Nitrate-driven anaerobic oxidation of ethane and butane by bacteria

- 3
- 4 Mengxiong Wu^{1,9}, Jie Li^{1,9}, Chun-Yu Lai^{1,7,9,*}, Andy O Leu², Shengjie Sun³, Rui Gu¹, Dirk V
- 5 Erler⁴, Lian Liu⁵, Lin Li⁶, Gene W. Tyson², Zhiguo Yuan^{1,8}, Simon J. McIlroy², Jianhua
- 6 Guo^{1, *}
- 7
- 8 ¹Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering,
- 9 Architecture and Information Technology, The University of Queensland, St Lucia,
- 10 Queensland 4072, Australia
- 11 ²Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of
- 12 Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia
- 13 ³Computational Science Program, The University of Texas at El Paso, El Paso, TX, USA
- ⁴Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales,
- 15 Australia
- 16 ⁵Metabolomics Australia (Queensland Node), Australian Institute for Bioengineering and
- 17 Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- 18 ⁶Department of Physics, University of Texas at El Paso, El Paso, TX, USA
- 19 ⁷College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058,
- 20 China
- 21 ⁸School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
- ⁹These authors contributed equally: Mengxiong Wu, Jie Li, Chun-Yu Lai.
- 23 *Corresponding author email: <u>laichunyu@zju.edu.cn</u>, <u>jianhua.guo@uq.edu.au</u>
- 24 Corresponding author address: Level 4 Gehrmann Building (60), The University of
- 25 Queensland, Brisbane Qld 4072 Australia.

26 1. Supplementary Text

27 GC-MS operation

- 28 The GC was installed with a J&W HP-PLOT Q PT column (Agilent, USA) using He as the
- 29 carrier gas at a flow rate of 5.58 mL/min. The GC oven was programmed as follows: (1)
- 30 samples from the ethane bioreactor: 2 min at 45 °C, ramp at 10 °C/min to 60 °C where it was
- 31 held for 6 min. (2) samples from the butane bioreactor: 45 °C for 2 min, and then heated with
- 32 a rate of 15 °C/min to 100 °C where it was hold for 7 min. Mass spectra were detected in the
- 33 electron impact mode at 70 eV. The mass spectrometer was operated in Selected Ion
- 34 Monitoring (SIM) mode to detect m/z signals at 30 and 32 Da (C₂H₆), 58 and 62 Da (C₄H₁₀),
- 44 and 45 Da (CO₂), 28, 29 and 30 Da (N₂) with a dwell time of 100 ms for each signal. Data
- 36 processing was performed using the Chemstation program (Agilent, Unite States).
- 37

38 16S rRNA gene amplicon sequencing

- 39 Every 2-3 months, 10 mL of biomass samples were taken from the enrichment bioreactors
- 40 and pelleted by centrifugation (8,000 g for 10 min). DNA extraction was performed using the
- 41 FastDNA SPIN for Soil kit (MP Biomedicals, USA) according to the manufacture's protocol.
- 42 The 16S rRNA gene (V6 to V8 regions) amplicon sequencing was done using the universal
- 43 primer set 926F (5'-AAACTYAAAKGAATTGACGG-3') and 1392R (5'-
- 44 ACGGGCGGTGTGTRC-3') on a MiSeq system (Illumina, USA) at the Australian Centre
- 45 for Ecogenomics (ACE, Brisbane, Australia). QIIME2 was used to process the sequencing

46 results following the ACEPipe (<u>https://acepip</u>e.readthedocs.io/en/latest/).

47

48 Short- and long-read metagenomic sequencing

- 49 For short-read sequencing, total DNA was extracted using FastDNA SPIN for Soil kit (MP
- 50 Biomedicals, USA) and quality controlled using Nanodrop spectrophotometer (Thermo
- 51 Fisher Scientific, Wilmington, DE) and Qubit dsDNA HS Assay Kit. Libraries for short-read
- 52 sequencing were prepared using Illumina Nextera XT DNA library preparation kit and
- 53 sequenced on NextSeq 500 (Illumina, USA) platform at ACE.
- 54 To obtain Nanopore long reads, total DNA was extracted using Qiagen PowerSoil Pro kit
- 55 (Qiagen, Germany). Quality of extractions was checked using Qubit 1x dsDNA HS Assay Kit
- 56 on the Qubit Flex Fluorometer (Thermo Fisher Scientific, Wilmington, DE) and the QIAxcel

