Plant Gene Register

Nucleotide Sequence of a cDNA Clone Encoding a β -Amylase from Arabidopsis thaliana¹

Jonathan D. Monroe, Mark D. Salminen², and Jack Preiss*

Biochemistry Department, Michigan State University, East Lansing, Michigan 48824

 β -Amylase (EC 3.2.1.2) hydrolyzes α -1,4-glucosidic linkages from the nonreducing ends of starch or glycogen, releasing maltose with the β -anameric configuration. This enzyme occurs in plants and in certain bacteria; however, its physiological function in some plants is not clear because the enzyme and its substrates are spatially separated. In the leaves of a variety of plants including *Arabidopsis thaliana* (L.) Heynh. (3), β -amylase is located outside the chloroplast (5, 7). In pea and wheat, β -amylase appears to be confined to the vacuole (11). The *A. thaliana* β -amylase is also located in the vacuole as determined by nonaqueous fractionation (our unpublished results). However, the only known substrates for β -amylase, soluble and insoluble starch, are confined to the chloroplast (8).

The A. thaliana β -amylase is the most abundant of the three major leaf amylases, making up about 80% of the total crude amylolytic activity (3). In the course of studying starch metabolism in A. thaliana, leaves of several starchless and starch-overproducing mutants were found to contain 10- to 40-fold more β -amylase activity than wild-type leaves when the plants were grown under a 12-h/12-h light/dark cycle (1). Under continuous light, mutant and wild-type plants were indistinguishable. In addition, β -amylase activity was increased in both the wild type and mutants by growing plants under a higher light intensity. Using polyclonal antibodies raised to the purified A. thaliana β -amylase, we determined that the β -amylase protein accumulated in the mutants and in plants grown under high light intensity (5).

To investigate how β -amylase expression is regulated in *A.* thaliana, we isolated five cDNA clones from a λ -Zap expression library using immunoaffinity-purified anti- β -amylase IgG. Restriction mapping and partial sequence analysis indicated that the coding regions of all five cDNAs were identical (data not shown). Here, we present the sequence of the longest complete cDNA which contains 2469 bases and a single open reading frame encoding a protein of 498 amino acids (Table I, Fig. 1). The mol wt of the protein from the deduced amino acid sequence is 56,069, and the apparent molecular mass of the purified protein as determined from SDS-PAGE was 55,000 D (5).

 β -Amylase sequences are known from three other plants: soybean (4), sweet potato (9), and barley (2). The *A. thaliana* β -amylase sequence is 69% identical with the soybean sequence at the amino acid level. When amino acids with similar side groups are included in the comparison, the *A. thaliana* and soybean sequences are 79% similar. The *A. thaliana* sequence is 64 and 63% identical with, and 75 and 73% similar to, the sweet potato and barley sequences, respectively. The active sites of the soybean (6) and sweet potato (9) β -amylases were identified by modification of the proteins

Table I. Characteristics of a β -Amylase cDNA from A. thaliana

Organism:

Arabidopsis thaliana (L.) Heynh., Columbia ecotype, Brassicaceae. Enzyme, Function:

 β -(Exo)amylase EC 3.2.1.2; physiological function not known. Source:

cDNA library constructed from polyadenylated mRNA isolated from entire plants.

Techniques:

cDNA library in λ -Zap screened with immunoaffinity-purified anti- β -amylase IgG; restriction fragment subcloning; single- and doublestranded plasmid sequencing in either pT7T3-18, 19 (Pharmacia) or pBluescript (Stratagene) and dideoxy sequencing of both strands.

Method of Identification:

Sequence identity with four peptides derived from an endoproteinase Lys-C digest of purified β -amylase and sequenced by automated Edman degradation (Applied Biosystems).

Features of cDNA Structure:

Contains 2469 nucleotides consisting of 89 nucleotides 5'-untranslated (74% AT), 1494 nucleotides open reading frame, and 886 nucleotides 3'-untranslated; no polyadenylated addition signal or tail were observed at the 3'-end of the cDNA.

Features of Protein Structure:

Open reading frame of 498 amino acids; M_r 56,069; no amino acid accounts for more than 10% of the total amino acids; no N-terminal signal sequence.

Antibodies:

Polyclonal antibodies to native β -amylase are available.

Subcellular Location: Vacuolar (our unpublished data).

vacuolar (our unpublished data).

EMBL Accession No.:

¹Supported in part by National Science Foundation grant DMB86-10319 and by U.S. Department of Agriculture/Department of Energy/National Science Foundation Plant Science Center Program 88-37271-3964.

