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,B-Amylase (EC 3.2.1.2) hydrolyzes a-1,4-glucosidic link-
ages from the nonreducing ends of starch or glycogen, releas-
ing maltose with the fl-anameric configuration. This enzyme
occurs in plants and in certain bacteria; however, its physio-
logical function in some plants is not clear because the enzyme
and its substrates are spatially separated. In the leaves of a

variety of plants including Arabidopsis thaliana (L.) Heynh.
(3), f3-amylase is located outside the chloroplast (5, 7). In pea
and wheat, $-amylase appears to be confined to the vacuole
(1 1). The A. thaliana ,8-amylase is also located in the vacuole
as determined by nonaqueous fractionation (our unpublished
results). However, the only known substrates for ,B-amyl-
ase, soluble and insoluble starch, are confined to the
chloroplast (8).
The A. thaliana ,3-amylase is the most abundant of the

three major leaf amylases, making up about 80% of the total
crude amylolytic activity (3). In the course of studying starch
metabolism in A. thaliana, leaves of several starchless and
starch-overproducing mutants were found to contain 10- to
40-fold more ,3-amylase activity than wild-type leaves when
the plants were grown under a 12-h/i 2-h light/dark cycle (1).
Under continuous light, mutant and wild-type plants were

indistinguishable. In addition, ,B-amylase activity was in-
creased in both the wild type and mutants by growing plants
under a higher light intensity. Using polyclonal antibodies
raised to the purified A. thaliana ,3-amylase, we determined
that the ,B-amylase protein accumulated in the mutants and
in plants grown under high light intensity (5).
To investigate how ,B-amylase expression is regulated in A.

thaliana, we isolated five cDNA clones from a X-Zap expres-
sion library using immunoaffinity-purified anti-f3-amylase
IgG. Restriction mapping and partial sequence analysis indi-
cated that the coding regions of all five cDNAs were identical
(data not shown). Here, we present the sequence ofthe longest
complete cDNA which contains 2469 bases and a single open
reading frame encoding a protein of 498 amino acids (Table
I, Fig. 1). The mol wt of the protein from the deduced amino
acid sequence is 56,069, and the apparent molecular mass of
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the purified protein as determined from SDS-PAGE was

55,000 D (5).
,B-Amylase sequences are known from three other plants:

soybean (4), sweet potato (9), and barley (2). The A. thaliana
,B-amylase sequence is 69% identical with the soybean se-
quence at the amino acid level. When amino acids with
similar side groups are included in the comparison, the A.
thaliana and soybean sequences are 79% similar. The A.
thaliana sequence is 64 and 63% identical with, and 75 and
73% similar to, the sweet potato and barley sequences, re-
spectively. The active sites ofthe soybean (6) and sweet potato
(9) 13-amylases were identified by modification of the proteins

Table I. Characteristics of a j3-Amylase cDNA from A. thaliana

Organism:
Arabidopsis thaliana (L.) Heynh., Columbia ecotype, Brassicaceae.

Enzyme, Function:
,B(Exo)amylase EC 3.2.1.2; physiological function not known.

Source:
cDNA library constructed from polyadenylated mRNA isolated from
entire plants.

Techniques:
cDNA library in X-Zap screened with immunoaffinity-purified anti-j-
amylase IgG; restriction fragment subcloning; single- and double-
stranded plasmid sequencing in either pT7T3-18, 19 (Pharmacia)
or pBluescript (Stratagene) and dideoxy sequencing of both
strands.

Method of Identification:
Sequence identity with four peptides derived from an endoprotei-
nase Lys-C digest of purified f3-amylase and sequenced by auto-
mated Edman degradation (Applied Biosystems).

Features of cDNA Structure:
Contains 2469 nucleotides consisting of 89 nucleotides 5'-untrans-
lated (74% AT), 1494 nucleotides open reading frame, and 886
nucleotides 3'-untranslated; no polyadenylated addition signal or
tail were observed at the 3'-end of the cDNA.

Features of Protein Structure:
Open reading frame of 498 amino acids; Mr 56,069; no amino acid
accounts for more than 10% of the total amino acids; no N-terminal
signal sequence.

Antibodies:
Polyclonal antibodies to native j3-amylase are available.

Subcellular Location:
Vacuolar (our unpublished data).