- 57 DNA High Resolution Kit on the QIAxcel Advanced system (Qiagen, Germany). Libraries
- 58 were prepared and sequenced on PromethION (Oxford Nanopore Technologies, USA).
- 59

60 Phylogenetic analysis of recovered Symbiobacteriia genomes

- 61 *Genome tree.* Phylogenetic placement of the two recovered Symbiobacteriia genomes in
- 62 current study was performed with the existing 'Ca. A. nitratireducens' MAG¹ and available
- 63 Firmicutes genomes in GTDB r207^{2,3} using 120 bacterial-specific conserved marker genes.
- 64 Briefly, marker genes in genomes were identified using Prodigal 2.6⁴ and aligned using
- 65 HMMER 3.3⁵. Trees were inferred using FastTree 2.1.11⁶ with WAG+GMMA models.
- 66 Bootstrap of the constructed tree was performed using workflow 'bootstrap' from
- 67 GenomeTreeTk v0.1.6 (<u>https://github.com/dparks1134/GenomeTreeTk</u>) with 100 times
- 68 nonparametric bootstrapping. The tree was visualized using ARB 6.0.6⁷ and further refined
- 69 using Adobe Illustrator (Adobe, USA).
- 70 AssA amino acid tree. The different AssAs in 'Ca. A. nitroreducens' were aligned with
- 71 reference AssA, BssA, MasD, PflD, IslA and HpdL protein sequences downloaded from
- 72 Uniprot database using muscle 3.8.31⁸. We applied trimAI 1.4.1⁹ to trim gaps in msa.
- 73 FastTree 2.1.11⁶ was used to infer the phylogenetic tree. Bootstrap value was calculated, and
- 74 tree was visualized as per the genome tree construction.
- 75

76 Metabolite extraction and detection

- 77 For metabolite extractions, enrichment cultures (5 mL) collected from ethane and butane
- 78 bioreactors were centrifuged at 10,000 rpm for 10 min (4 °C) to harvest the cells. The
- 79 metabolites were extracted from pelleted cells as described previously¹. The ethyl and butyl
- 80 succinate standards (custom synthesized by Best of Chemicals, USA) and cell extracts were
- 81 then processed and analysed using an ultra-high-sensitivity triple quadrupole GC/MS-
- 82 TQ8050 system (Shimadzu, Japan). The three most abundant fragmentation ions were chosen
- to monitor, with Transient 1 used as quantifier and the other two as qualifiers (See
- 84 Supplementary Table 9).
- 85

87 2. Supplementary Tables

88 Supplementary Table 1. Nitrogen and electron balances for the enrichment cultures capable

89	of coupling an	aerobic ethan	e/butane c	oxidation to	o nitrate i	reduction in	n the bate	h tests.
----	----------------	---------------	------------	--------------	-------------	--------------	------------	----------

Nitrogen and electron balance	C ₂ H ₆ / C ₄ H ₁₀ oxidized	NO3 ⁻ and NO2 ⁻ reduced	NH4 ⁺ generated	N2-N generated	Maximum electrons available from C ₂ H ₆ /C ₄ H ₁₀	Electrons required for NO ₃ ⁻ reduction	Nitrogen balance [†]	Electron balance [‡]
(mmol/L)					oxidation	Ť		
	0.94	1.85	0.63	1.44	13.18	12.24	0.90	1.08
Ethane bioreactor	1.15	1.99	1.20	1.21	16.05	15.67	0.82	1.02
	1.02	2.11	1.01	1.12	14.23	13.73	0.99	1.03
Butane	0.49	1.74	0.96	0.73	12.77	11.31	1.03	1.13
bioreactor	0.34	1.43	0.71	0.77	8.84	9.56	0.97	0.92
	0.36	1.71	0.74	0.69	9.34	9.41	1.19	0.99

90 * Electrons required for NO₃⁻ reduction = NH_4^+ generated × 8 + N₂-N generated × 5.

91 [†]Nitrogen balance = (NO₃⁻ reduced)/ (NH₄⁺ generated + N₂-N generated).

92 ^{\ddagger}Maximum electrons available from ethane (=C₂H₆ oxidized × 14) or butane (=C₄H₁₀ oxidized × 26) oxidation

divided by electrons required for NH₄⁺ and N₂-N production; theoretically higher than 1.0, due to a fraction of

94 carbon assimilated into biomass cells.

