
Supplemental Materials 

Supplementary S1: Data preprocessing 

 The preprocessing steps for CT images are depicted in Figure S8. Firstly, a doctor 

identifies the rectangular region of interest (ROI) within the original CT images from 

four data centres. The ROI is carefully selected to encompass the entire lesion's contour. 

Subsequently, the ROI images are resized to a rectangular shape of 224×224. Finally, 

each data centre contributes a varying number of ROIs, specifically 3030, 2412, 2416, 

and 235, respectively, for training the local model.



Supplementary S2: Federal cross-correlation information learning 

The objective of federated cross-learning is to improve the generalization capability 

among models by learning domain-specific information across different data domains.  

In this study, while ensuring data security through WGAN networks, a publicly 

available dataset is constructed to obtain a federated co-relation matrix containing inter-

domain information. Additionally, random perturbation matrices are incorporated into 

the generator's output to introduce random differences between the generated images 

and the original image data, further enhancing the security of local data. 

Training of the robust local data WGAN models: In this study, a penalty term is 

added to the GAN network based on Wasserstein distance as the cost function, replacing 

the Jensen-Shannon (JS) divergence. This penalty term helps enforce parameter 

constraints. The structure of the WGAN model is illustrated in Figure S9 A. The loss 

function of the WGAN model can be represented as: 
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 In the above equation, Let the data from the i-th centre be denoted as ix , and its 

corresponding true distribution as i
realP . iz represents a tensor of data with Gaussian 

noise. iG and iD  are the generator and discriminator, respectively, for the i-th centre. 

|| ||p  denotes the P-norm.   represents the gradient operator.    is the penalty 

coefficient. (1 ( ))i
w i i iD x G z   ,   follow a uniform distribution within the range 

[0, 1]. i
realP   represents the distribution of the generated data by i ( )iG z  .The loss 

function for iG  in the model can be defined as 1 ( ( ))
iG i i iL D G z  . 

 During the training process of iG   and iD  , the Adam optimizer is employed to 



iteratively update the parameters of ( , )i iL G D   and 
iGL   by cross-interpolating iG  

and iD  . It is crucial to consider that the generated data by iG   approximates the 

distribution of real data, which may lead to potential data leakage issues. Therefore, in 

this paper, Gaussian noise N is incorporated as perturbation in the output section of the 

original generator iG  to ensure the security of local data. The generated data i
fakeD  for 

the i-th centre is represented as follows: 
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 Where:   represents the perturbation intensity coefficient, N denotes the Gaussian 

noise that follows the distribution of 0    and 2 1   . Subsequently, each centre 

model utilizes the trained iG  to generate data i
fakeD  specific to that centre and then 

transmits it to the central model. The central model collects the complete set of 

generated data from all the centres, denoted as 1 2 3{ , ,..., }com fake fake fakeD D D D . In this set, 

n represents the number of data centres, { i
fakex } represents the image data, and { i

fakey }, 

({ },{ })i i i
fake fake fakex y D represents the image labels. 

 Cross-federated Learning with Multi-Centre Generated Data: The goal of 

federated learning is to achieve consensus among different centre models for the same 

categories. In this paper, a cross-correlation matrix is constructed to express the inter-

domain information between different local models on the same dataset, incorporating 

multi-centre model information. This cross-correlation matrix is defined as follows: 
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 Where: tM   represents the cross-correlation matrix for the t-th round of model 

training. t
iC   denotes the local model of the i-th data centre in the t-th round. i

comx  

represents the i-th data from the Representative data set comD . K represents the number 

of samples in the Representative data set. The cross-correlation matrix constructed in 

equation (4) has rows that represent the predicted logits generated by each individual 

local model for every data sample in the Representative data set. The matrix represents 

the predicted logits generated by different local models from various centres for the 

same data sample in the Representative data set. Therefore, this matrix provides insights 

into the preference level of different local models for the same data. The process of 

generating the cross-correlation matrix is illustrated in Figure S9 b.