² Present address: Pinckney High School, P.O. Box 9, Pinckney MI 48169.

M73467

	CICAI	~	1011			100	inc						uuu									••••								
91	TGGCT M A	ACCA T	NATI N	TACA Y	ACC N	GAGA E	AGC K	CTTC L	CTTC L	LTT	NATT N	ATO Y	GTTC V	CCC P	itti V	TACI Y	STT <i>I</i> V	ATGC M	CTTC L	CCGT P	TGG L	GAG G	TTG V	itga V	ATC N	itgg V	iaaa E	ATG N	TAT V	30
181	TTGCG F A	GAC(D	CAC P	SAAA E	CGC T	CTTO L	iaaa E	NCG(T	CAGO Q	LTT	AAAC K	GTO R	CTC/ L	AAAC K	GAAG E	GAA(E	GCT(A	GGCC G	STTO V	GAT (D	GCG G	TTA V	NTGG M	STCC V	iATC D	itt V	'GGT W	GGG W	igaa G	60
271	TCATA I I	GAAT	rcc/ s	AAAG K	igt(G	CCC# P	NAAC K	CAA' Q	TATO Y	GAT D	TGG/ W	ACG(T	GCCI A	TAC# Y	AAA/ K	ACG T	CTG [.] L	TTCO F	CAG(Q	CTG#	TCG I	icac A	GTT R	TGG L	iGA(G	CTCA L	IAAA K	TCC I	CAAG Q	90
361	CAATO A I	ATG M	TCTI S	FTTC F	AC(H	CAA1 Q	IGTO C	GGT (G	GGA/ G	AAC N	GTTC V	G G	GAC/ D	ATCO I	STT/ V	ACT. T	ATC I	CCG/ P	ATC(I	CCAC P	CAAT Q	'GGC W	STTC V	CGCC R	SATO D	STCO V	igtg G	iaca D	ATG N	120
451	ATCCC D P	GAT/ D	ATCI I	TACI Y	AC/ Y	ACT/ T	ACC N	CGT/ R	AAA(K	GGA. G	ACT/ T	AGA R	GAC/ D	ATC(I	GAG' E	TAT Y	CTC L	TCA/ S	ATC I	GGT(G	STTC V	GAT/ D	AATO N	CTTC L	:CC(P	L L	F	iCCC A	GAA G	150
541	GAACO R T	GCT A	GTT(V	CAG1 Q	TG L	TAC/ Y	AGTI S	GAT D	TAC/ Y	ATG M	AGT/ S	AGC S	TTC/ F	AAA K	GAA E	AAC N	ATG M	GCG(A	GAT D	TTG/ L	ATAC I	GAA(E	GCT(A	GGGG G	itg/ V	ATTO I	STTG V	iAC/ D	ATCG I	180
630	AAGTO E V	GGA G	CTT(L	GGCC G	CCG P	GCC(A	GGT(G	GAA E	CTA L	CGT R	TAT(Y	CCT P	TCT S	TAC Y	CCC P	CAA Q	AGC S	Q	GGT G	TGG(W	GTG1 V	FTT	CLC(P	GGC/ G	ATC(I	GGAC G	SAAT E	TCC F	CAGT Q	210
721	GTTA C Y	GAC D	AAG K	TACT Y	rtg. L	AAG/ K	AAA K	GAT D	TTC. F	AAG K	GAA E	GCG A	GCG A	GCG. A	AAA K	GCA A	GGG G	CAC	CCT P	GAG E	TGGO	D D	TTG	CCA P	GAG	GACO	GCCC A	GAG	GAAT E	240
811	ACAA Y N	IGAC D	AAG K	CCG(P	GAG E	GAG E	ACT T	GGA G	TTT F	TTC F	AAG. K	AAG K	GAT D	GGG G	ACT T	TAT Y	GTC V	TCG S	GAG E	AAG K	GGG/ G	AAG K	TTT <u>F</u>	TTC/ F	ATG. M	ACA T	rgg1 W	ACT Y	TCGA S	270
901	ACAAA <u>N</u> K	L L	ATT I	TTT(F	CAT H	GGA G	GAT D	CAG Q	ATC I	TTA L	GGA G	GAA E	A GCC	AAC N	AAG K	ATC I	TTT F	GCT A	GGA G	CTT. L	AAA K	GTT. V	AAC N	TTG L	GCT A	GCC/ A	AAG(K	V V	TCTG S	300
991	GGAT G I	TCAC H	TGG W	TTG L	TAC Y	AAC N	CAC H	CAC H	AGC S	CAC H	GCT A	GCG A	igag E	TTG L	ACT T	GCT A	GGA G	TAT Y	TAC Y	AAC N	L	FTC.	AAG K	AGA R	GAT D	GGT G	TACO Y	CGT(R	CCGA P	330