95 Supplementary Table 2. Sequencing statistics of metagenomics and

- 96 metatranscriptomics. Key features of the metagenome (Illumina short-read and Nanopore
- 97 long-read sequencing) and metatranscriptomic datasets generated for the C₂H₆- and C₄H₁₀-
- 98 fed enrichment cultures. Two samples were taken from the C₂H₆-fed bioreactors for short-
- 99 read sequencing, thus generating two datasets.

			C ₂ H ₆ -fed cultures	s C ₄ H ₁₀ -fed cultures
Mataganamia shar	# trimn	ned reads	99,139,736/102,953,	198 116,463,546
read sequencing	% Re	eads in	04 1/04 5	06 5
reau sequencing	metagenon	nic scaffolds	94.1/94.3	90.3
	# raw nan	opore reads	11.8	28.0
I and used second sh	(mi	llion)	11.0	20.7
Long-read sequencing	g Maximum	read length	310,518	658,543
	N50 4,440 Assembled metagenome		544	
	Assembled	metagenome	1716	31/ 6
	size	(Mbp)	.0	517.0
Hybrid assembly	N50) (bp)	22,096	100,544
	Maximum	scaffold (bp)	6,053,062	4,746,968
	# sc	affold	100,732	22,756
	Total	Trimmed		mRNA
Metatranscriptome	Illumina	Ponde	non_rRNA reads	mapped to
	reads	Ktaus		MAGs
C2-phase1-RNA	125,039,398	116,358,434	82,846,667	34,950,915
C2-phase2-RNA	212,602,712	194,685,456	137,965,946	71,243,694
C4-phase1-RNA	68474852	64,488,864	40,744,382	25,927,776
C4-phase2-RNA	62856468	59,114,204	37,435,066	23,625,080

101 Supplementary Table 3. Estimated abundance of each lineage recovered from C₂H₆-fed community. Lineages with abundance over 1%

102 were shown in the table.

	C2_	C2_	
Bin ID	Phase1-	Phase2-	Classification
	DNA (%)	DNA (%)	
C2_01	28.46	26.34	d_Bacteria;p_Patescibacteria;c_4484-211;o_4484-211;f_;g_;s_
C2_SYM	14.38	15.55	d_Bacteria;p_Firmicutes_E;c_Symbiobacteriia;o;f;g;s
			d_Bacteria;p_Armatimonadota;c_Fimbriimonadia;o_Fimbriimonadales;f_Fimbriimonadaceae;g_
C2_02	10.75	11.29	_OLB18;sOLB18 sp001567425
			d_Bacteria;p_Bacteroidota;c_Ignavibacteria;o_Ignavibacteriales;f_Melioribacteraceae;g_DSX
C2_03	6.77	7.56	H01;s
			d_Bacteria;p_Chloroflexota;c_Anaerolineae;o_Promineofilales;f_Promineofilaceae;g_Promine
C2_04	3.23	3.63	ofilum;s
			d_Bacteria;p_Bacteroidota;c_Bacteroidia;o_Flavobacteriales;f_Vicingaceae;g_BCD5;s_BCD5
C2_05	3.83	3.30	sp013112825
C2_06	2.36	2.74	d_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_SG8-39;g_;s_
C2_07	2.46	2.45	d_Bacteria;p_Actinobacteriota;c_Acidimicrobiia;o_ATN3;f_ATN3;g_ATN3;s_
			d_Bacteria;p_Chloroflexota;c_Anaerolineae;o_Anaerolineales;f_EnvOPS12;g_UBA7227;s_U
C2_08	2.12	1.94	BA7227 sp002473085

			d_Bacteria;p_Patescibacteria;c_Microgenomatia;o_UBA1406;f_GWC2-37-13;g_GWC2-37-
C2_09	1.91	1.67	13;s_GWC2-37-13 sp002050095
			d_Bacteria;p_Bacteroidota;c_Ignavibacteria;o_Ignavibacteriales;f_Ignavibacteriaceae;g_IGN2;
C2_10	1.51	1.48	s_IGN2 sp013285405
C2_11	1.19	1.37	d_Bacteria;p_Chloroflexota;c_Anaerolineae;o_Anaerolineales;f_EnvOPS12;g_OLB14;s_
C2_12	1.06	1.28	d_Bacteria;p_Acidobacteriota;c_Vicinamibacteria;o_Vicinamibacterales;f_Fen-181;g_;s_
C2_13	1.26	1.10	d_Bacteria;p_Bacteroidota;c_UBA10030;o_UBA10030;f_;g_;s_

104 Supplementary Table 4. Estimated abundance of each lineage recovered from C₄H₁₀-fed community. Lineages with abundance over 1%

105 were shown in the table.

