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Using deep learning to quantify neuronal activation from 
single-cell and spatial transcriptomic data



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
Activity-dependent transcription modulates biological processes that regulate neuron cellular states 
and behaviors. Its abnormality is linked to various neurological disorders. The methods of 
estimating neural activity remain pretty scarce for now. In this study, the authors made efforts to 
fill this gap by proposing a novel computational tool named "NEUROeSTIMator," which employs a 
deep learning framework to calculate an activity score (0-1) from single-cell measurements 
(particularly scRNA-seq). While I agree that the problem the authors described is very important 
and we still lack an excellent computational tool to estimate the neural activation, I found that 
there are several major issues with the method the authors proposed, which undermines all the 
innovations and novelty the author claimed in the lengthy discussion section. 
 
Major concerns: 
(1) The methodological innovation associated with the method is quite minimal. The authors spent 
two entire paragraphs (lines 62-87) discussing various conventional dimension reduction methods 
(e.g., PCA, UMAP) and deep neural network-based dimensionality reduction approaches (i.e., 
DCA). They further claimed that the DCA-based methods are more flexible in compressing the 
information and extracting important features. Therefore, the NEUROeSTIMator is built upon the 
DCA framuron activation, particularly for some rare neuron cell populations, orework. I understand 
that a novel tool/method is often developed based on some fundamental frameworks. Particularly, 
the auto-encoder framework is very commonly used in the single-cell domain. I have read the 
manuscripts multiple times to search for their "methodological innovation." In other words, how is 
their method unique and different from the existing framework? For example, is there a 
customized loss function or structure that better integrates the biological prior? Unfortunately, I 
have yet to find a significant improvement over the original DCA framework. The authors did 
identify and leverage a list of ~32 (or 20) known neural activity biomarkers as the output of the 
model (reconstruction from the bottleneck single neuron that represents the activity score). 
However, I wonder if that could be regarded as a significant innovation. 
 
Another significant novelty they claimed is that they compress all the input (thousands of input 
genes) into a single neuron representing the activation. To me, this is risky as one neuron is 
limited to representing the entire transcriptome. I understand that the authors want one scaler 
activity score to represent the activation. However, there are alternative strategies that could 
circumvent this issue. For example, the authors could use the autoencoder framework to reduce 
the inputs to 4 or 8 dimensions (latent embedding Z), which will then be used to reconstruct the 
gene expression for the selected 21 neuron activity biomarkers. Another independent classifier 
could be added to predict the activity from the Z. Since the model is supervised anyway (neuron 
cells with and without stimulation), such a classifier can be trained to predict a score in the range 
(0,1) (with a logistic function) to represent the activity. The feature selection (or biomarker 
identification) can be performed using sensitivity analysis or the gradient-based approach that the 
author described. This is just an example alternative strategy that could avoid some potential 
issues described above, which should at least be explored and discussed in the manuscript to 
increase the novelty of the methodology. 
 
(2) Another important limitation of the neuronestimateor method is the fact that it relies on ~20 
known activity biomarkers. In other words, the model could bias toward known discoveries. As our 
current understanding of neuron activation, as far as I know, remains limited. Therefore, we may 
still miss a lot of important biomarkers for neuron activation, particularly for some rare neuron cell 
populations, or in complex disease patients where the disease might significantly disrupt the 
neuron activity patterns. In those scenarios, we will need an unbiased approach (or at least we 
should NOT just focus on those ~20 genes). Alternatively, we could consider giving those known 
biomarkers higher weights in the reconstruction loss function while other genes will still be 
considered. The alternative model I described in (1) is also flexible in accommodating the above 
change (just change the output back to the full input gene vector and revise the loss function 
accordingly). 
 
(3) There are very limited benchmarking analyses in this study to demonstrate the method's 
superiority. Yes, the author did compare their method to a simple "additive" model, and their 



method indeed shows superior performance. However, the additive method they compared is 
naive (just a simple sum of normalized gene expression of 20 neuron activation markers). 
Surprisingly, even such a naive method has comparable performance (at least for early time 
points), which further raises the necessity to perform more benchmarks with other methods. 
Suppose the author can not find other methods with similar functions. In that case, the author 
should at least compare to simple logistic regression or random forest model (predicting the 
activity score 0/1 from the input vector. For example, the model can be trained with neurons with 
(1) and without (0) stimulations. 
 
Besides those major comments, the paper also has many minor issues 
(1)The author described the deep learning model in all text, which makes it uneasy to follow. A 
simple schematic overview figure should make it more clear. Also, the author should provide the 
detailed loss function they employed for their model. 
 