1081	TCGC I A	CCGG R	ATG M	CTC L	TCA S	AAA K	CAC H	TAC Y	GGC G	ATT I	CTC L	AAC N	TTC F	ACT T	TGC C	L	GAG E	ATG M	AAA K	GAT. D	ACC T	GAC D	AAT. N	ACA T	GCT A	GAA E	GCC(A	L	AGTG S	360
1171	CTCC A P	TCAA Q	GAA	L	GTT V	CAA Q	GAG E	GTA V	L	AGC S	K K	GCA A	NTGG W	AAA K	GAA	GGT G	ATA I	GAA E	GTT V	GCG A	GGT G	GAG E	AAC N	GCA A	TTA L	GAG E	ACCI T	TAT Y	GGAG G	390
1261	CCAA A K	AGGT G	TAC Y	AAT N	CAG Q	ATT	L	L	AAC N	GCG A	AGG R	CCT P	N N	GGG G	GTT V	AAC N	CCA P	AAC N	GGT G	AAG K	CCG P	AAG K	L	AGA R	ATG M	Y	GGA G	F	ACTT T	420
1351	ACCT Y L	TCGG R	ITTA L	S	GAT D	ACT	GTC V	F	CAA Q	GAA E	AAC N	AAC N	CTTT F	GAG	L	F F	K K	K K	L	IGTG V	AGG R	AAA K	ATG M	CAC H	GCT A	GAT D	Q	GAT D	TATT Y	450
1441	GTGG C G	AGAC D	GCA A	A	AAG K		GGG	H	GAG		GTG V		STTG L	iaaa K	ACG T	STCC S	SAAT N	TCG S	Q	L	ACG T	CTG L	GAG E	GAT	ATC 1	GCC A	GAC	GCG A	GCTC A	480
1531	AGCC Q P	AAG1 S	GGA	A GCA	111 F	AAG K	W	IGAC D	S	GA/ E	T	D	L	K	IGTC V	GAC D	GGT G	*	TTA	TAT	TTT	ATA	TGA	TCG	ATC	GTC	TAA	TCA		498
1621	GAAA	GTAA	GGG	iaaa	GAA	TCA	AGI	ATI	CGI	TG/	IGI	TG	ITGI		GAA	ICA	GCA	AAAC	TAA	GGC	GGT	CII	GGC	CTT	CAA	ATTA	GTT	TTG	CAGA	
1711	711 TITGATGATATCTCCAGTCTTGATCTGCCCGAGAATATCTTTTCCTGCTATTGTGTATCCGAAGACCGAGAACTGTCCTTCGTCAAAGGA																													
1801	TAAT	ССТО	CTA	AGC	CAC	GAGT	TTC	TTI	TAT	CG	ATA	GG1	TAG/	AGA	AGA	AT	rgg1	FAA G	GAC	SAAG	AGT	ATT	CTT	CTG	AGT	TTT	CGC	TGT	GCGC	
1891	CATT	GCT/	ACAG	SCTC	CAI	raa a	CCC	GAT/	AAA	GA/	AGCA	CTO	GGTA	ACI	CCC	CAT	ссто	GGAC	ACI	CAA	TGG	CGT	тст	GTA	GAG	iAGG	TTC	GAA	TTGT	
1981	CCAG	AAG	GCA1	TAC	TT	CAA	TGG	GAA	CACI	FAA	CACT	CTO	CCAC	CTI	ACC	CAC	rcco	CAT	CC1	CTG	TGA	TAA	CAG	ССТ	GGT	TTA	.CAG	TAT	TGAG	
2071	TTTG	GCT	CAI	CAT	ATO	GCAC	CGC	CTA	GTT/	ACCI	AGTT	TT	GCA/	AA1	TCC	CCT	GCG(GTTA	GAG	GTO	ICTG	T :A	ATC	CAT	CTA	TAA	CGA	тст	GTAC	
2161	TGTA	GCA	CTCI	TTC	TT	GA1	CAC	CCT	CCAC	GCT.	CA C	GCT	GAA/		STCO	GAA	CCAI	CAC	CTI	тст	CAA	TGG	ITGA	TTT	CCA	CAG	TTC	стс	TTCC	
2251	I TGCT	AAC	CTGO	GGAT	AG	TTT#	AGI	TAC.	TGCI	FGA	GGA/	\GT/	AGA/	ATO	GAC/	AAC	CCAG	GATO	CCI	I GT A	ATA	ACT	CCA	GAT	CCC	icaa	CAG	TAT	CTAG	
2341	I TGAT	GCT	GCC/	AGCC	:AA/	AGGO	SAC/	ACT.	TTA	CA	GGA1	ГСТ	TGT	TCI	TA/	ATA	GAC	GTT	TA	AGTO	стт	GTA	GTC	CAC	:001	TTC	CAT	CAA	TCAG	
243	I AGTI	GTA	TAC	AGTT	сто	GAG	ccci	r t G'	TCT	ттт.	AAG1	гсти	AC																	

