Supplementary information:

An extensive disulfide bond network prevents tail contraction in *Agrobacterium tumefaciens* phage Milano

Ravi R. Sonani¹, Lee K. Palmer², Nathaniel C. Esteves³, Abigail A. Horton³, Amanda L. Sebastian³, Rebecca J. Kelly³, Fengbin Wang^{1,5}, Mark A.B. Kreutzberger¹, William K. Russell², Petr G. Leiman⁴, Birgit E. Scharf³, Edward H. Egelman¹

Correspondence to: pgleiman@utmb.edu, bscharf@vt.edu, egeIman@virginia.edu

This file contains: 11 Supplementary Figures (S1 – S11) and Five Supplementary Tables (S1 – S5)

Figure S1: (a) Cryo-EM micrograph of contracted Milano phage. **(b)** Representative 2-D class averages of Milano contracted tail showing its straight morphology. The upper and lower panel show 2D-class averages of middle and end region of the tail. **(c-d)** Superimposed structures of Milano tail-tube (gp21) protomer **(c)** and tube **(d)** in extended (grey) and contracted (orange) state.

Figure S2: (a) Milano tail structure in straight state. Tube (gp21) and sheath (gp20) are colored orange and green, respectively. (b) Helical arrangement of gp21 in tube. The yellow-colored

loop (residues 44-61) establishes the contact with neighboring subunit within hexamer. The inter-hexamer contact is mainly mediated by the N-terminal end (residues 1-7) (green) and 44-61 loop (yellow) as removal of which results in no contact between hexamers (Right panel). (c) The structure Milano tube protein gp21 superimposed with tube proteins of other CIS (Left panel; T6SS, Type-VI secretion system; T4, T4 bacteriophage; PVC, *Photorhabdus* virulence cassette; AFP, anti-feeding phage; RTP, R-type pyocin) and non-contractile phage tail-tube proteins (Right panel; Phage SPP1, Phage 80α , Phage YSD1). The outer domains of SPP1, 80α and YSD1 are removed for ease of visualization. The sequence alignment (lower panel) reveals absence of specific loop in Milano gp21 (between residues 111-112) compared to tube protein of other CIS. The missing loop is shown by a dashed red circle in the upper structural panel. The lack of this loop results in grooves on Milano tube surface as Shown in main Fig. 1e. (d) Structures of sheath proteins of other CISs, T4, T6SS, AFP, RTP and PVC for comparison with Milano sheath protein shown in main Fig. 1f. The sheath handshake (SHD), sheath-body (SBD), sheath-extension (SED), and sheath-decoration (SDD) domains are colored orange, white, green, and blue respectively. (e) Comparison of tube and sheath-tube interface between curved (yellow, orange) and baseplate-proximal straight tail segment (grey). Yellow and orange represent subunits at inner and outer surface, respectively. (f) Highly negative electrostatic potential of inner surface of Milano tail-tube.

gp21 Cys3 – gp21 Cys19	gp21 Cys43 – gp21 Cys82	gp20 Cys14 – gp20 Cys244	gp20 Cys216 – gp20 Cys327	gp28 Cys3 – gp30 Cys22	
CYS 3 CYS 19	CYS 82 CYS 43	CYS 244 CYS 14	CYS 216 CYS 3	CYS 22 CYS 3	
gp28 Cys22 – gp30 Cys75	gp29 Cys68 – gp30 Cys23	gp29 Cys282 – gp30 Cys206	gp29 Cys302 – gp30 Cys130	gp29 Cys395 – gp29 Cys234	
CYS 75 CYS 22	CYS 23 CYS 68	CYS 282 CYS 206	CYS 302 CYS 130	CYS 234 CYS 395	
gp29 Cys3 – gp29 Cys68	gp29 Cys282 – gp29 Cys234	gp21 Cys19 – gp25 Cys5	gp28 Cys32 – gp20 Cys14	gp28 Cys74 – gp20 Cys501	
CYS 3 CYS 68	CYS 282 CYS 234	CYS 5 CYS 19	CYS 14 CYS 32	CYS 74 CYS 501	
gp20 Cys327 – gp124 Cys15	gp28 Cys41 – gp124 Cys15	gp30 Cys69 – gp124 Cys15	gp29 Cys302 – gp31 Cys38	gp29 Cys224 – gp31 Cys38	
CYS 327 CYS 15	GY\$41 CYS 15	CYS 69 CYS 15	CYS 302 CYS 3	CYS 224 CYS 38	
gp29 Cys367 – gp31 Cys38	gp29 Cys367 – gp31 Cys38	gp29 Cys224 – gp31 Cys38	gp30 Cys147 – gp31 Cys38	gp25 Cys318 – gp29 Cys3	
CYS 38 OYS 367	CYS 38 CYS 387	CYS 224 CVS 38	CYS 38 CYS 14	CYS 318	