(2) Many figures are missing Panel numbers (e.g., A, B,C), which makes it difficult to relate the 
figure with its legend. 
 
(3)The authors mentioned that they trained the model for 10 epochs. This is very limited. Is the 
model converged? 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
Overall I find this study not only to be novel, but in the bigger picture to be a step towards 
unifying high-throughput molecular biology and electrophysiology, so that we can say something 
about the brain activity consequences of the omics profiling studies of disease, which are becoming 
increasingly large, important and common.  It's from this macro perspective, as much as the 
specific findings, that I think it is appropriate for publication (after revisions) in Nat Comm.  As 
such, I think that this research is going to have ~2x the interest of the average article, as it's 
going to pull in two different communities which don't typically talk to each other, as much as 
would be helpful to.  I understand how challenging it is to obtain a suite of experimental results 
(you had a nice array of pharma, physiological and recent tech applications, which I know didn't 
happen by accident) in tandem with building computational models. My questions to the authors 
below largely relate to if the model could easily and substantially be improved by modifying a few 
relatively arbitrary assumptions, and clarifying all of these points in the text. 
 
Line 116 talks about weighting cells to account for less popular types, but then the next sentence 
seems to say you literally input an equal number of each cell type into the model, so not sure 
what was actually done. 
 
What are the genes and functions that predict voltage barrier to depolarization (your main activity 
features) in patchseq?  Right now you are building a predictor of genes which theoretically should 
be relevant to that, and it's cool that you find they are relevant to a degree, but you could just do 
some univariate stats to see what biological functions are relevant and might be surprised.  Also 
potential to build a ML model for this purely in patchseq data,  May not be enough for your AI 
model (have you tried?) but other models might work in it directly to establish the target gene set. 
 
How do you propose to interpret data from regions of the mouse brain with more/less microglia or 
non-neuronal cell types, and will that potentially influence the magnitude or variance in fig 5d? 
 
On the selection of stimulus response genes - triple intersection is reasonable, but to actually 
prove that would want to see that gene sets only in one or two lists perform worse.   
 
What is the intrinsic dimensionality of the patchseq ephys parameters?  Is 90% of the variance on 
the first PC and so it's reasonable to pull a single value from it, or would a multi-dimensional 
representation be more appropriate, and could that be wed to more than a single-variable activity 
value? 
 



The ontological characterization of gene contributing to the activity score doesn't reveal 
tremendously high p-value. If this diversity is also accompanied by diverse expression profiles, I 
wonder about the ability to represent them with the current (possibly) overly narrow bottleneck 
architecture or if modifications might improve performance significantly? 
 
Statement on line 578 " We selected a final set of 20 targets based on consistency 
of  coexpression patterns across datasets and broad cell classes" is not precise enough to know 
what you did.... maybe modify with "... as follows." if you indeed strictly followed the path of the 
next few sentences.  Indeed, I'd been wondering all along how your 20 genes were distributed 
across coexpression modules, but then when you talk about picking the "top" genes, but it's not 
clear what that means in terms of coexpression values. 
 
Also, it seems to me there's a sort of typographic error that prevents me from knowing what you 
did at a key point.  You say onf 583:  "...top 20 genes were selected as final the final set of output 
target genes".  I can't tell what's going on from that statement... maybe you had an initial 20 
targets and then somehow there's maybe a different 20 at the end?  It really matters how these 
genes were selected, but I can't really even know what questions to ask without this being patched 
up first.  To reiterate, I'm looking for the precise formula for how you ended up with these from 
your coexpression matrices. 
 
Do all 20 of your final targets fall into a single coexpression module?  I can't tell exactly how you 
picked these, but it seems like your methods are generally pointed towards picking a broadly 
correlated gene set?  If you had genes falling into more than one module do you think your 1D 
autoencoder and activity measure wouldn't work as well? 
 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have drafted a manuscript focused on a highly interesting and important topic, namely 
the extent to which a cell’s transcriptome is reflective of its neurophysiological state. The authors 
utilize a deep learning model adapted from DCA to build a classifier of neuronal activity based on 
transcriptomic information. Although the proposed model has some appealing features, the data 
provided are not supportive of the conclusions that NEUROeSTIMator meaningfully outperforms a 
more traditional additive model of IEG expression, nor that the NEUROeSTIMator activity score is 
robustly predictive of the neurophysiological properties of individual neurons. 
 
