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The Lu2Co3Si5 and U2Co3Si5 Structure Types 

The Lu2Co3Si5 (I2/c) and U2Co3Si5 (Ibam) (24) structure types are distorted coloring variants of 

the BaAl4 structure type (59), representing the compositional and structural intermediate to the 

BaNiSn3 (I4mm) and CaBe2Ge2 (P4/nmm) structure types (60). The slabs are linked via a five-

coordinate square pyramidal main-group or transition metal that creates a three-dimensional 

framework surrounding planar square layers of A atoms. The [Co3Ge5] tetrahedral slab is distorted 

from the alternating assignment of M and X such that they are not perfectly aligned and are 

corrugated (Fig. 1e – 1h). The consequence of the tetrahedral corrugation is that the A layers are 

not planar or square, and instead form “wavy planes” (61). 

The Lu2Co3Si5 (I2/c) structure type is related to the U2Co3Si5 (Ibam) structure type by a monoclinic 

deformation (25). The Lu2Co3Si5 structure type is referenced in the pseudo-orthorhombic setting 

(I2/c) related to the standard setting (C2/c) by the transformation matrix (101/01̄0/001̄) for this 

discussion to facilitate comparison with the U2Co3Si5 type structure. The second coordination 

sphere of the tetrahedral transition metal environment can be used to understand how the 

monoclinic deformation takes place. In U2Co3Si5 type structures, the tetrahedral transition metal 

site exists in a “4 + 2” coordination, where the first coordination sphere is a tetrahedral 

environment of equidistant main group metals, and the second coordination sphere forms a 

distorted octahedral environment with two additional main group metals spaced further away. 

When the monoclinic distortion is present (25), the transition metal coordination environment 

approaches a “5 + 1” geometry through a “push-pull” type distortion dependent upon the degree 

of distortion, where β has been observed as large as 92.6°. Here, one axial main group metal 

becomes equidistant to the tetrahedral environment and the other becomes increasingly distant 

(23). The distortion also corresponds to the dimerization of the five-coordinate transition metal 

site along the crystallographic c-direction. Together, these changes in the 3-dimensional 

framework result in the reduction in point symmetry of the lanthanide site from Cs to C1, 

potentially impactful to the crystal field splitting of 4f orbitals. The non-linear behavior coincides 

with the deformation in the second coordination sphere of the Co1 local environment. 

Upon completion of the second order structural phase transformation at T = 343 K in m-Pr2Co3Ge5, 

the tetrahedral Ge2 and Ge4 atomic sites that were unique at room temperature become 

symmetrically equivalent. In the [Co3Ge5] slab, the intermediate “5 + 1” geometry of the Co1  



second coordination sphere increases symmetry to a “4 + 2” geometry with dCo1-Ge3 = 2.4395(14) 

Å x2, dCo1-Ge3 = 2.4493(12) Å x2, dCo1-Ge4 = 2.655(2) Å, and dCo1-Ge2 = 2.764(2) Å in room 

temperature m-Pr2Co3Ge5 converging to dCo1-Ge3 = 2.4419(6) Å x4 and dCo1-Ge2 = 2.7166(9) Å x2 in 

the high temperature transformed structure. Notably, the five coordinate Co2 atoms that were 

dimerized along the c-direction at room temperature undergo the largest change in bond distance 

within the framework, expanding from dCo2-Co2 = 3.464(2) Å to dCo2-Co2 = 3.5838(7) Å at 343 K. 

While the loss of dimerization of the Co2 sites and convergence of the Co1-Ge distances may seem 

isolated, they are explicitly linked through a scissor gate folding mechanism: as the Ge atoms 

converge, the Co2 sites are separated. Such behavior has been seen in other lanthanide intermetallic 

compounds containing Group 9 transition metals like in the structural phase transformation of 

CeRhGe (46) and the charge density wave transformation in A2Ir3Si5 (A = Ho, Er, Lu) (33-35). 

At room temperature, the shortest Pr-Ge interatomic distance in m-Pr2Co3Ge5, dPr-Ge3 = 2.9489(11) 

Å, is far shorter than distances observed in similar compounds PrCoGe3 (dPr-Ge1 = 3.120(1) Å) (62) 

and PrCo2Ge2 (dPr-Ge = 3.153(14) Å) (63) and shorter than the sum of the single bond covalent radii 

of Pr and Ge dPr-Ge
calc =2.97 Å (64). The only other reported Pr-Co-Ge ternary with Pr-Ge bonds 

shorter than the sum of their covalent radii is Pr117Co56.7Ge112 and no Pr-Ge binaries exhibit such 

distances, including those synthesized at high-pressure (65-67). Interestingly, the short A-X 

distance seems to be a feature of the early lanthanide compounds across multiple A2M3X5 structure 

types (64). The next eight Pr-Ge bond distances are longer, dPr-Ge = 3.1275(17) – 3.2004(8) Å, and 

correspond more closely with what is observed in PrCoGe3 (62) and PrCo2Ge2 (63), with the 

remaining Pr-Ge contact having a distance of dPr-Ge3 = 3.2816(11) Å. At 343 K, the Pr-Ge3 

distances are relatively invariant, with the shortest, dPr-Ge3 = 2.9443(10) Å, and longest, dPr-Ge3 = 

3.2839(10) Å, distances showing little change from the room temperature structure. 