Bin ID	C4_DNA (%)	Classification
C4_SYM	16.72	d_Bacteria;p_Firmicutes_E;c_Symbiobacteriia;o;f;g;s
C4_01	15 46	d_Bacteria;p_Chloroflexota;c_Anaerolineae;o_Promineofilales;f_Promineofilaceae;g_JAAYYY01;s_JAA
	13.40	YYY01 sp012515125
C4.02	15.39	d_Bacteria;p_Planctomycetota;c_Phycisphaerae;o_Phycisphaerales;f_SM1A02;g_CAADGN01;s_CAADG
02		N01 sp900696545
C4_03	11.67	d_Bacteria;p_Chloroflexota;c_Anaerolineae;o_Anaerolineales;f_Anaerolineaceae;g_Bellilinea;s_
C4 04	10.50	d_Bacteria;p_Chloroflexota;c_Anaerolineae;o_Anaerolineales;f_EnvOPS12;g_UBA7227;s_UBA7227
C4_04	10.30	sp002473085

C4_05	6.63	d_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Rhizobiaceae;g_Aquamicrobium_A;s_
C4_06	3.95	d_Bacteria;p_Chloroflexota;c_Anaerolineae;o_Anaerolineales;f_Anaerolineaceae;g_Bellilinea;s_
C4_07	1.33	d_Bacteria;p_Bacteroidota;c_Ignavibacteria;o_Ignavibacteriales;f_Ignavibacteriaceae;g_Ignavibacterium;s_ _Ignavibacterium sp900696555
C4_08	1.25	d_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_QOAZ01;s_
C4_09	1.23	d_Bacteria;p_Patescibacteria;c_Microgenomatia;o_UBA1406;f_GWC2-37-13;g_GWC2-37-13;s_GWC2-37-13 sp002050095
C4_10	1.16	d_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Xanthobacteraceae;g_Palsa-892;s_
C4_11	1.14	d_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_SCN-69- 89;s_SCN-69-89 sp001724855

107	Supplementary	Table 5.	Calculated	expression	level of	each	genome in	C ₂ H	6-fed
-----	---------------	----------	------------	------------	----------	------	-----------	------------------	-------

Bin ID	C2_Phase1-RNA (%)	C2_Phase2-RNA (%)
C2_SYM	62.58	60.35
C2_02	13.01	9.92
C2_04	3.47	4.29
C2_06	2.51	2.58
C2_11	2.68	3.81
C2_12	2.66	2.94
C2_17	0.84	1.04
C2_26	1.60	1.77

bioreactor. Genomes with expression level >1% in at least one phase were shown.

Supplementary Table 6. Calculated expression level of each genome in C₄H₁₀-fed
bioreactor. Genomes with expression level >1% in at least one phase were shown.

Bin ID	C4_Phase1-RNA (%)	C4_Phase2-RNA (%)
C4_SYM	84.70	84.27
C4_01	2.89	3.59
C4_02	5.09	3.32
C4_03	1.34	1.23
C4_04	2.45	3.54

112 Supplementary Table 7. Average amino acid identities (AAI) between different AssAs in

113 'Ca. A. nitratireducens' genomes recovered from the ethane- (E), propane- (P) and butane-

AAI	B_AssA1	B_AssA2	B_AssA3	E_AssA1	E_AssA2	E_AssA3	P_AssA1	P_AssA2	P_AssA3
B_AssA1	-	89.66	61.95	100.00	90.96	90.73	100.00	93.10	90.74
B_AssA2	89.66	-	91.43	89.66	95.93	97.81	89.66	95.94	97.81
B_AssA3	61.95	91.43	-	61.95	96.91	100.00	61.95	96.24	100.00
E_AssA1	100.00	89.66	61.95	-	90.96	90.73	100.00	93.10	90.73
E_AssA2	90.96	95.93	96.91	90.96	-	96.60	90.96	100.00	96.60
E_AssA3	90.73	97.81	100.00	90.73	96.60	-	90.73	96.24	100.00
P_AssA1	100.00	89.66	61.95	100.00	90.96	90.73	-	93.10	90.74
P_AssA2	93.10	95.94	96.24	93.10	100.00	96.24	93.10	-	96.24
P AssA3	90.74	97.81	100.00	90.73	96.60	100.00	90.74	96.24	-

114 fed (B) bioreactors. AAI values were calculated using Blastp.