Supplementary S3: Federated adaptive features Learning based on GCN 

 The goal of federated robust learning based on Graph Convolutional Networks 

(GCN) is to utilize a GCN network to learn the adjacency matrix {0,1}N NA  , which 

reflects the topological relationships and inter-domain information among different 

centres. By leveraging the adjacency matrix A , the global model can be robust, thereby 

enhancing the performance of local models on their respective local data. 
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where: (.)F   represents the local model's local loss, i  and iu   are the robust 

model parameters and local model parameters of the i-th centre, respectively,   

represents the global model parameters,    and    are two hyperparameters, (.)R  

calculates the Euclidean distance between the two sets of parameters, (.)C  denotes the 

GCN network structure, and M  represents the cross-correlation matrix. 

Federated robust based on GCN: In order to incorporate inter-domain information 

between different models into the adjacency matrix iA  , its construction should 

reference the cross-correlation matrix tM   as the learning objective. Therefore, the 

adjacency matrix iA  is learned through the GCN network to capture the inter-domain 

information between tM  and the topological structure of data from different centres. 

Subsequently, the global model is Robust. This process can be represented as follows: 
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 Where: ,
old

i jP  is the parameter matrix constructed by all local models, with each row 

representing the parameters of the i-th centre's models. n represents the number of 



clients, and k represents the number of parameters in each local model. ,
new

i jP  is the 

matrix of robust parameters for all models. The adjacency matrix is denoted as 

( )A C M . Therefore, the robust model parameters for the i-th centre are represented 

as new
i iu P . 

 To optimize the solution in Equation (5), we follow the following steps: First, we 

solve the local model loss (.)F  to update the local model parameters i  and compute 

the two regularization terms. The Euclidean distance between the local model and the 

global model, ( , )iR   , and the Euclidean distance between the robust model and the 

local model, ( , )i iR u v , are utilized to constrain the distances between the local model 

and the global model, as well as between the robust model and the local model. 

Afterwards, the central model aggregates the parameters of each local model to obtain 

the global model parameters  . Finally, the GCN network automatically updates the 

model parameters iu  of each node by aggregating the inter-domain information from 

various centres in the graph. The robust structure is illustrated in Figure S10. 

Algorithm 1. Federated robust based on GCN 

1：Initialize  , ,,S, T, C, A, i   

2：for each communication round s=0, 1, …, S do 

3:   Local Update 

4：  for local epoch t=0, 1, …, T do 

5：       
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6:         end for 

7:   Global Update 
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12:  GCN Update 

13：  for GCN epoch c=0, 1, …, C do 
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15:   end for  
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17: 1
, , ,

1 1

n k
s s s

i j i j i j
i j

P A P

 

  

18: 
1s s

iu P   

19: end for 

The pseudocode for the parameter interaction between centres and the robust 

component is shown below: where n and j represent the optimization constraints; C is 

the number of GCN iterations; T is the number of local model training iterations; A is 

the adjacency matrix; M is the cross-correlation matrix learned by the local model from 

the representative dataset; n is the number of centres; Y is the model structure; and x  

represents the fake
jx image in the data.  

 



Supplementary S4: Common and adaptive features of federal radiomics 

 The analysis of common features and adaptive features in federated radiomics is 

conducted in two steps, as shown in Figure S11. Firstly, the robust models from each 

centre extract features from the test dataset of all centres and perform feature selection 

to eliminate the interference of model differences on the results of common and adaptive 

features. Subsequently, feature selection is applied to the extracted features to identify 

200 federated radiomics features. Finally, the 200 radiomic features were divided into 

two groups to eliminate differences between categories. Subsequently, a correlation 

analysis was conducted on the radiomic features for recurrent advanced gastric cancer 

(R-AGC) and no-recurrent advanced gastric cancer (NR-AGC), and a correlation 

heatmap was constructed. The features with the highest correlation within the same 

centre and the lowest correlation across different data centres are identified as adaptive 

features, while the features with the highest correlation across different data centres are 

considered common features. 

  



Supplementary S5: Construction of clinical models 

 In this study, three clinical indicators of T stage, N stage and CA199 were used to 

construct clinical models for the data of the four centres through the classification 

algorithm of decision tree. 