EMBL Accession No.:
M73467
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1 CTCATATTGCTTATATTTTCCTACAACACTCTCTCAACAAAAAAACAAAAAAAAAAGACGTTCTTTCTTTGTTTGTATTTAGAAGAAAAA

91 TGGCTACCAATTACAACGAGAAGCTTCTTCTTAATTATGTTCCCGTTTACGTTATGCTTCCGTTGGGAGTTGTGAATGTGGAAAATGTAT
M A T N Y N E K L L L N Y V P V Y V M L P L G V V N V E N V 30

181 TTGCGGACCCAGAAACGCTTGAAACGCAGCTTAAACGTCTCAAAGAAGAAGCTGGCGTTGATGGCGTTATGGTCGATGTTTGGTGGGGAA
F A D P E T L E T Q L K R L K E E A G V D G V M V D V W W G 60

271 TCATAGAATCCAAAGGTCCCAAACAATATGATTGGACGGCCTACAAAACGCTGTTCCAGCTGATCGCACGTTTGGGACTCAAAATCCAAG
I I E S K G P K Q Y D W T A Y K T L F Q L I A R L G L K I Q 90

361 CAATCATGTCTTTTCACCAATGTGGTGGAAACGTTGGCGACATCGTTACTATCCCGATCCCACAATGGGTTCGCGATGTCGGTGACAATG
A I M S F H Q C G G N V G D I V T I P I P Q W V R D V G D N 120

451 ATCCCGATATCTACTACACTAACCGTAAAGGAACTAGAGACATCGAGTATCTCTCAATCGGTGTTGATAATCTTCCCCTATTTGCCGGAA
D P D I Y Y T N R K G T R D I E Y L S I G V D N L P L F A G 150

541 GAACCGCTGTTCAGTTGTACAGTGATTACATGAGTAGCTTCAAAGAAAACATGGCGGATTTGATAGAAGCTGGGGTGATTGTTGACATCG
R T A V Q L Y S D Y M S S F K E N M A D L I E A G V I V D I 180

630 AAGTCGGACTTGGCCCGGCCGGTGAACTACGTTATCCTTCTTACCCCCAAAGCCAAGGTTGGGTGTTTC-CGGCATCGGAGAATTCCAGT
E V G L G P A G E L R Y P S Y P Q S Q G W V F P G I G E F Q 210

721 GTTATGACAAGTACTTGAAGAAAGATTTCAAGGAAGCGGCGGCGAAAGCAGGGCACCCTGAGTGGGACTTGCCAGAGGACGCCGGAGAAT
C Y D K Y L K K D F K E A A A K A G H P E W D L P E D A G E 240

811 ACAATGACAAGCCGGAGGAGACTGGATTTTTCAAGAAGGATGGGACTTATGTCTCGGAGAAGGGGAAGTTTTTCATGACATGGTACTCGA
Y N D K P E E T G F F K K D G T Y V S E K G K F F M T W Y S 270

901 ACAAACTAATTTTTCATGGAGATCAGATCTTAGGAGAAGCCAACAAGATCTTTGCTGGACTTAAAGTTAACTTGGCTGCCAAGGTTTCTG
N K L I F H G D Q I L G E A N K I F A G L K V N L A A K V S 300

991 GGATTCACTGGTTGTACAACCACCACAGCCACGCTGCGGAGTTGACTGCTGGATATTACAACCTTTTCAAGAGAGATGGTTACCGTCCGA
G I H W L Y N H H S H A A E L T A G Y Y N L F K R D G Y R P 330

1081 TCGCCCGGATGCTCTCAAAACACTACGGCATTCTCAACTTCACTTGCCTTGAGATGAAAGATACCGACAATACAGCTGAAGCCCTAAGTG
I A R M L S K H Y G I L N F T C L E M K D T D N T A E A L S 360

1171 CTCCTCAAGAACTTGTTCAAGAGGTACTGAGCAAGGCATGGAAAGAAGGTATAGAAGTTGCGGGTGAGAACGCATTAGAGACCTATGGAG
A P Q E L V Q E V L S K A W K E G I E V A G E N A L E T Y G 390

1261 CCAAAGGTTACAATCAGATTCTTCTTAACGCGAGGCCTAACGGGGTTAACCCAAACGGTAAGCCGAAGCTTAGAATGTACGGATTTACTT
A K G Y N Q I L L N A R P N G V N P N G K P K L R M Y G F T 420

