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Supplementary Fig. 1. | Sampling methods employed during the North Pacific EXPORTS
cruise. Sampling methods included the collection of samples representing individual particles
from gels and the bulk assemblage from sediment traps, net tows followed by shipboard
incubations of zooplankton, marine snow catchers (MSCs) and size-fractionated filtration from
water collected using Niskin bottles. Noted are the range of particle types sampled by each
method and the depths from which the samples were collected. Two sediment trap types were
deployed (neutrally buoyant and surface-tethered), and individual particles from gels and bulk
particle samples were collected from both types of traps. Net tows collected samples over 0 to 95
m depths. Samples from the MSCs were divided into non-sinking, slowly-sinking and fast-
sinking fractions. Size-fractionation was performed in series for 95 to 500 m depths, where 5.0
um filtrate was filtered through 0.2 pm. Samples collected onto 0.2 pm without pre-filtration
were also collected separately and found to have similar communities to the 0.2 to 5.0 pum filter
samples collected by size-fractionation.
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Supplementary Fig. 2. | Rarefaction curves for samples analyzed in manuscript. 578
samples were analyzed at an average read depth of 36,629 + 16,565 reads per sample. All
samples reached a maximum species richness by 5,000 reads.
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Supplementary Fig. 3. | Temporal changes in surface production bacterial dynamics and
DOM lability. Mixed layer '*C-net primary production, bacterioplankton carbon demand
(BCD), bacterioplankton biomass (BB) and dissolved organic matter (DOM) lability exhibited
significant increases (<1.0 standard deviation from the mean; denoted by red circles) during in
the 3™ EPOCH of the 24-day station occupation. Data for NPP, BCD, BB and DOM lability as
published in Stephens et al. (2023) [1]. The DOM lability values are derived from an amino acid-
based indicator of degradation. Noted for each measurement are the cruise mean + standard
deviation in grey text within each subplot, and the depths for which the data are presented in
parentheses on the lefthand axis.
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Supplementary Fig. 4. | Mean temperature profile collected from EXPORTS cruise
RR1813 in the North Pacific. Error bars represent the standard deviations for 24 profiles, from

August 15" to September 4", 2018.
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36
37  Supplementary Fig. 5. | Clustering of amplicon-based communities by sample type. Bray-

38  Curtis-based clustering (k = 8) among sample collection types presented here.
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Supplementary Fig. 6. | Shared taxa by sample type. (a) Venn diagram of shared amplicon
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sequence variants (ASVs) across four of the sample collection types presented here. (b) Of the 94
shared ASVs, 45 % were Proteobacteria, 18 % were Bacteroidota and 17 % were

Cyanobacteria. Of the shared Proteobacteria ASVs, 40 % were Pseudomondales, 19 % were

SAR11 and 14 % were Enterobacterales. And of the shared Bacteroidota ASVs, 76 % were
Flavobacteriales and 18 % were Cytophagales.
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Supplementary Fig. 7. | ASV richness differed by EPOCH and by sample type. (a)
Amplicon sequence variant (ASV) richness differed by EPOCH for different particle collection
types (i.e., 5.0 um filters, bulk particles, individual particles). (b) Individual particle depth trends
with a constrained x-axis highlighting the elevated ASV Richness during Epoch 3. Blue boxes =
Epoch 1, white boxes = Epoch 2 and yellow boxes = Epoch 3. The line inside the box plots
represents the median ASV richness, whiskers represent the minimum and maximum values
excluding outliers and the dots represent outliers (1.5 times the interquartile range).
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Supplementary Fig. 8. | Individual particle communities differed by Epoch. Non-parametric
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multidimensional scaling ordination of 16S rRNA gene amplicon sequence variants for

individual particles exhibited modest differences based on time (i.e., Epoch). “E”

Epoch.
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Supplementary Fig. 9. | Communities characterized by different sequencing methods were
similar. Comparison of relative abundances for taxa determined by (a) metagenomic sequencing
(Illumina NextSeq) and based on the recA gene and genome-based taxonomy database (GTDB)
and (b) 16S rRNA gene amplicon sequencing, the DADA?2 pipeline and Silva database v138.1.
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Supplementary Fig. 10. | Dominant taxa on individual particles differ in their metabolism.
(a). The relative contributions and/or presence of clusters of orthologous groups (COGs) of
protein categories, KEGG orthology (KO) modules and carbohydrate-active enzyme (CAZyme)
pathways differed in metagenome assembled genomes (MAGs) of Pseudoalteromonas, Moritella
and Vibrio. The sugar-acid preference was determined based on the number of sugars and acids
that each organism can grow on (Gralka et al., 2023) [2]. (b) Metabolic capability from the three
dominant taxa differs in ordination space based on the relative contributions of different COGs in
each taxon. MAGs obtained from individual particles (large diamonds) were supplemented with
the sequenced genomes from the Integrated Microbial Genomes and Microbiomes database
(small circles) with >99.5 % identity similarity.
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Supplementary Table 2. | Mean relative abundances of clusters of orthologous genes (COG)
categories for MAGs and publicly available genomes.

Function Function Name Moritella Vibrio Pseudo-
1D alteromonas
C Energy production and conversion 6% 6% 5%
D Cell .cycl? control, cell division, chromosome 1% 1% 1%
partitioning
E Amino acid transport and metabolism 8% 9% 8%
F Nucleotide transport and metabolism 3% 3% 2%
G Carbohydrate transport and metabolism 4%, 6% 4%,
H Coenzyme transport and metabolism 5% 5% 4%
I Lipid transport and metabolism 4% 3% 4%
J Translation, ribosomal structure and biogenesis 7% 7% 7%
K Transcription 7% 8% 7%
L Replication, recombination and repair 4%, 4%, 4%
M Cell wall/membrane/envelope biogenesis 6% 6% 7%
N Cell motility 4% 3% 4%
0 Posttranslational modification, protein turnover, 50, 5, 50,
chaperones
P Inorganic ion transport and metabolism 5% 5% 5%
Q Secondqry metabolites biosynthesis, transport and 20 204 20,
catabolism
T Signal transduction mechanisms 7% 7% 9%
U Intracellular trafficking, secretion, and vesicular 30 39 20,
transport
AV Defense mechanisms 2% 3% 3%
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