 The parameters of the decision tree classification algorithm are as follows: Mean 

square error as criterion term; Three fold cross verification; The tree depth is selected 

between 2 and 10 using the grid shrinking strategy; Splitter select the best mode;



Supplementary S6: Subjective CT findings and pathological evaluations were 

conducted 

Image evaluations were executed by two radiologists with 10 and 15 years of 

experience in abdominal imaging diagnosis, respectively. Initially, the radiologists 

independently assessed the transverse, coronal, and sagittal CT images of the patients 

on the Picture Archiving and Communication System (PACS). During the evaluation 

process, they manipulated different CT window widths and window levels to amplify 

the visualization of various CT features, classifying any corresponding feature present 

at any CT location as positive. Subsequently, they compiled their findings and 

collaboratively reviewed cases with diverging opinions to resolve discrepancies. 

In this study, the following five CT signs were evaluated: (1) Hyperenhancement 

of the adjacent gastric serosa (present or absent): The manifestation of a long band-like 

or patchy hyperenhancement around the lesion on the serosal side of the stomach. (2) 

Nodules or irregularities in the outer layer of the gastric wall (present or absent): The 

presence of nodules or irregularities in the outer layer of the gastric wall around the 

lesion. (3) Infiltration of the gastric fat (present or absent): Increased density of the fatty 

layer around the lesion, with linear and reticular structures indicating infiltration of the 

gastric fat. (4) Tumor necrosis (present or absent): The absence of enhancement within 

the lesion. (5) Necrosis of abdominal lymph nodes (present or absent): The absence of 

enhancement within the abdominal lymph nodes. 

All surgical pathology samples were examined by a pathologist boasting 16 years 

of experience in gastrointestinal pathology. The samples were reclassified according to 



the 8th edition of the TNM staging system by the American Joint Committee on Cancer 

(2016) (15). The evaluation encompassed histological grading, histological typing, T 

stage, N stage, TNM stage, lymphovascular invasion, and Lauren classification, among 

other indicators. 



Table S1 Performance tables of four central data test sets for clinical models and RFLM 

Method Evaluation  Centre A Centre B Centre C Centre D 

Clinical 

model 

AUC 0.563 0.602 0.547 0.476 

Sensitive 0.500 (20/40) 0.778 (21/27) 0.192 (5/26) 1.000 (11/11) 

Specificity 0.625 (45/72) 0.476 (20/42)  0.889 (24/27) 0.040 (2/50) 

Accuracy  0.580 (65/112) 0.594 (41/69)  0.547 (29/53) 0.213 (13/61) 

PPV 0.426 (20/47) 0.488 (21/43) 0.625 (5/8) 0.186 (11/59) 

NPV 0.692 (45/65) 0.769 (20/26)  0.533 (24/45) 1.000 (2/2) 

RFLM 

AUC 0.710 0.798 0.809 0.869 

Sensitive 0.700 (28/40) 0.482 (13/27) 0.731 (19/26) 0.909 (10/11) 

Specificity 0.542 (39/72) 0.857 (36/42) 0.778 (21/27) 0.640 (32/50) 

Accuracy  0.598 (67/112) 0.710 (49/69) 0.755 (40/53) 0.689 (42/61) 

PPV 0.459 (28/61) 0.684 (13/19) 0.760 (19/25) 0.357 (10/28) 

NPV 0.765 (39/51) 0.720 (36/50) 0.750 (21/28) 0.970 (32/33) 

RFLM: robust federated learning model, AUC: area under the curve, PPV: positive predictive value, NPV: 

negative predictive value. 

  



TableS2. Model evaluation improvement sheet 

IDI NRI 

Centre 
Model 1 

Model 2 
Clinical model 

Model 1 

Model 2 
Clinical model 

Centre A RFLM 0.1161 (p=0.0007) RFLM 0.3722 (p=0.0004) 

Centre B RFLM 0.2285 (p=0.00006) RFLM 0.7778 (p=0.0000) 

Centre C RFLM 0.2149 (p=0.0004) RFLM 0.3803 (p=0.0310) 

Centre D RFLM 0.2535 (p=0.0007) RFLM 0.5491 (p=0.0000) 

IDI: integrated discrimination improvement. NRI: net reclassification improvement, RFLM: the Robust 

Federated Learning Model. Statistical test: Z-test (two-tailed). p: significance value. The Cut off in the NRI 

is defined as 0.2, 0.6. 