While few structures within the A2M3X5 family have been investigated as a function of 

temperature, structural phase transformation are not common. Neutron diffraction data from 

compounds isotypic to Lu2Co3Si5 (I2/c) either report no temperature dependent anomalies in 

structure, such as in A2Co3Si5 (A = Tb, Dy), or report minimal changes in the angle β, such as in 

U2Rh3Si5. Examples of compounds in the space group Ibam obtained from powder neutron 

diffraction, namely A2Ni3Si5 (A = Ce, Pr, Nd, Tb, Dy) (68), Tb2Ir3Si5 (69), Ce2Ni3Ge5 (70), and 

Pr2Pd3Ge5 (71), indicate that not all compounds of the U2Co3Si5 structure type undergo a low 



temperature monoclinic deformation. Additionally, the structural phase transformation of m-

Pr2Co3Ge5 is reversible (Fig. S2).              

Powder X-ray Diffraction 

Table S1.  Atomic Positions of Room Temperature m-Pr2Co3Ge5 and o-Pr2Co3Ge5 obtained from Rietveld 
Refinement. *Atomic displacement parameters were obtained from single crystal X-ray diffraction and were not 
refined. 
Atom Wyckoff site x y z Biso(Å2)* 
RT m-Pr2Co3Ge5 (Space group: I2/c) 
Pr 8f 0.26477 (5) 0.13473 (5) 0.26496 (14) 0.536117 
Co1 4e 0 0.00212 (17) ¼ 0.634023 
Co2 8f 0.10313 (11) 0.36109 (10) 0.1113 (3) 0.802201 
Ge1 4e 0 0.50300 (14) ¼ 0.626917 
Ge2 4e 0 0.77049 (13) ¼ 0.660869 
Ge3 8f 0.33909 (10) 0.40284 (8) 0.3374 (2) 0.602441 
Ge4 4e 0 0.22454 (13) ¼ 0.650604 
343 K m-Pr2Co3Ge5 (Space group: Ibam) 
Pr 8j 0.26489 (4) 0.13432 (4) 0 0.533748 
Co1 4a 0 0 ¼  0.632444 
Co2 8j 0.10475 (10) 0.36120 (9) 0  0.821151 
Ge1 4b ½ 0 ¼  0.622180 
Ge2 8g 0 0.22795 (7) ¼  0.673502 
Ge3 8j 0.33878 (9) 0.40271 (6) 0 0.600072 
As-grown o-Pr2Co3Ge5 (Space group: Ibam) 
Pr 8j 0.26453 (4) 0.13419 (4) 0 0.533748 
Co1 4a 0 0 ¼  0.632444 
Co2 8j 0.10515 (9) 0.36144 (9) 0  0.821151 
Ge1 4b ½ 0 ¼  0.622180 
Ge2 8g 0 0.22795 (7) ¼  0.673502 
Ge3 8j 0.33961 (8) 0.40295 (6) 0 0.600072 



Table S2. Bond Distances of the Pr Local Environment (Å) in Room Temperature m-Pr2Co3Ge5, 343 K m-Pr2Co3Ge5, 

and, for Comparison, As-grown o-Pr2Co3Ge5. 

RT m-Pr2Co3Ge5 (I2/c) 343 K m-Pr2Co3Ge5 (Ibam) As-grown o-Pr2Co3Ge5 (Ibam) 

Pr: Pr 4.0216 (11) 4.0346 (6) 4.0349 (5) 

Pr 4.0290 (11) - - 

Pr 4.3464 (11) 4.3414 (6) 4.3370 (5) 

Ge1 3.1417 (11) 3.1684 (5) 3.1699 (4) 

Ge1 3.1981 (10) - - 

Ge2 3.1661 (11) 3.1907 (7) 3.1922 (6) 

Ge2/4 3.2167 (10) - - 

Ge2 3.2004 (8) 3.1853 (6) 3.1843 (5) 

Ge2/4 3.1551 (9) - - 

Ge3 2.9489 (11) 2.9443 (10) 2.9394 (9) 

