 (Figs. 8 and 9) or with carbonyl sulfide (22) or H₂S (14). Because high levels of CO₂ must exist in the cells for maximum activity of Rubisco, there must be some method available to prevent its rapid dispersion back into the surrounding liquid. Potential barriers that have been suggested are a low conductivity of the cell membrane (3, 5) or a low conductivity of the carboxysome shell (27) or Rubisco itself if CO₂ is generated in the interior of the carboxysome (27). Additionally, conversion of recently transported CO_2 to HCO_3^- by the transport system (25, 31) or by other means would assist in reducing leakage. However, some loss of CO_2 from the cells is inevitable. It would seem that a prominent and effective barrier to prevent this CO₂ from leaking away from the cell is the CO2 transport system, because its inhibition by various means (Figs. 8 and 9) causes immediate (within 3 s, the response time of the mass spectrometer) and substantial leakage of CO₂ from the cells to the environment.

Because the substrate for Rubisco is CO_2 , high rates of carbon assimilation would always require high levels of CO_2 in the vicinity of the enzyme. For an effective system, the potential diffusion of CO_2 away from this site (*i.e.* leakage) must be prevented. Hence, it would seem that all organisms, whether cyanobacteria or algae, that concentrate inorganic carbon must possess a CO_2 transport system in addition to the other leak control mechanisms to fill this role. To be maximally effective, the affinity of the transporter, as demonstrated here, must be very high. Only with such a system for active CO_2 transport would the cells be able to maximize their ability to compete for limiting DIC and to utilize all of the available DIC from the medium.

LITERATURE CITED

- Abe T, Tsuzuki M, Miyachi S (1987) Transport and fixation of inorganic carbon during photosynthesis of *Anabaena* grown under ordinary air. I. Active species of inorganic carbon utilized for photosynthesis. Plant Cell Physiol 28: 273-281
- Abe T, Tsuzuki M, Miyachi S (1987) Transport and fixation of inorganic carbon during photosynthesis in cells of *Anabaena* grown under ordinary air. III. Some characteristics of the HCO₃⁻ transport system in cells grown under ordinary air. Plant Cell Physiol 28: 867–874
- Badger MR (1987) The CO₂-concentrating mechanism in aquatic phototrophs *In* MD Hatch, NK Boardman, eds, The Biochemistry of Plants: A Comprehensive Treatise, Vol 10. Academic Press, New York, pp 219–274
- 4. Badger MR, Andrews TJ (1982) Photosynthesis and inorganic carbon usage by the marine cyanobacterium *Synechococcus* sp. Plant Physiol 70: 517-523

