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Figure S1 - Selection of target genes to be reconstructed by autoencoder. (a) A principle component analysis 
(PCA) of 29 candidate target genes reveals the dominance of the first component (PC1) over the other 
components, suggesting PC1 captures the majority of the underlying structure in the data. (b) Gene loadings onto 
PC1. The red line marks the outlier threshold for extreme loadings, as defined by a shuffled null PCA. (c) Number 
of bootstrap permutations where feature loadings of genes surpassed the outlier threshold in random subsets of 
samples. The red line indicates where loadings surpassed thresholds in 5% of permutations. Genes surpassing 
this threshold are colored blue, and these genes were selected as the final target genes used by the autoencoder. 
These findings show that the expression pattern of these genes is not overly complex and is suitable to be 
modeled as a single dimension. Source data are provided as a Source Data file.
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Figure S2 - Weighted downsampling improves balance and preserves heterogeneity. (a) Shannon entropy 
values (y-axis) measure balance of cell groupings across multiple downsampling thresholds (x-axis). 
Downsampling to 500,000 cells (dashed line) offers a balance of sample numbers and group balance, particularly 
for species (red), cell class (gold), and cell subclass (light blue). (b) Hierarchical downsampling visualized. 
Hexagon bin colors represents the number of cells in a given x,y coordinate range before downsampling (left) and 
after downsampling (right). The y-axis represents a cell’s target gene PC1 score, and the x-axis shows total unique 
molecular identifier (UMI) counts per cell. Downsampling with hierarchical weighting preserves diversity in both 
biological and technical sources of variation. Source data are provided as a Source Data file.
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Figure S3 - Feature attribution of model predictions.  (a) Mean feature attribution for target genes (blue) to 
non-target genes (gray), split by the number of stimulus-responsive differential expression lists they appeared in 
from the target selection analysis. The number of genes in each gene group are shown at the top of the bars. (b) 
Gene set enrichment analysis (GSEA) results for feature attributions. We examined positive enrichment scores 
(one-sided GSEA test implemented in the R package fgsea) for several gene sets using feature attributions of all 
input genes (light bar) or non-target genes (dark bar). Bars are colored by gene set collection. All gene sets 
displayed are significantly enriched after FDR-correction for multiple comparisons when considering attributions of 
all genes, and asterisks indicate the gene set remained significant without target genes included (see 
Supplemental Data 3). Source data are provided as a Source Data file.
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Figure S4 - Analysis of Patch-seq data with electrophysiological and transcriptional perspectives.
(a) Seurat integration of Patch-seq (top) and Smart-seq (bottom) datasets. Each dot represents a neuron and is 
colored by cell type. (b) Comparison of mean gene expression between Patch-seq and Smart-seq datasets. 
NEUROeSTIMator target genes are highlighted (pink) and the dashed line shows the y = x line. (c) Principal 
component analysis of electrophysiological features from the Patch-seq dataset. Principal component variances 
(top) are colored by the Pearson correlation between component values of cells and NEUROeSTIMator output. 
Positive correlations are colored red and negative are colored blue. Cumulative component contribution to total 
variance explained (bottom). The dashed line indicates where cumulative contribution surpasses 90% variance 
explained. (d) Network representation of a gene set enrichment analysis for gene loadings from canonical 
correlation analysis. Node size represents gene set significance (-log10 false-discovery adjusted p-values), node 
color indicates the source collection of gene sets, and edge width represents the inverse log-weighted similarity of 
gene sets. Abbreviations - GO: Biological Processes (GOBP), GO: Molecular Function (GOMF), Reactome, and 
Wikipathways (WP) (see Supplementary Data 4). Source data are provided as a Source Data file.
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Figure S5 - Spatial transcriptomic techniques reveal region-specific activity in response to spatial 
learning.
(a) Predicted activity of individual Visium spots for brain sections from a homecage control group (left column, n = 
3) and an SOR-trained group (right, n = 3). Red colors indicate higher activity and blue colors represent lower 
activity. (b) RNAscope validation of region-specific activation Egr1, Nr4a1, and Egr3. Scale bar represents 1000 
um in length. Merged images (right column) shows overlap of probe fluorescence, with white colors representing 
regions of multi-probe overlap. (c) Image comparison of learning induced activity as measured by RNAscope (top) 
and Visium (bottom). (d) Dorsal hippocampus subregion-specific induction of transcriptional activity following SOR. 