115

116 Supplementary Table 8. Average nucleotide identities (ANI) between different AssAs in

117 'Ca. A. nitratireducens' genomes recovered from the ethane- (E), propane- (P) and butane-

118 fed (B) bioreactors. ANI values were calculated using Blastn.

AAI	B_AssA1	B_AssA2	B_AssA3	E_AssA1	E_AssA2	E_AssA3	P_AssA1	P_AssA2	P_AssA3
B_AssA1	-	89.31	89.57	99.96	89.85	89.57	99.96	89.78	89.57
B_AssA2	89.31	-	98.83	89.27	97.42	98.87	89.27	97.46	98.87
B_AssA3	89.57	98.83	-	89.61	96.80	99.96	89.61	96.65	99.96
E_AssA1	99.96	89.27	89.61	-	89.89	89.61	100.00	89.74	89.61
E_AssA2	89.85	97.43	96.80	89.89	-	96.84	89.89	99.84	96.84
E_AssA3	89.57	98.87	99.96	89.61	96.84	-	89.61	96.68	100.00
P_AssA1	99.96	89.27	89.61	100.00	89.89	89.61	-	89.74	89.61
P_AssA2	89.78	97.47	96.65	89.74	99.84	96.69	89.74	-	96.69
P AssA3	89.57	98.87	99.96	89.61	96.84	100.00	89.61	96.68	-

119

120

121

123 Supplementary Table 9. Optimized multiple reaction monitoring transitions and retention

Compound	Retention	Transient 1	Collision	Transient 2	Collision	Transient 3	Collision
	time (min)	(m/z)	Energy	(m/z)	Energy	(m/z)	Energy
			(V)		(V)		(V)
Ethyl	9.940	275.0>73.1	35	217.0>55.1	10	275.0>147.2	10
succinate							
Butyl	12.245	303.0>147.1	10	147.1>73.1	30	231.0>69	10
succinate							
125							

times for ethylsuccinate and butylsuccinate analysed by GC-MS/MS.

Supplementary Fig. 1 Long-term performance of the C_2H_6 - (a) and C_4H_{10} -fed (b)

bioreactors. (a) Simultaneous C_2H_6 and NO_3^- consumption with transitory formation of NO_2^- ,

and production of N_2 and NH_4^+ in the C_2H_6 -fed bioreactor. (b) NO_3^- consumption with

- 131 production of NH_4^+ and transitory formation of NO_2^- was also observed in the C_4H_{10} -fed
- 132 bioreactor. Red arrows indicate medium replacements and the flushing of the bioreactor
- headspace with C_2H_6 or C_4H_{10} .

Supplementary Fig. 2 Profiles of NO₃⁻, NO₂⁻ and NH₄⁺ in the control tests. a, c, negligible

- 136 NO_3^- consumption or NO_2^-/NH_4^+ production in the absence of C_2H_6 (a) or C_4H_{10} (c). b, d,
- 137 negligible NO_3^- consumption or NO_2^-/NH_4^+ production in the abiotic control (without
- 138 biomass) supplied with C_2H_6 (b) or C_4H_{10} (d).

Supplementary Fig. 3 Profiles of C₂H₆, C₄H₁₀, and nitrogen species in the batch tests. a,
b, supplementary batch tests for C₂H₆-fed bioreactor (started on Day 522 and 559). c, d,
supplementary batch tests for C₄H₁₀-fed bioreactor (started on Day 1,100 and 1,124).

139

145 Supplementary Fig. 4 Profiles of total C_2H_6 , C_4H_{10} , and nitrogen species during isotope 146 labelling tests. a, b, oxidation of C_2H_6 (a) or C_4H_{10} (b) to CO_2 , and reduction of NO_3^- to 147 NH_4^+ and N_2 with temporary accumulation of NO_2^- .

Supplementary Fig. 5 Phylotypes in the enrichment cultures at the genus level based on 16S

- 150 rRNA gene amplicon sequencing during long-term operations of C_2H_6 (a) and C_4H_8 -fed (b)
- 151 bioreactors. Genera with an abundance of $\geq 2\%$ in at least one sample are displayed, while
- 152 genera account for <2% in all samples are classified as 'Others'.