  



Table S3. Performance of the seven models using four central datasets of patients in the relapse and 

nonrelapse models. 

Method Evaluation Centre A Centre B Centre C Centre D 

FedAvg 

AUC 0.672 0.726 0.711 0.798 

Sensitivity 0.575 (23/40) 0.778 (21/27) 0.769 (20/26) 0.818 (9/11) 

Specificity 0.667 (48/72) 0.381 (16/42) 0.556 (15/27) 0.600 (30/50) 

Accuracy  0.634 (71/112) 0.536 (37/69) 0.660 (35/53) 0.639 (39/61) 

PPV 0.489 (23/47) 0.447 (21/47) 0.625 (20/32) 0.310 (9/29) 

NPV 0.739 (48/65) 0.727 (16/22) 0.714 (15/21) 0.938 (30/32) 

FedProx 

AUC 0.658 0.718 0.731 0.766 

Sensitivity 0.600 (24/40) 0.481 (13/27) 0.807 (21/26) 0.727 (8/11) 

Specificity 0.611 (44/72) 0.810 (34/42) 0.519 (14/27) 0.520 (26/50) 

Accuracy  0.607 (68/112) 0.681 (47/69) 0.660 (35/53) 0.557 (34/61) 

PPV 0.462 (24/52) 0.619 (13/21) 0.618 (21/34) 0.250 (8/32) 

NPV 0.733 (44/60) 0.708 (34/48) 0.737 (14/19) 0.897 (26/29) 

Moon 

AUC 0.663 0.661 0.724 0.775 

Sensitivity 0.550 (22/40) 0.148 (4/27) 0.6539 (17/26) 0.909 (10/11) 

Specificity 0.681 (49/72) 0.833 (35/42) 0.704 (19/27) 0.640 (32/50) 

Accuracy  0.634 (71/112) 0.565 (39/69) 0.679 (36/53) 0.689 (42/61) 

PPV 0.489 (22/45) 0.364 (4/11) 0.680 (17/25) 0.357 (10/28) 

NPV 0.731 (49/67) 0.603 (35/58) 0.677 (19/28) 0.970 (32/33) 

HarmoFL 

AUC 0.684 0.723 0.707 0.773 

Sensitivity 0.650 (26/40) 0.704 (19/27) 0.577 (15/26) 0.273 (3/11) 

Specificity 0.597 (43/72) 0.691 (29/42) 0.630 (17/27) 0.940 (47/50) 

Accuracy  0.616 (69/112) 0.696 (48/69) 0.604 (32/53) 0.820 (50/61) 

PPV 0.473 (26/55) 0.594 (19/32) 0.600 (15/25) 0.500 (3/6) 

NPV 0.754 (43/57) 0.784 (29/37) 0.607 (17/28) 0.855 (47/55) 

pFedMe 

AUC 0.689 0.706 0.744 0.769 

Sensitivity 0.575 (23/40) 0.704 (19/27) 0.500 (13/26) 0.818 (9/11) 

Specificity 0.667 (48/72) 0.667 (28/42) 0.741 (20/27) 0.780 (39/50) 

Accuracy  0.634 (71/112) 0.681 (47/69) 0.623 (33/53) 0.787 (48/61) 



PPV 0.489 (23/47) 0.576 (19/33) 0.650 (13/20) 0.450 (9/20) 

NPV 0.739 (48/65) 0.778 (28/36) 0.606 (20/33) 0.951 (39/41) 

pFedFSL 

AUC 0.649 0.742 0.728 0.796 

Sensitivity 0.625 (25/40) 0.593 (16/27) 0.577 (15/26) 0.818 (9/11) 

Specificity 0.667 (48/72) 0.643 (27/42) 0.778 (21/27) 0.620 (31/50) 

Accuracy  0.652 (73/112) 0.623 (43/69) 0.679 (36/53) 0.656 (40/61) 

PPV 0.510 (25/49) 0.516 (16/31) 0.714 (15/21) 0.321 (9/28) 

NPV 0.762 (48/63) 0.711 (27/38) 0.656 (21/32) 0.939 (31/33) 

RFLM 

AUC 0.710 0.798 0.809 0.869 

Sensitivity 0.700 (28/40) 0.482 (13/27) 0.731 (19/26) 0.909 (10/11) 

Specificity 0.542 (39/72) 0.857 (36/42) 0.778 (21/27) 0.640 (32/50) 

Accuracy  0.598 (67/112) 0.710 (49/69) 0.755 (40/53) 0.689 (42/61) 

PPV 0.459 (28/61) 0.684 (13/19) 0.760 (19/25) 0.357 (10/28) 

NPV 0.765 (39/51) 0.720 (36/50) 0.750 (21/28) 0.970 (32/33) 

AUC, area under the curve. PPV, positive predictive value. NPV, negative predictive value. 