In Figure 2c, the authors report that the “random forest predictions were significantly correlated 
with NEUROeSTIMator output (R = 0.11, p = 7.86x10-10)”. NEUROeSTIMator output explains only 
~1.2% of the variance in the random forest predictions, for which the highly significant p-value is 
likely driven by the large sample size. 
 
In Figure 2d, the authors tested for differences in voltage barrier between the high and low activity 
groups in four types of neurons. However, these are group-level differences, rather than 
predictions at the level of individual neurons. Moreover, these group-level differences are between 
“high” versus “low” activity groups, which leaves out predictions for the substantial proportion of 
neurons that are found in the intermediate range of activity scores between “high” and “low” 
activity. 
 
In the analyses of pharmacological activation shown in Figure 3, these are again group-level 
analyses rather than for individual neurons. Moreover, in none of these datasets is 
electrophysiological data available. Rather, the authors infer a broad concept of “neuronal 
activation” on the basis of biological knowledge of the pharmacological agents, which greatly 
reduces the utility of these data to the extent that these analyses are being used to validate the 
ability of the NEUROeSTIMator to predict electrophysiological activity at the level of individual 
neurons. 
 
In addition, for the KCl and visual cortex (light stimulation) datasets, the longitudinal time series 
would be a unique opportunity to examine the accuracy of the NEUROeSTIMator under well 



controlled conditions. However these datasets do not contain electrophysiological data to validate 
whether the NEUROeSTIMator activity scores are indeed predictive of neurophysiological activity at 
the level of individual neurons. 
 
Lastly, in comparing the performance of the NEUROeSTIMator against an additive model for group-
level discrimination, the authors conclude that the NEUROeSTIMator has “drastically” and 
“substantially” improved performance, yet over half of the cell types examined have a delta AUC 
<0.05 and ~15% of cell types have an AUC less than 0. 



NCOMMS-22-48085 
Using Deep Learning to Estimate Neuronal Activation from Single-Cell and Spatial Transcriptomic 
Data 
  



RESPONSE TO REVIEWERS: SUMMARY 

We are grateful to the editor and reviewers for their enthusiasm and valuable feedback on our initial 
submission. We have addressed every reviewer comment, which we feel has substantially improved the 
rigor of our analyses and the overall quality of our manuscript. Notably, we have expanded the 
performance benchmarking and have included new data related to electrophysiology results, which has 
further strengthened our findings and conclusions. After consideration of reviewer comments, we updated 
the model architecture and shifted our training approach from purely unsupervised to semi-supervised 
learning. Further, we have eliminated design decisions that the reviewers considered arbitrary and 
clarified others with additional supplemental analyses. We anticipate that our findings and tool will be of 
great interest especially to the neuroscience research community, and we hope that the editor and 
reviewers will find the revised manuscript suitable for publication.  



Reviewer #1: 
 
Remarks to Authors 

Activity-dependent transcription modulates biological processes that regulate neuron cellular states and 
behaviors. Its abnormality is linked to various neurological disorders. The methods of estimating neural 
activity remain pretty scarce for now. In this study, the authors made efforts to fill this gap by proposing a 
novel computational tool named "NEUROeSTIMator," which employs a deep learning framework to 
calculate an activity score (0-1) from single-cell measurements (particularly scRNA-seq). While I agree 
that the problem the authors described is very important and we still lack an excellent computational tool 
to estimate the neural activation, I found that there are several major issues with the method the authors 
proposed, which undermines all the innovations and novelty the author claimed in the lengthy discussion 
section. 

  
Major concerns: 

1.0  The methodological innovation associated with the method is quite minimal. The authors spent two 
entire paragraphs (lines 62-87) discussing various conventional dimension reduction methods (e.g., PCA, 
UMAP) and deep neural network-based dimensionality reduction approaches (i.e., DCA). They further 
claimed that the DCA-based methods are more flexible in compressing the information and extracting 
important features. Therefore, the NEUROeSTIMator is built upon the DCA framuron activation, 
particularly for some rare neuron cell populations, orework. I understand that a novel tool/method is 
often developed based on some fundamental frameworks. Particularly, the auto-encoder framework is 
very commonly used in the single-cell domain. I have read the manuscripts multiple times to search for 
their "methodological innovation." In other words, how is their method unique and different from the 
existing framework? For example, is there a customized loss function or structure that better integrates 
the biological prior? Unfortunately, I have yet to find a significant improvement over the original DCA 
framework. The authors did identify and leverage a list of ~32 (or 20) known neural activity biomarkers 
as the output of the model (reconstruction from the bottleneck single neuron that represents the activity 
score). However, I wonder if that could be regarded as a significant innovation.  