Ge3 3.1275 (17) 3.1305 (4) 3.1338 (3) 

Ge3 3.1300 (14) - - 

Ge3 3.2816 (11) 3.2851 (10) 3.2867 (9) 

Co2 3.1330 (13) 3.1301 (13) 3.1279 (11) 

Co2 3.1657 (18) 3.1952 (4) 3.1969 (4) 

Co2 3.2326 (21) - - 

Co1: Ge2 2.764 (3) 2.7174 (10) 2.7166 (8) 

Ge3 2.4411 (16) 2.4483 (8) 2.4419 (6) 

Ge3 2.4476 (13) - - 

Ge4 2.654 (3) - - 

Co1 2.92449 (5) 2.92731 (1) 2.92904 (1) 

Co2: Ge1 2.4207 (19) 2.4386 (9) 2.4367 (8) 

Ge1 2.4421 (18) - - 

Ge2 2.4081 (17) 2.3949 (11) 2.3962 (10) 

Ge2/4 2.3764 (19) - - 

Ge3 2.3690 (15) 2.3500 (14) 2.3547 (12) 



Figure S1. High resolution powder X-ray diffraction of (a) m-Pr2Co3Ge5 and (b) o-Pr2Co3Ge5. Observed data, Rietveld 
refinement, and difference curves are shown in blue, red, and grey, respectively. Tick marks of Pr2Co3Ge5, PrCoGe3, 
Sn, and Al2O3 are shown in orange, green, purple, and red, respectively. The insets highlight splitting of select 
reflections corresponding to a loss in symmetry with m-Pr2Co3Ge5 indexed in the unconventional space group setting 
I2/c. The lattice parameters of m-Pr2Co3Ge5 in the standard setting C2/c are a = 11.37315(2) Å, b = 11.93614(2) Å, c 
= 5.849081(8) Å, β = 120.3803(1) °, V = 684.993(2) Å3. 



Figure S2. Contour plot of temperature dependent X-ray diffraction data of m-Pr2Co3Ge5 as obtained from high 
resolution powder X-ray diffraction. The temperature of phase transformation is given with the dashed black line. 

Figure S3. The temperature dependent lattice parameters of m-Pr2Co3Ge5 as obtained from high resolution powder 
X-ray diffraction. Lattice parameters a, b, and c are given as red, green, and blue, respectively.



Room Temperature Electron-Energy Loss Spectroscopy 

Monochromated EEL spectra were collected for both polymorphs from the Pr M4,5 and the Co L2,3 

energy ranges (Figs. 2a and 2b, respectively).  For Pr, there are two dominant edges with peaks at 

928.1 and 947.9 eV, corresponding to the dipole-allowed transitions from 3d 5/2 to 4f 7/2 and 3d 3/2

to 4f 5/2, respectively.  The M5:M4 edge height ratio increases from 1.6:1 to 1.72:1 and the total 

integrated area, which serves as a measure of unoccupied density of states (shaded area in Fig. 2c), 

decreases from 8.24 to 6.81 eV*counts when comparing the room temperature and high 

temperature structures. A chemical shift is not observed in Pr as the edge onset is similar between 

the monoclinic and orthorhombic polymorphs; however, there is a dramatic difference in valency, 

with m-Pr2Co3Ge5 predominantly Pr4+ (Prn+, n = 3.80(5)) and o-Pr2Co3Ge5 predominantly Pr3+ 

(Prn+, n = 3.00(5)) based on MLLS fits and reference spectra (see Methods). Since only one 

crystallographically unique Pr atomic site exists in both polymorphs of Pr2Co3Ge5, the oxidation 

state of Pr must be in an intermediate valence state in m-Pr2Co3Ge5. Pr was observed to be weakly 

tetravalent in PrFe10Mo2 and PrNi5 based on X-ray absorption spectroscopy, with valences of 

3.08(3) and 3.10(3) respectively (72), but this is far less than what is observed in m-Pr2Co3Ge5. 

Like Pr, the Co L2,3 edges result from dipole allowed electron transitions; however, for cobalt, 

these transitions are from the 2p3/2 to 3d5/2 states and the 2p1/2 to 3d3/2 states. The edge onset for 

both polymorphs is similar with the onset slightly lower in m-Pr2Co3Ge5 (775.06 eV) compared to 

o-Pr2Co3Ge5 (775.10 eV).  The Co L2,3 edge onset is lower for the orthorhombic structure when

compared to the monoclinic structure, implying that the orthorhombic 3d Co electrons possess a 

lower ionization energy threshold compared to their monoclinic counterparts. In other words, the 

orthorhombic crystal structure facilitates removal of electrons from the 3d orbitals of Co atoms, 

resulting in a lower energy requirement for ionization compared to the monoclinic crystal 

structure. Additionally, the small high energy shift of the Co L2,3 edge onsets in m-Pr2Co3Ge5 

compared to o-Pr2Co3Ge5 suggest a slightly higher oxidation state of the monoclinic Co. However, 

the Co L2,3 edge maxima in o-Pr2Co3Ge5 are at higher energies compared to the monoclinic 

structure. The intensity of the peaks reflects the occupancy of the relevant orbitals, while the shape 

informs on hybridization and interactions between the electronic orbitals involved in the orbital 

transitions. Broader edges are indicative of more rapid decay processes, suggesting that m-