Supplementary Fig. 6 Features of recovered Symbiobacteriia genomes in C₂H₆- (a) and
 C₄H₈-fed (b) bioreactors. Tracks from outside to inside: Track 1 - the genomes and encoded

155 Ottille fou (b) biologications, frank i fond outside to inside. Frank i the Senomes and encoded

genes, Track 2- GC ratio, Track 3 - GC skew, Track 4 - loci of genes involved in nitrogen and
ethane/butane conversion, Track 5 and 6 - log-transformed gene TPM values in Phase 1 and

158 2. The lines in Track 5 and 6 facing outward and inward indicate the genes encoded on '+'

and '-' strand, respectively. Ass, Alkylsuccinate synthase; Fad, long-chain acyl-CoA

160 synthetase; Mcm, Methylmalonyl-CoA mutase; Pcc, Propionyl-CoA carboxylase; Nap,

161 Nitrate reductase; Nrf, Cytochrome *c* 552 nitrite reductase; Nor, Nitric oxide reductase; Nos,

162 Nitrous oxide reductase.

164 Supplementary Fig. 7 Comparative genome analyses of '*Ca*. A. nitratireducens' in the

165 C₂H₆- and C₄H₁₀-fed systems, and genome-based phylogenetic tree. (a) ANI and AAI

166 between the available Symbiobacteriia genomes. All available genomes including

167 GCA_003242505.1 (Symbiobacterium), GCA_003242675 (Symbiobacterium) and

168 GCF_000009905 (S. thermophilum IAM 14863) were retrieved from GTDB r202. ANI

values were calculated using FastANI, filled in lower matrix and scaled in blue, AAI values

170 were calculated using compareM, filled in upper matrix and scaled in red. (b) Genome-based

171 phylogenetic tree inferred with a concatenated set of 120 bacterial-specific marker genes.

172 Genomes recovered from C_2H_6 -, C_3H_8 - and C_4H_{10} -fed bioreactors are highlighted in red text.

173 Genomes from phylum Dormibacterota are used as outgroup.

174 Tree scale: 1

175 Supplementary Fig. 8 The operon and phylogenetic affiliation of alkylsuccinate synthase

- 176 (ASS) in 'Ca. A. nitratireducens'. (a) The ASS operon in 'Ca. A. nitratireducens' genome
- 177 recovered from the C_2H_6 -fed (E) cultures. Similar with E MAG, the genome of '*Ca*. A.
- 178 nitratireducens' recovered from the C_4H_{10} -fed cultures also contains three AssA and two
- 179 AssD subunits. (b) Phylogenetic tree of AssA genes. AssA recovered from the three
- 180 Symbiobacteriia genomes are highlighted in red text. Bootstrap values were determined with
- 181 100 non-parametric bootstraps, where 70-100 bootstrap values were shown. The scale bar
- 182 indicates amino acid substitutions per site.

184 Supplementary Fig. 9 The calculations of root mean square deviation (RMSD) and

- 185 fluctuation (RMSF) for all molecular dynamics (MD) simulations. a, b, RMSD
- 186 calculations for MD simulations of AssA2 (a) and AssA3 (b). c, d, RMSF calculations for
- 187 MD simulations of AssA2 (c) and AssA3 (d). FMR represents the complex with AssA only
- 188 binding to fumarate, and FMR-C2/C3/C4 means the AssA binds to both fumarate and
- 189 ethane/propane/butane.

191 Supplementary Fig. 10 The amino acid residues with occupancy of hydrogen bonds >

192 10% in AssA2 (a) and AssA3 (b) in '*Ca*. A. nitratireducens'.

197	1	Wu, M. et al. Anaerobic oxidation of propane coupled to nitrate reduction by a
198		lineage within the class Symbiobacteriia. Nature Communications 13, 6115 (2022).
199	2	Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea.
200		Nat Biotechnol 38 , 1079-1086 (2020).
201	3	Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny
202		substantially revises the tree of life. Nat Biotechnol 36 , 996-1004 (2018).
203	4	Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site
204		identification. BMC Bioinformatics 11, 119 (2010).

- 205 5 Eddy, S. R. Accelerated profile HMM searches. *PLoS Comput Biol* **7**, e1002195 (2011).
- Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2--approximately maximumlikelihood trees for large alignments. *PLoS One* 5, e9490 (2010).
- 208 7 Ludwig, W. *et al.* ARB: a software environment for sequence data. *Nucleic Acids Res*209 32, 1363-1371 (2004).
- Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high
 throughput. *Nucleic acids research* **32**, 1792-1797 (2004).
- 212 9 Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for
- automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*214 **25**, 1972-1973 (2009).