Mean fluorescent intensity (MFI) of each RNAscope probe was averaged per mouse for both the CA1 (left) and 
dentate gyrus (DG, right) subregions of the hippocampus. Probe-averaged MFI was significantly increased in CA1, 
but not DG, after learning. Two-way ANOVA revealed a significant main effect of session (homecage vs learning): 
F(1,6) = 8.015, p = 0.0299; Significant main effect of subregions (CA1 vs DG) F(1,6) = 6.636, p = 0.042; Sidak’s 
multiple comparisons tests: CA1 (homecage vs learning): p = 0.0075; DG (homecage vs learning): p = 0.5553. The 
experiment was performed twice in cohorts of two animals per group. A minimum of two replicate sections from 
each brain were quantified. Male mice, homecage (n = 4, black), learning (n = 4, red). Horizontal bars represent 
mean MFI, error bars represent ± SEM. *p < 0.05, **p < 0.01, ns: not significant. Source data are provided as a 
Source Data file. 
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Figure S6 - Cell Type Deconvolution of Spatial Transcriptomic Data. (a) Results of cell type 
deconvolution in Visium samples, colored by estimated proportion of cell types. (b) Region-summarized 
relationship between estimated proportion of neuronal cell types and estimated effect of spatial learning 
(linear regression, coefficient = 0.87, p = 0.01, n = 23). Each point represents a brain region depicted in 
Figure 5a, and colors represent a broader spatial clustering. (c) Estimated effects of learning (see Figure 5c), 
adjusted for estimated proportion of neurons. Red indicates a coefficient greater than expected based on the 
trend observed in b (positive residual), while blue indicates a lower effect (negative residual) . Adjusted 
estimates are provided in Supplementary Table 7. Source data are provided as a Source Data file.
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Figure S7 - Generalized Improvement in Classification Accuracy Over Competing Methods. Comparison of 
classification accuracy (AUC) of experimental stimulation groups for the NEUROeSTIMator model and seven 
competing methods (columns). AUC for separation of stimulated and unstimulated samples is calculated for 
NEUROeSTIMator and competing methods, and difference in AUC is shown on the x-axis. Positive x-axis values 
indicate NEUROeSTIMator classified the experimental groups with greater accuracy (points colored red) than the 
method being compared, and negative x-axis values represent reduced accuracy (points colored blue). Cells are 
grouped by dataset, cell type, and time point when applicable (rows), and these groupings are indicated by colors 
and row facets. Number of samples per comparison is shown on the left of the plot (log scale).
(See Supplementary Table 8).
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Figure S8 - Benchmarking performance across technical and biological variables. Comparing classification 
accuracy across technical and biological groups. Positive values (red) indicate NEUROeSTIMator classified the 
experimental groups with greater accuracy than the method being compared. Column titles indicate the method 
being compared, x-axis groups correspond to time passed since onset of stimulation in the KCl paradigm 
(GSE136656), and y-axis groups are binned by log10 sum of UMI counts. AUC values and grouping sample 
numbers are provided in source data. Source data are provided as a Source Data file.
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Figure S9 - Candidate Target Gene Selection. (a) Rank-rank hypergeometric overlap (RRHO) was used to 
identify p-value thresholds of maximum enrichment between differential expression lists for potassium chloride 
depolarization in glutamatergic-enriched and GABAergic-enriched neuron samples. The x-axis shows bins of 100 
genes ranked by p-value from the glutamatergic samples, starting from most significant on the left. GABAergic 
results are shown on the y-axis with most significant genes starting from the bottom. Each cell of the heat map is 
colored by significance (-log10(FDR)) of the overlap between gene lists when considering the top genes given by 
the x-axis and y-axis values. Maximal overlap enrichment (designated by the crosshair symbol) was found at the 
intersection of the top 3,600 genes ranked by p-value for the glutamatergic results, and the top 3,300 for the 
GABAergic results (one-sided RRHO test, FDR = 3.05 x 10-215), yielding a set of 1,184 overlapping genes. (b) A 
log fold change threshold of one was applied to both lists, further narrowing to a final set of 132 candidate targets 
from genes below RRHO p-value thresholds in both lists from this dataset. (c) Summary of the RRHO analysis 
showing significance of each gene (points) and the corresponding significance (-log10(p-values)) in the 
glutamatergic samples (x-axis) and GABAergic samples (y-axis). The 132 candidates selected are shown in green, 
while genes that passed RRHO p-value thresholds but not the log fold change thresholds are shown in orange.
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Figure S10 - Graphical representations of model architecture. NEUROeSTIMator was trained using an 
autoencoder that uses the whole transcriptome to reconstruct expression of neuronal activity marker genes. The 
transcriptome is condensed to a single-unit sigmoidal bottleneck layer before concatenation with auxiliary inputs of 
cell type, source dataset, and quality control (QC) metrics. The bottleneck output and the auxiliary information are 
used to decode the expression values of target genes. After training, NEUROeSTIMator consists of the encoder 
and bottleneck layer only, so auxiliary information is not needed for use. Fully detailed graphical representation of 
the model architecture is provided in source data. Source data are provided as a Source Data file.
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