Response: We thank the reviewer for their appreciation of the importance of this area of research. We 
have updated the text to succinctly state the methodological innovations in a clear way. 

The methodological innovation of the work we describe is fourfold: 1) the vast, integrated dataset of 
hundreds of thousands of neurons from multiple data sources, with sophisticated downsampling to ensure 
even representation of cell types 2) the careful and data-driven selection of immediate early genes (IEGs) 
to serve as model targets 3) the application of deep learning to this problem and 4) architecture designed 
to protect the latent space from capturing cell type biases. These and other technical innovations have 
allowed us, for the first time, to estimate gene expression indicators of cell activation that are consistent 
with electrophysiological features of increased excitability. Although no such tool existed prior to this 
manuscript, in this revision we have made good faith efforts to compare NEUROeSTIMator’s 
performance to a variety of approaches, which we hope will satisfy the reviewers regarding technical 
innovation. With these additional details, we have endeavored to satisfy the reviewer’s request for 
attention to brevity in the discussion.  More detail on methodological innovation is provided below.  

1) The dataset. To train the model we used hundreds of thousands of neurons from the large-scale and 
diverse Allen Cell Types Database. We also used multiple labeled (with respect to experimental group) 
datasets containing stimulated and unstimulated neurons, as well as synthetically augmented cells. 



2) Data-driven curation of activity marker genes. Many studies rely on a small number of markers to 
identify activated neurons (e.g., staining, fos-based genetic approaches). We utilized differential gene 
expression lists from three diverse studies of neuronal activity to identify a set of approximately 30 
marker genes. We then identified a subset of 22 marker genes that robustly load onto a single principal 
component, thus providing us a coexpression module containing 22 activity marker genes to base our 
model on. 

3) Applying deep learning approaches to the problem of neuron activity estimation. Deep learning is 
rapidly becoming a powerful tool for genomic and transcriptomic analysis, and autoencoders, in 
particular, are popular in the arena of single cell transcriptomics, especially for clustering. However, we 
are not aware of any other method that has attempted to model transcriptomic signatures of neuron 
activity, neither with current techniques such as neural networks, nor in the context of single cell RNA-
seq. 

4) Protecting the latent space from capturing cell type biases. We provide cellular metadata to the 
model to relieve the latent space from pressure to learn a representation biased by celltype of dataset. As 
an example, if 25% of type A neurons show high expression of activity markers but only 10% of type B, a 
biased representation could learn that type A cell type markers (rather than true activity markers) are 
associated with IEG expression. This scenario leads to different cell types occupying different ranges of 
the bottleneck space (e.g., type A:  0.5-1, type B: 0-0.5). This could be particularly problematic for a low-
capacity bottleneck. To overcome this, we supplied cell type, dataset, and quality control information to 
an auxiliary decoder branch of the architecture downstream of the latent space, to absolve the latent space 
from the loss pressure to find cell type or dataset-specific intercepts (see Supplemental Figure 10). This 
causes different cell types to all approximate our imposed bottleneck distribution instead of occupying 
different ranges of it. Importantly, since this auxillary metadata information used in the training process is 
input downstream of the latent space, it does not impact the latent space and is therefore not required to 
use NEUROeSTIMator. 

To our knowledge, nothing like what we describe here has been done before. DCA is not a comparable 
method, as it is a model-building tool, and does not utilize any of the innovations listed above. It was 
merely the framework we based our architecture upon. 

 
1.1 Another significant novelty they claimed is that they compress all the input (thousands of input genes) 
into a single neuron representing the activation. To me, this is risky as one neuron is limited to 
representing the entire transcriptome. I understand that the authors want one scaler activity score to 
represent the activation. However, there are alternative strategies that could circumvent this issue. For 
example, the authors could use the autoencoder framework to reduce the inputs to 4 or 8 dimensions 
(latent embedding Z), which will then be used to reconstruct the gene expression for the selected 21 
neuron activity biomarkers. Another independent classifier could be added to predict the activity from the 
Z. Since the model is supervised anyway (neuron cells with and without stimulation), such a classifier can 
be trained to predict a score in the range (0,1) (with a logistic function) to represent the activity. The 
feature selection (or biomarker identification) can be performed using sensitivity analysis or the gradient-
based approach that the author described. This is just an example alternative strategy that could avoid 
some potential issues described above, which should at least be explored and discussed in the manuscript 
to increase the novelty of the methodology. 