Figure S3: Close up view of representative disulfide bonds in Milano tail and baseplate structure with atomic models shown along with the density map. It can be seen that the density for these bonds is quite variable, with some putative disulfides showing no density for the bond. We note that disulfide bonds are remarkably sensitive to radiation, either x-ray or electrons. It has previously been shown at 2.5 Å resolution that the sensitivity of the disulfide bond to radiation is dependent on the local environment, so that with the same radiation dose the density for some disulfide bonds is almost totally lost while others are retained¹.

Figure S4: Electrostatic potential and surface morphology of Milano tail tube (gp21) in comparison with other contractile injection system (CIS) (left panel) and tube of Siphophages (right panel). T6SS, Type-VI secretion system; RTP, R-type pyocin; PVC, *Photorhabdus* virulence cassette; 80 α , *S. aureus* bacteriophage 80 α ; SPP1, *Bacillus subtilis* bacteriophage SPP1; *YSD1, Salmonella Typhi* bacteriophage YSD1. Unlike other CIS, Milano tail-tube shows substantial grooves as indicated by arrow heads on its surface similar to Siphophage.

Figure S5: Averaged power spectrum of vertically aligned segments of **(a)** contracted and **(b)** extended tail of Milano. Contracted tail segments were windowed from both sides to include tube and sheath overlapping to it, which decreases the signal from contracted sheath. The additional layer lines from tube-signal appears and allows indexing of tube helical symmetry, which is similar to extended tube symmetry. Layer lines associated with tube and contracted sheath are marked by blue and red arrows, respectively.

Figure S6: Mass spectrometry fragmentation pattern of the inter-chain disulfide bonds of Milano tail-sheath (gp20) and tail-tube (gp21) showing a peak for doubly charged parent mass. (a) gp20 Cys47_{SBD} - gp20 Cys182_{SED}; (b) gp20 Cys14_{SHD} - gp20 Cys244_{SBD}; (c) gp20 Cys467_{SHD} - gp20 Cys501_{SHD} and (d) gp21 Cys3 - gp21 Cys19