1351 ACCTTCGGTTATCCGATACTGTCTTTCAAGAAAACAACTTTGAGCTGTTTAAGAAGTTGGTGAGGAAAATGCACGCTGATCAAGATTATT
Y L R L S D T V F Q E N N F E L F K K L V R K M H A D Q D Y 450

1441 GTGGAGACGCAGCGAAGTACGGGCATGAGATTGTGCCGTTGAAAACGTCGAATTCGCAGCTGACGCTGGAGGATATCGCCGACGCGGCTC
C G D A A K Y G H E I V P L K T S N S Q L T L E D I A D A A 480

1531 AGCCAAGTGGAGCATTTAAGTGGGACTCTGAAACCGATTTGAAGGTCGACGGTTAGTTATATTTTATATGATCGATCGTCTAATCACAAA
Q P S G A F K W D S E TD L KVDG* 498

1621 GAAAGTAAGGGAAAGAATCAAGTATTCGTTGATGTTGTTGTTTTGAACAGGCAAACTAAGGCGGTCTTGGCCTTCAATTAGTTTTGCAGA

1711 TTTGATGATATCTCCAGTCTTGATCTGCCCGAGAATATCTTTTCCTGCTATTGTGTATCCGAAGACCGAGAACTGTCCTTCGTCAAAGGA

1801 TAATCCTCCTAAGCCAGAGTTTCTTTTATCGTATAGGTAGAAGAAGAATTGGTAAGGAGAAGAGTATTCTTCTGAGTTTTCGCTGTGCGC

1891 CATTGCTACAGCTCCATAAACCGATAAAGGAAGCACTGGTAACTCCCATCCTGGACACTCAATGGCGTTCTGTAGAGAGGTTCGAATTGT

1981 CCAGAAGGCATTACTTCCAATGGAACACTAACACTCTCCACCTTACCACTCCCCATCCTCTGTGATAACAGCCTGGTTTACAGTATTGAG

2071 TTTGGCTCCATCATATGCACCGCTAGTTACCAGTTTTGCAAAATTCCCTGCGGTTAGAGGTGCTGA.'TATCCATCTATAACGATCTGTAC

2161 TGTAGCACTCTTTCTTTGATCACCTCCAGCTTCAGCTGAAAAAGTCGAACCATCAGCTTTCTCAATGGTGATTTCCACAGTTCCTCTTCC

2251 TGCTAACCTGGGATAGTTTAAGTACTGCTGAGGAAGTAGAAATGACAACCCAGATGCCTGTAATAACTCCAGATCCGCAACAGTATCTAG

2341 TGATGCTGCCAGCCAAAGGGACACTTTATCAGGATCTTGTTTCTTAATAGACGTTATAAGTGCTTGTAGTCCACCCTTTCCATCAATCAG

2431 AGTTGTATACAGTTCTGAGCCCTTGTCTTTTAAGTCTAC

Figure 1. Nucleotide sequence and deduced amino acid sequence of a cDNA from A. thaliana encoding a f3-amylase. The open reading frame
extends from nucleotides 90 to 1583 and encodes a polypeptide of 498 amino acids. The stop codon TAG is indicated by an asterisk. The
locations of four peptide sequences determined by Edman degradation from purified,B-amylase are underlined.
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with the substrate analog 2,3-epoxypropyl a-D-glucopyrano-
side. It was determined that a conserved Glu-186 in the
soybean sequence and Glu-187 in the sweet potato sequence
were labeled. In the corresponding region of the A. thaliana
sequence, Glu-189 is conserved (Fig. 1), suggesting that it is
also located in the active site.
Even though the A. thaliana f3-amylase is located in the

vacuole (J.D. Monroe, J. Preiss, unpublished data), the
cDNA does not appear to encode an N-terminal signal se-
quence as defined by von Hiejne (10). This is supported by
good sequence identity between the extreme N terminus of
the deduced A. thaliana ,B-amylase and the N-terminal regions
of the mature soybean and sweet potato ,B-amylases (4, 9).
Kreis et al. (2) also noted the lack of a signal sequence in the
barley /l-amylase cDNA, although the precise subcellular lo-
cation of that protein is not known.
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