Figure 1. Nucleotide sequence and deduced amino acid sequence of a cDNA from *A. thaliana* encoding a β -amylase. The open reading frame extends from nucleotides 90 to 1583 and encodes a polypeptide of 498 amino acids. The stop codon TAG is indicated by an asterisk. The locations of four peptide sequences determined by Edman degradation from purified β -amylase are underlined.

with the substrate analog 2,3-epoxypropyl α -D-glucopyranoside. It was determined that a conserved Glu-186 in the soybean sequence and Glu-187 in the sweet potato sequence were labeled. In the corresponding region of the *A. thaliana* sequence, Glu-189 is conserved (Fig. 1), suggesting that it is also located in the active site.

Even though the A. thaliana β -amylase is located in the vacuole (J.D. Monroe, J. Preiss, unpublished data), the cDNA does not appear to encode an N-terminal signal sequence as defined by von Hiejne (10). This is supported by good sequence identity between the extreme N terminus of the deduced A. thaliana β -amylase and the N-terminal regions of the mature soybean and sweet potato β -amylases (4, 9). Kreis *et al.* (2) also noted the lack of a signal sequence in the barley β -amylase cDNA, although the precise subcellular location of that protein is not known.

ACKNOWLEDGMENTS

We thank Dr. K. Ball and J. Leykam for assistance in peptide sequencing and Dr. N.-H. Chua for the generous gift of the cDNA library.

LITERATURE CITED

1. Casper T, Lin TP, Monroe J, Bernhard H, Spilatro S, Preiss J, Somerville C (1989) Altered regulation of β -amylase activity in mutants of Arabidopsis with lesions in starch metabolism. Proc Natl Acad Sci USA 86: 5830-5833

- 2. Kreis M, Williamson M, Buxton B, Pywell J, Hejgaard J, Svendsen I (1987) Primary structure and differential expression of β -amylase in normal and mutant barleys. Eur J Biochem 169: 517-525
- Lin TP, Spilatro SR, Preiss J (1988) Subcellular localization and characterization of amylases in *Arabidopsis* leaf. Plant Physiol 86: 251–259
- Mikami B, Morita Y, Fukazawa C (1988) Primary structure and function of β-amylase. Seikagaku (Tokyo) 60: 211–216 (in Japanese)
- 5. Monroe JD, Preiss J (1990) Purification of a β -amylase that accumulates in *Arabidopsis thaliana* mutants defective in starch metabolism. Plant Physiol **94**: 1033-1039
- 6. Nitta Y, Isoda Y, Toda H, Sakiyama F (1989) Identification of glutamic acid 186 affinity-labeled by 2,3-epoxypropyl α -D-glucopyranoside in soybean β -amylase. J Biochem 105: 573-576
- Okita TW, Greenberg E, Kuhn DN, Preiss J (1979) Subcellular localization of the starch degradative and biosynthetic enzymes of spinach leaves. Plant Physiol 64: 187–192
- Preiss J (1982) Regulation of the biosynthesis and degradation of starch. Annu Rev Plant Physiol 33: 431-454
- 9. Toda H (1989) Sequence analysis of sweet potato β -amylase. Denpun Kagaku 36: 87-101 (in Japanese)
- von Heijne G (1985) Signal sequences: the limits of variation. J Mol Biol 184: 99-105
- 11. Ziegler P, Beck E (1986) Exoamylase activity in vacuoles isolated from pea and wheat leaf protoplasts. Plant Physiol 82: 1119-1121