b

#11 #12

#13

#14

#15 #16

#17 #18

#19 #20

#21 #22

476CARTDD.A0484

¹M....¹2RLCID¹⁶....²⁴EGCKI²⁸....⁴⁵VTCVT⁴⁹....⁷¹VFCTCKS⁷⁷....¹⁸⁰GSCTS¹⁸⁴....²¹⁴NECCFA²¹⁹...²⁴²WDCSKPOCFG²⁵¹

#2	¹ M ¹² RLCID ¹⁶ ²⁴ EGCKI ²⁸ ⁴⁵ VTCVN ⁴⁹ ⁷¹ VFCMCKS ⁷⁷ ¹⁸⁰ GSCTS ¹⁸⁴ -	214NECCFA219	²⁴² WD <mark>C</mark> SKPC	CFG ²⁵
#3	¹ M ¹² RLCID ¹⁶ ²⁴ EGCKI ²⁸ ⁴⁵ VTCVT ⁴⁹ ⁷¹ VFCMCKS ⁷⁷ ¹⁸⁰ GSCTS ¹⁸⁴	214NECCFA219	²⁴² WS <mark>C</mark> DKPQ	CFG ²⁵
#4	¹ M ⁹ KEIDI ¹³ ²¹ PGLYI ²⁵ ⁴⁰ AVLST ⁴⁴ ⁷³ ALQKS ⁷⁷	330 AN.NPMT338	362M	-DC36
#5	1M 12EINEG16 24STAIV28 47PVLIT51 73IADQSK-78	123AAE.KPR133	242	-RA ²⁵
#6	¹ M ¹¹ KETTV ¹⁵ ²³ STGTA ²⁷ ⁴¹ IKQVT ⁴⁵ ⁷¹ FLQYG ⁷⁵	363AD.VDVQ371	²⁴² Q	-DC ²⁵
#7	¹ M ²² FDNSN ²⁶ ³⁴ PRORV ³⁸ ⁵⁵ PVRIR ⁵⁹ ⁸¹ FLNANRV ⁸⁷ ¹⁹⁴ YAGE- ¹⁹⁷	227GDLQYK232	255WGP-VNC	ADG ²⁶
#8	¹ M ⁴ DYKE.T ²⁰ ³⁴ ASE.TL ³⁶ ⁵³ VYKLR ⁵⁷ ⁷⁸ AWGSNP.T ⁸⁶	335AHLGGY340	363SDAG	EPM ³⁶
#9	¹ M ¹⁶ ASIEV ²⁰ ³¹ NSE.IL ³⁶ ⁵⁰ VYOVR ⁵⁴ ⁷⁵ AWGSNPO ⁸¹	328KNEGGY333	356SDAG	EPM ³⁶³
#10	1M 15HASIE19 31SSE VF36 50VYELR54 75AWGSNP. T83	328AHEGGY333	356SDAG	EPM ³⁶³
#11	¹ M ¹¹ SLOOE ¹⁵ ²³ NMNAV ²⁷ ⁴³ YRIYR ⁴⁷ ⁶⁹ FFDTTPN ⁷⁵ ¹⁹⁵ ISAVL ¹⁹⁹	232SEVNIK236	261	-NM ²⁶
#12	¹ M ¹¹ SLOOE ¹⁵ ²³ NMNAV ²⁷ ⁴³ YRIYR ⁴⁷ ⁶⁹ FFETT.SA ⁷⁹ ¹⁹⁵ ISAVL ¹⁹⁹	232AEVNIK236	261	-NM26
#13	¹ M ¹¹ SLOOE ¹⁵ ²³ NMNAV ²⁷ ⁴³ YRIYR ⁴⁷ ⁶⁹ FFETT.SA ⁷⁹ ¹⁹⁵ VSAVL ¹⁹⁹	232AAVNIK236	261	-NM ²⁶
#14	¹ M ¹⁹ AYGSI ²³ ³³ S.SNIP ⁴⁰ ⁵⁴ VLWYT ⁵⁸ ⁷⁹ MFSP.GGG ⁸⁹	310 KKOYSD315	338ENRK	QRQ ³⁴
#15	¹ M ¹³ PRTEV ¹⁷ ²⁸ VRS.PL ³⁴ ⁴⁸ VEVVT ⁵² ⁷³ AWNP.LGG ⁸³	310 ADSGGY315	338SSAG	NOL ³⁴
#16	¹ M ¹¹ RPRTE ¹⁵ ²⁸ AOS, PV ³⁴ ⁴⁸ PVELT ⁵² ⁷³ AWNP, VGG ⁸³	309ADLGGY314	337STSG	NOL ³⁴³
#17	¹ M ¹¹ KETSV ¹⁵ ²³ ATGRA ²⁷ ⁴¹ VTOIT ⁴⁵ ⁷¹ FLOYG ⁷⁵	361GD.LRVN369	3990	-DC40
#18	¹ M ¹¹ KETSV ¹⁵ ²³ ATGRA ²⁷ ⁴¹ VTOIT ⁴⁵ ⁷¹ FLOYG ⁷⁵	361GD.LRVN369	3990	-DC40
#19	1M 11KETSV15 23ATGRA27 41VTOIT45 71FLOYG75	361GD.LRVN369	3990	-DC40
#20	¹ M ¹¹ KETTV ¹⁵ ²³ STGTA ²⁷ ⁴¹ IKOVT ⁴⁵ ⁷¹ FLOYG ⁷⁵	363AD.VDV0371	4010	-DC ⁴⁰
#21	1MAT3 27VVV0G31 45PVLVT49 76FLSYS80	346NN. YDAK354	377K	-DT37
#22	1M 16ERDAT20 27VVV0G31 45PVLVT49 76FLSYS80 312WVYTF316	347N. AYDAK354	377K	-DT ³⁷
	Ç.			
#1	298 SACSTCNN ³⁰⁵ ³¹⁸ LSCIN ³²² ³²⁵ ESCTP ³²⁹ ⁴⁶⁵ PKCVG ⁴⁶⁹ ⁴⁹⁹ DNC	DR ⁵⁰³		
#2	298SACSTCEN305318LSCIN322325ESCTP329465PKCVG469499DNC	DR ⁵⁰³		
#3	²⁹⁸ SA <mark>C</mark> ST <mark>C</mark> EN ³⁰⁵ ³¹⁸ LS <mark>C</mark> IN ³²² ³²⁵ ES <mark>C</mark> TP ³²⁹ ⁴⁶⁵ PK <mark>C</mark> VG ⁴⁶⁹ ⁴⁹⁹ DN <mark>C</mark>	DR ⁵⁰³		
#4	429VSETAD.YE437 450L-NVI453 455VRR457	608		
#5	215RAKIDO.QG223 233VNGVT237 239ISA241 355L355	396		
#6	298CARTDN.SQ305 318ILNVI322 325LAI329 618I618	659		
#7	311ASQALSID318 328LPGRM332 334PAVGD338 467D467	495		
#8	428ASGLG432 442L-HVN445 447LDN449	594		
#9	421VSGLD425 435L-FVN438 440-LDK442	587		
#10	⁴²¹ ASGLE ⁴²⁵ ⁴³⁵ LR-VS ⁴³⁸ ⁴⁴¹ DQ ⁴⁴²	583		
	L L			