- Badger MR, Bassett M, Comins HN (1985) A model for HCO⁻³ accumulation and photosynthesis in the cyanobacterium Synechococcus sp. Plant Physiol 77: 465–471
- Badger MR, Gallagher A (1987) Adaptation of photosynthetic CO₂ and HCO₃⁻ accumulation by the cyanobacterium Synechococcus PCC 6301 to growth at different inorganic carbon concentrations. Aust J Plant Physiol 14: 189–201
- Badger MR, Price GD (1990) Carbon oxysulfide is an inhibitor of both CO₂ and HCO₃⁻ uptake in the cyanobacterium Synechococcus PCC 7942. Plant Physiol 94: 35-39
- Buch K (1960) Dissoziation der Kohlensäure, Gleichgewichte und Puffer systeme *In* W Ruhland, ed, Handbuch der Pflanzenphysiologie, Vol 1. Springer Verlag, Berlin, pp 1–11
- Colman B, Espie GS (1985) CO₂ uptake and transport in leaf mersophyll cells. Plant Cell Environ 8: 449–457
- Espie GS, Canvin DT (1987) Evidence of Na⁺-independent HCO₃⁻ uptake by the cyanobacterium Synechococcus leopoliensis. Plant Physiol 84: 125-130
- Espie GS, Gehl KA, Owttrim GW, Colman B (1984) Inorganic carbon utilization by cyanobacteria. In C Sybesma, ed, Advances in Photosynthesis Research, Proceedings of the International Congress on Photosynthesis, Brussels, Belgium, Vol 3. Martinus Nijoff/Dr W Junk Publishers, The Hague, pp 457–460
- Espie GS, Miller AG, Birch DG, Canvin DT (1988) Simultaneous transport of CO₂ and HCO⁻³ by the cyanobacterium Synechococcus UTEX 625. Plant Physiol 87: 551–554
- Espie GS, Miller AG, Canvin DT (1988) Characterization of the Na⁺-requirement in cyanobacterial photosynthesis. Plant Physiol 88: 757-763
- Espie GS, Miller AG, Canvin DT (1989) The selective and reversible inhibition of active CO₂ transport by hydrogen sulfide in a cyanobacterium. Plant Physiol 91: 387–394
- Kaplan A, Badger MR, Berry JA (1980) Photosynthesis and the intracellular inorganic carbon pool in the blue-green alga Anabaena variabilis: response to external CO₂ concentration. Planta 149: 219-226
- Mayo WP, Elrifi IR, Turpin DH (1989) The relationship between ribulose bisphosphate concentration, dissolved inorganic carbon (DIC) transport and DIC-limited photosynthesis in the cyanobacterium Synechococcus leopoliensis grown at different concentrations of inorganic carbon. Plant Physiol 90: 720-727
- Mayo WP, Williams TG, Birch DG, Turpin DH (1986) Photosynthetic adaptation by *Synechococcus leopoliensis* in response to exogenous dissolved inorganic carbon. Plant Physiol 80: 1038-1040
- Miller AG, Canvin DT (1985) Distinction between HCO⁻₃ and CO₂ dependent photosynthesis in the cyanobacterium Synechococcus leopoliensis based on the selective response of HCO⁻₃ transport to Na⁺. FEBS Lett 187: 29–32
- Miller AG, Canvin DT (1987) Na⁺-stimulation of photosynthesis in the cyanobacterium *Synechococcus* UTEX 625 grown on high levels of inorganic carbon. Plant Physiol 84: 118-124
- Miller AG, Espie GS, Canvin DT (1988) Active transport of CO₂ by the cyanobacterium *Synechococcus* UTEX 625. Measurement by mass spectrometry. Plant Physiol 86: 677–683
- Miller AG, Espie GS, Canvin DT (1988) Chlorophyll a fluorescence yield as a monitor of both active CO₂ and HCO⁻₃ transport by the cyanobacterium Synechococcus UTEX 625. Plant Physiol 86: 655–658
- Miller AG, Espie GS, Canvin DT (1989) The use of COS, a structural analog of CO₂, to study active CO₂ transport in the cyanobacterium *Synechococcus* UTEX 625. Plant Physiol 90: 1221-1231
- Miller AG, Espie GS, Canvin DT (1990) Physiological aspects of CO₂ and HCO₃⁻ transport by cyanobacteria: a review. Can J Bot 68: 1291-1302

- 24. Miller AG, Espie GS, Canvin DT (1991) The effects of inorganic carbon and oxygen upon fluorescence in the cyanobacterium *Synechococcus* UTEX 625. Can J Bot 69: 1151-1160
- Price GD, Badger MR (1989) Ethoxyzolamide inhibition of CO₂ uptake in the cyanobacterium Synechococcus PCC7942 without apparent inhibition of internal carbonic anhydrase activity Plant Physiol 89: 37–43
- Price GD, Badger MR (1989) Ethoxyzolamide inhibition of CO₂dependent photosynthesis in the cyanobacterium Synechococcus PCC7942 Plant Physiol 89: 44-50
- 27. Reinhold L, Zviman M, Kaplan A (1989) A quantitative model for inorganic carbon fluxes and photosynthesis in cyanobac-

teria. Plant Physiol Biochem 27: 945-954

- Shelp BJ, Canvin DT (1984) Evidence for bicarbonate accumulation by Anacystis nidulans. Can J Bot 62: 1398-1403
- 29. Sültemeyer DF, Fock HP, Canvin DT (1991) Active uptake of inorganic carbon by *Chlamydomonas reinhardtii*. Evidence for simultaneous transport of HCO₃⁻ and CO₂ and characterization of active CO₂ transport. Can J Bot 69: 995–1002
- Tsuzuki M, Miyachi S (1989) The functions of carbonic anhydrase in aquatic photosynthesis. Aquatic Bot 34: 85-104
- Volokita M, Zenvirth D, Kaplan A, Reinhold L (1984) Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis. Plant Physiol 76: 599-602