 



Table S4. LIDC multi-centre data distribution. 

Set Label (n) Centre A Centre B Centre C Centre D 

Train 
Benign lesion 153 145 182 152 

Malignant lesion 101 118 123 95 

Test 
Benign lesion 97 124 75 127 

Malignant lesion 72 66 49 67 

  



Figure S1 

 

ROC curve of seven models in four data centres. Notes: RFLM: robust federated 

learning model.



Figure S2 

 

RFLM Federated Robustness Experiment. a. The ratios of positive and negative samples 

were evaluated in five experiments. b. Boxplots were created to visualize the results of 

the five RFLM robustness experiments. The upper and lower black lines in the boxplots 

indicate the 75th percentile values. Note: RFLM refers to the Robust Federated Learning 

Model, NR-AGC represents no-recurrent advanced gastric cancer, and R-AGC 

represents recurrent advanced gastric cancer. 

  



Figure S3 

 

Stratified analysis results based on gender and age. a. Gender stratification. b. Age 

stratification. Notes: Statistical test: Delong test (two-tailed). P: significance value. 

  



Figure S4 

Correlation heatmap between common and adaptive features in the NR-AGC. a. 

Common features correlation heatmap of NR-AGC. b. Adaptive features correlation 

heatmap of NR-AGC. Notes: A_1: the first feature under centre A; NR-AGC: no-

recurrent advanced gastric cancer. 

  



Figure S5 

 

Disease free survival (DFS) analysis of four data centre test sets. Notes: Statistical test: 

log-rank (two-tailed),on one degrees of freedom. p: significance value. 



Figure S6 

 

The figure represents the process of feature extraction from a patient's CT images. In 

this study, a ResNet18 CBAM model with spatial attention mechanism is used as the 

feature extraction part. Due to the presence of 4449 convolutional filters in the feature 

extraction network, 4449 features are extracted for each image. The features from the 

same filter are averaged over N instances. As a result, each patient is associated with a 

matrix containing 4449 features. Notes: CBAM: convolutional block attention module. 

Conv: convolution layer. Block1 to Block4 are the backbone of the Resnet18 network. 

FC: fully connected layer. 

  



Figure S7 

 

RFLM build process diagram. 4449 federated radiomics features undergo a statistical 

test and feature selection process, resulting in the selection of 200 federated radiomics 

features. These selected features are then fed into the Sparse Bayesian Extreme Learning 

Machine (ELM) to construct the RFLM (Robust Federated Learning Model). Notes: 

RFLM refers to the Robust Federated Learning System, and it encompasses the concept 

of federated radiomics labels. Notes: ia  and ,i jw  are the parameters and corresponding 

weights of ELM's hidden layer neurons, respectively



Figure S8 

 

The preprocessing process of a single patient's CT images is as follows. Notes: N is the 

number of CT images the patient has. 



Figure S9 

a. Schematic diagram of WGAN. b. The learning process of federated cross-correlation 

information. Representative data set: The Representative data set is constructed by each 

data centre using the Fake Images generated through the WGAN network. Logits out: 

It represents the prediction values obtained by each local model when evaluating the 

common data. Notes: A, B, C, and D are the names of the four centres respectively. 



Figure S10 

 

Federated robust based on GCN. Notes: GCN: Graph convolutional neural network. 

Adjacency matrix diagram of X1, X2, X3, and X4 data centres. A, B, C, and D are the 

names of the four centres respectively. 



Figure S11 

 

Flow chart of federal radiomics commonality and adaptive analysis. Notes: A, B, C, and 

D are the names of the four centres respectively. A*, B*, C*, and D* are robust local 

models of these four centres, respectively. 

 