-464-TTAE467

617_---I⁶¹⁷

585____T585

 M22ASGL---E²²³
 M32LR-VS¹³⁰
 M42---DU⁴²²

 312MH--TVLF³¹⁷
 331L-SVT³³⁴
 336----E³³⁶
 464-TTAE⁴⁶⁷

 312MH--TVLF³¹⁷
 331L-SVP³³⁴
 336----E³³⁶
 464-TTAE⁴⁶⁷

476CARTDD.AQ484 497ILNCI501 503--LAI505 617----I617

478CARTDN.SQ486 499ILNVI503 505--LAI507 618----I618

⁴⁴⁵WARSIE.AG⁴⁵³ ⁴⁶⁶YNNYN⁴⁷⁰ ⁴⁷²--MAW⁴⁷⁴ ⁵⁸⁵----I⁴⁵⁸⁵

497ILNCI⁵⁰¹ 503--LAI⁵⁰⁵

312MH--TVLF317 331L-SVV334 336----E336

Ч93 ХАСИ----С497 417 FN-LV420 423----С5424 483 ХАСU----С487 417 FN-LV420 423---С4424 483 ХАСL----С487 417 MN-ID420 423---NL424 492 ХАСL----А486 416M-NIE419 421--LGK423 476 CARTDD AQ484 497 ILNCI561 583--LAI585

445WARSIE.AG453 466YNNYN470 472--MAW474

Figure S7: (a) Phylogenetic tree of bacteriophages constructed using their sheath protein sequence. (b) Structural alignment of Milano sheath protein with other bacteriophage sheath proteins by DALI. Structures were predicted using AlphaFold. The presence of cysteine residues involved in disulfide bonds are conserved in the specific bacteriophage clade infecting the Agrobacterium.

_503

_503

.503

_571 _503

_503

_657

_657

_657

____659

____631

_____631

Figure S8: The β -sheet augmentation interaction between baseplate wedge 1 (BW1, gp28) and tail-sheath (gp20) proteins in Milano.