Pr2Co3Ge5 contains more unoccupied 3d states compared to o-Pr2Co3Ge5. 



Figure S4. Temperature dependent EEL spectra across the structural phase transformation of m-Pr2Co3Ge5 

overlayed for feature comparison. Data were normalized based on the M5 or L3 edge maxima. 



Field Dependent and Temperature Dependent Magnetic Measurements 

For the orthorhombic polymorph, temperature dependent magnetic susceptibility measurements 

along the a-, b-, and c-crystallographic directions result in one magnetic transition above H = 0.2 

T. With an applied field of H ≥ 0.2 T parallel to the a-direction, a single broad magnetic transition

is visible at Tsp = 32.5 K (Fig. S5a); however, at reduced fields of H = 0.05 T, this magnetic 

transition shifts to Tsp = 30.8 K and a second feature emerges at TM = 3.4 K (Fig. S5). With field 

applied parallel to either the b- or c-directions, two magnetic transitions are present for all fields 

at Tsp ~ 32 K and TM = 3.2 K or TM = 10 K, respectively. Unlike the transitions observed along the 

a-direction, the magnitude of magnetic ordering along the b- and c-directions are strongest at TM,

with ordering along the c-direction being significantly more pronounced than the other directions. 

Additionally, with magnetic fields applied parallel to the a-direction, there is a slight bifurcation 

of the zero field-cooled and field-cooled magnetization below T = 4 K for H = 0.05 and 0.5, but 

no difference is observed for fields applied along the b- and c-directions. Compared to the magnetic 

susceptibility of o-Pr2Co3Ge5 with a magnetic field of H = 0.2 T applied along the a-direction, the 

first transition in m-Pr2Co3Ge5 occurs at a higher temperature of Tsp = 35.3 K and an additional 

magnetic transition is observed at TM = 10 K. The magnetic ordering event with field applied along 

the c-direction also shows a shift towards higher temperature (Tsp = 34.8 K). 



Figure S5. Temperature dependent magnetization of (a) o-Pr2Co3Ge5 and (b) m-Pr2Co3Ge5 at applied fields of 0.05 
T (blue), 0.2 T (red), and 0.5 T (black). 



Figure S6. Field dependent magnetization of o-Pr2Co3Ge5 with (a) the applied fields from -7.5 to 7.5 T and (b) - 
1 T to 1 T.  



Figure S7. Field dependent magnetization of m-Pr2Co3Ge5 with (a) the applied fields from -7.5 to 7.5 T and (b) 
- 1 T to 1 T.



Table S3. Summarized Magnetic Susceptibility for o-Pr2Co3Ge5 and m-Pr2Co3Ge5 

Applied Field (T) µeff (µB Pr-1) µeff (µB F.U.-1) θCW (K) Tsp (K) TM (K) 

o-Pr2Co3Ge5 H // a; 0.5 4.05 (1) 5.72 (2) -25.5 (2) 32.5 - 

   0.2 4.03 (1) 5.70 (2) -25.7 (1) 31.9 - 

   0.05 3.95 (1) 5.58 (1) -25.4 (1) 30.8 3.4 

H // b; 0.5 3.87 (1) 5.47 (1) -22.6 (1) 31.9 4.3 

   0.2 3.86 (1) 5.46 (1) -22.6 (1) 32.3 3.2 

H // c; 0.5 4.04 (1) 5.72 (1) 13.4 (1) 31.9 10 

   0.2 4.04 (1) 5.71 (1) 13.5 (1) 31.3 10 

m-Pr2Co3Ge5 H // a; 0.5 4.02 (1) 5.68 (1) -10.4 (1) 36.4 10 

   0.2 4.02 (1) 5.68 (1) -11.0 (1) 35.3 10 

   0.05 3.95 (1) 5.58 (1) -12.3 (1) 34.5 10 

H // c; 0.5 4.05 (1) 5.72 (1) 12.2 (1) 35.7 10 

   0.2 4.05 (1) 5.73 (1) 11.3 (1) 34.8 10 

   0.05 3.97 (1) 5.62 (1) 10.2 (1) 34.4 10 
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