Figure S9: Tail-spike assembly and its interactions with baseplate. (**a**) Tail spike assembly (ribbon model) attached to the baseplate (surface model). Garland protein envelopes the distal parts (C-terminal domains) of TSP and STF proteins. The color scheme is the same as Fig. 3. (**b**) TSP interactions with baseplate wedge proteins: Enlarged view of interacting surfaces (blue and red boxes in Fig. 5b) in ribbon and stick model.

Side view

Tilted side view

Figure S10: (a) Three dimer of garland proteins (gp125₂, gp127₂ or gp125-gp127) fitted in to cryo-EM map. The red circle indicates the undefined density blob as described in text. (b) Superimposed dimer of garland proteins. gp127₂, silver; gp125₂, grey; gp125-gp127, gp125 and gp127 are colored in dark and light pink, respectively. (c) Visualization of the receptor binding complex and garland of Milano depicted through a density map from various perspectives.

Figure S11: Left-to-right, the experimental density map, model-to-map fitting, local resolution map and map:map FSC calculation curves (with 0.143 cutoff) of all reconstructions described in the manuscript. (a) The curved-tail asymmetric reconstruction, (b) The C3-symmetrically averaged baseplate reconstruction, (c) The contracted tail-sheath helical reconstruction, and (d) The contracted tail-tube helical reconstructions, as detailed in Table S5.

Table S1: Identification of the disulfide bonds in Mass Spectrometry data using pLink2² (Version 2.3.9, pFind Team, Beijing, China). The E-value is the expectation value for the whole disulfide bonded peptide pair. The Score is the measurement for false discovery rate (FDR) calculation.

Milano disulfides identified Number of		Best scoring peptide sequence	Best	Best
	unique		E-value	Score
	peptides			
	representing			
	site			
gp20 cys 47 - gp20 cys 182	7	AVT C VTSEL-TNLGS C T	1.95E-12	2.80E-07
gp20 cys 14 - gp20 cys 244	3	CIDPSLNFF-DCSKPQ	3.31E-14	3.47E-02
gp20 cys 467 - gp20 cys 501	4	C VGQPGIF-DN C DR	5.10E-11	3.31E-01
gp21 cys 3 - gp21 cys 19	3	A C NKQNGVK-	4.41E-20	1.44E-01
		TD C DTQEVIGPISHEQPDDTLPTY		

# No	PDB-ChainID	Z	rmsd	lali	nres	%id	Molecules Description
1	6wpx-B	7.9	2.5	89	451	6	BLEST2
2	3afg-B	7.7	2.2	84	507	8	SUBTILISIN-LIKE SERINE PROTEASE
3	5gu5-A	7.1	3.0	86	108	8	TRANSMEMBRANE EMP24 DOMAIN-CONTAINING PROTEIN 5
4	2k46-A	6.5	3.1	92	190	8	MGC80075 PROTEIN
5	2ууо-А	6.5	2.6	97	160	4	SPRY DOMAIN-CONTAINING PROTEIN 3
6	7b2s-A	6.4	3.1	106	172	3	E3 UBIQUITIN-PROTEIN LIGASE TRIM9
7	8beq-A	6.3	3.6	102	534	12	FRUCTOFURANOSIDASE FROM RHODOTORULA DAIRENENSIS
8	6i56-A	6.1	2.9	86	279	10	PHAGE-LIKE ELEMENT PBSX PROTEIN XEPA
9	5azx-A	6.0	2.4	78	100	9	TRANSMEMBRANE EMP24 DOMAIN-CONTAINING PROTEIN 10
10	6nob-A	6.0	3.3	96	634	7	BETA-FRUCTOFURANOSIDASE
11	3ldk-A	5.9	3.4	109	634	11	FRUCTOSYLTRANSFERASE
12	2qfe-A	5.9	2.4	84	139	6	CALPAIN-7
13	2wfk-A	5.9	3.1	102	255	3	LIPL32
14	7oa8-A	5.8	3.6	104	376	7	PILC MINOR PILIN
15	3012-A	5.7	3.1	101	185	3	UNCHARACTERIZED PROTEIN YJL217W
16	4uyb-A	5.6	2.6	83	400	6	SEC14-LIKE PROTEIN 3
17	4ffg-A	5.6	3.7	108	480	6	LEVAN FRUCTOTRANSFERASE
18	5iku-A	5.6	2.2	79	240	9	COLLAGENASE
19	7js4-A	5.6	2.9	86	953	7	F5/8 TYPE C DOMAIN PROTEIN
20	7nsb-a	5.5	3.4	106	568	5	VACUOLAR IMPORT AND DEGRADATION PROTEIN 30
21	8bv0-B	5.5	2.9	97	206	9	NRC1
22	6e57-A	5.5	2.6	86	399	8	SURFACE GLYCAN BINDING PROTEIN B
23	6s44-A	5.4	3.3	90	146	6	CAPSID PROTEIN
24	6r3u-A	5.4	3.3	106	495	4	GLYCOSIDE HYDROLASE FAMILY 32
25	2bvb-A	5.3	3.2	89	137	8	MICRONEMAL PROTEIN 1

Table S2: Results of DALI structural similarities search for C-terminal domain (residues 170-300)of short tail fiber – gp31

Table S3: Identification of structural proteins in Milano by mass spectrometry. Procedure: The Milano phage sample was reduced and alkylated with carbamidomethylated before digestion by trypsin. Digested phage sample in 0.1% formic acid is injected on a Dionex Ultimate 3000 nano-LC system (Thermo Scientific) coupled to a Bruker Maxis Impact QTOF mass spectrometer for MS/MS analysis. The results were analyzed against the Milano proteome using Mascot software.

Id#	Id	Protein name	Coverage	MW	Scor e
1.1	tr A0A482MFS6 A0A482MFS6_9CAU D	Major capsid protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_009 PE=4 SV=1	60.9 %	5251 2	2163
1.2	tr A0A482MHM7 A0A482MHM7_9CAU D	Tape measure protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_024 PE=4 SV=1	43.3 %	8229 6	1333
1.3	tr A0A482MFS8 A0A482MFS8_9CAU D	Tail sheath protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_020 PE=4 SV=1	33.6 %	5473 9	940
1.4	tr A0A482MFU4 A0A482MFU4_9CAU D	Baseplate protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_029 PE=4 SV=1	47.5 %	4423 5	916
1.5	tr A0A482MFW7 A0A482MFW7_9CAU D	Portal protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_007 PE=4 SV=1	32.9 %	4593 1	571
1.6	tr A0A482MHC6 A0A482MHC6_9CAU D	Virion-associated protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_001 PE=4 SV=1	18.7 %	5290 1	559
1.7	tr A0A482MHF3 A0A482MHF3_9CAU D	Virion-associated protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_031 PE=4 SV=1	32.0 %	3214 1	480
1.8	tr A0A482MFQ9 A0A482MFQ9_9CAU D	DNA- circularization protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_025 PE=4 SV=1	26.4 %	4339 2	441

1.9	tr A0A482MF64 A0A482MF64_9CAUD	Prohead protease OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_008 PE=4 SV=1	24.2 %	2872 4	400
1.1 0	tr A0A482MHL8 A0A482MHL8_9CAU D	Head-to-tail connector complex protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_014 PE=4 SV=1	44.1 %	2244 7	341
1.1 1	tr A0A482MFR0 A0A482MFR0_9CAU D	Virion-associated protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_016 PE=4 SV=1	40.6 %	2311 1	327
1.1 2	tr A0A482MFS0 A0A482MFS0_9CAU D	Virion-associated protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_010 PE=4 SV=1	48.9 %	1476 1	290
1.1 3	tr A0A482MGH3 A0A482MGH3_9CAU D	Virion-associated protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_013 PE=4 SV=1	16.1 %	3080 1	286
1.1 4	tr A0A482MFT7 A0A482MFT7_9CAUD	Virion-associated protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_030 PE=4 SV=1	36.0 %	3216 9	284
1.1 5	tr A0A482MGV0 A0A482MGV0_9CAU D	Putative tail fiber protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_124 PE=4 SV=1	10.4 %	6186 6	277
1.1 6	tr A0A482MGG2 A0A482MGG2_9CAU D	Uncharacterized protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_003 PE=4 SV=1	22.0 %	4854 5	230

1.1 7	Unknown_structurally_identified	nan gp28	20.8 %	1962 8	201
1.1 8	tr A0A482MFQ3 A0A482MFQ3_9CAU D	Head completion protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_015 PE=4 SV=1	35.5 %	1619 1	194
1.1 9	tr A0A482MF73 A0A482MF73_9CAUD	Virion-associated protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_018 PE=4 SV=1	23.0 %	2034 9	180
1.2 0	tr A0A482MG23 A0A482MG23_9CAU D	Virion-associated protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_127 PE=4 SV=1	30.8 %	1418 3	179
1.2 1	tr A0A482MFZ0 A0A482MFZ0_9CAU D	Baseplate protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_027 PE=4 SV=1	17.0 %	2073 9	133
1.2 2	tr A0A482MFS1 A0A482MFS1_9CAU D	Baseplate hub protein OS=Agrobacteriu m phage Milano OX=2557550 GN=Milano_026 PE=4 SV=1	8.1 %	4978 8	123
1.2 3	tr A0A482MHX6 A0A482MHX6_9CAU D	Uncharacterized protein OS=Agrobacteriu m bhade Milano OX=2557550 GN=Milano_125 PE=4 SV=1	29.8 %	1453 6	93

Table S4: Intra-chain disulfide bonds in Milano tail and baseplate structure

Sheath (gp20)	Cys26	Cys303	
	Cys73	Cys320	
	Cys217	Cys249	
	Cys75	Cys300	
Baseplate wedge 2	Cys69	Cys181	
(gp29)	Cys173	Cys212	
	Cys223	Cys374	
	Cys250	Cys379	
Baseplate wedge 3	Cys33	Cys66	
(gp30)	Cys125	Cys264	
	Cys212	Cys277	
Short tail fiber (gp31)	Cys12	Cys20	

	Curved tail	Baseplate	Contracted tube	Contracted sheath
PDB entry	8FOP	8FQC	8FOU	8FOY
EMBD entry	29353	29383	29354	29355
Voltage (kV)	300	300	300	300
Magnification (x)	81,000	81,000	105,000	105,000
Electron exposure (e ⁻ / Å ²)	50	50	48	48
Pixel size (Å/pixel)	1.08	1.08	0.82	0.82
Particle images (no.)	228,393	14,856	160,399	160,399
Box size (Å)	384	578	512	512
Symmetry imposed	•			
	Point group: C1	Point group: C3	Helical Rise: 34.068 Å Twist: 28.164° Point group: C6	Helical Rise: 23.934 Å Twist: -30.562° Point group: C6
Map global resolution (Å)	•			
Map:map Fourier shell correlation	3.2 Å	3.2 Å	3.3 Å	2.9 Å
(FSC, 0.143)				
Model:map FSC (0.5)	3.5 Å	3.4 Å	3.5 Å	2.9 Å
Refinement and model validation				
Clash score	9.37	10.20	8.88	9.08
R.M.D deviations				
Bond Length (Å)	0.003	0.007	0.003	0.009
Bond Angle (°)	0.563	0.793	0.602	0.783
Ramachandran plot (%)				
Outliers	0.57	0.75	0.00	0.20
Allowed	7.14	8.75	4.80	9.04
Favoured	92.29	90.49	95.20	90.76
Model vs. Data fit				
CC (mask)	0.80	0.85	0.85	0.90
CC (Volume)	0.79	0.84	0.83	0.89

Table S5: Cryo-EM data collection and refinement statistics of Milano tail and baseplate

 junction structures

References

- 1. Pieri, L. et al. Atomic structure of Lanreotide nanotubes revealed by cryo-EM. *Proc Natl Acad Sci U S A* **119**(2022).
- 2. Chen, Z.-L. et al. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. *Nature communications* **10**, 3404 (2019).