Response: The single-unit bottleneck in our model is only learning a representation for the 22 stimulus-
responsive target genes, not the entire transcriptome, and is the appropriate choice for our model for 
several reasons, which we have further elucidated in the manuscript thanks to the reviewer’s input (see 
Supplementary Figure 1, Results lines 86-97, and Methods lines 484-530).  



As the reviewer points out, we do want a single scalar value to represent activity for the sake of simplicity 
and interpretability. A single score is easier to understand, visualize, compare across samples, and to 
integrate into downstream analyses such as classification or regression (e.g., as a covariate). While a 
bottleneck with additional capacity would undoubtedly capture more complex patterns, it would also 
become more challenging to interpret the relationships between multiple dimensions, thus adversely 
impacting the tool’s ease of use in the intended applications. Further, the powerful regularizing effect of 
reducing bottleneck capacity forces the model to focus on only the most salient information and discard 
less relevant information. This makes models more robust to noise and reduces the risk of overfitting. 
Finally, in our revision we show that the final 22 genes we selected as model targets were the subset of 
genes that robustly loaded onto the first principal component of a PCA performed on a larger set of 29 
candidate genes (see Supplemental Figure 1c). In other words, the PCA supported the hypothesis that 
these genes represent a single coexpression module and can be readily captured with our model’s single-
unit bottleneck. 

We are appreciative of the reviewer’s suggestions here because they inspired us to shift our model 
towards a semi-supervised learning approach (in the initial submission, we trained on unlabeled data in a 
form of unsupervised feature learning). We describe the new approach on lines 571-606. In brief, we 
included partitions of the various application datasets described throughout the manuscript into the 
training process (for monitoring of training progress and model selection; see details below). Just like 
cells from the main Allen Institute dataset, the model training learns to reconstruct the expression of cells 
from these other labeled datasets. To add supervision to the training process, we attached an additional 
output connected directly to the 1-unit bottleneck that predicts labels for the labeled datasets only. Though 
the labeled samples from the training set were not involved in any downstream analyses featured in the 
manuscript, we were cautious about the potential for information leakage from the training set to the test 
set because they were from the same labeled datasets. For this reason, we chose to remove this output’s 
contribution to the training loss, and instead used it to monitor whether the autoencoder reconstruction 
loss was actually promoting a learned bottleneck representation that helps discriminate labels. Although it 
did not directly impact weight updates during training, we used the validation loss from this new output to 
select a final model from cross-validation. This semi-supervised approach yielded the updated model we 
present in our revision. 
 
1.2 Another important limitation of the neuroestimator method is the fact that it relies on ~20 known 
activity biomarkers. In other words, the model could bias toward known discoveries. As our current 
understanding of neuron activation, as far as I know, remains limited. Therefore, we may still miss a lot 
of important biomarkers for neuron activation, particularly for some rare neuron cell populations, or in 
complex disease patients where the disease might significantly disrupt the neuron activity patterns. In 
those scenarios, we will need an unbiased approach (or at least we should NOT just focus on those ~20 
genes). Alternatively, we could consider giving those known biomarkers higher weights in the 
reconstruction loss function while other genes will still be considered. The alternative model I described 
in (1) is also flexible in accommodating the above change (just change the output back to the full input 
gene vector and revise the loss function accordingly).  

Response: We thank the reviewer for this observation, and we have updated the text throughout the 
manuscript (see lines 42-45, 62, and 103-105 for examples) to emphasize two key points. First, the model 
utilizes the whole transcriptome (not just 22 genes) to de-noise signal contained in the expression of the 
22 immediate early genes (IEGs) used as targets. Second, we emphasize the decades-long history of 
research on immediate early genes (IEGs) as markers of neuronal activity. While we agree that in general 
it is better to assume a weak prior on the state of our knowledge regarding marker genes, in the case of 
IEGs, there is little reason to suspect that there are unknown first-line gene expression pathways that have 
evaded detection over decades of research across thousands of labs – it is difficult to think of another 
class of marker genes that could more aptly be called a “gold standard.” Our careful testing and curation 



of the IEG target genes (see Supplemental Figures 1 and 9) is another example of the methodological 
innovation the reviewer requested. 
 
1.3 There are very limited benchmarking analyses in this study to demonstrate the method's superiority. 
Yes, the author did compare their method to a simple "additive" model, and their method indeed shows 
superior performance. However, the additive method they compared is naive (just a simple sum of 
normalized gene expression of 20 neuron activation markers). Surprisingly, even such a naive method has 
comparable performance (at least for early time points), which further raises the necessity to perform 
more benchmarks with other methods. Suppose the author can not find other methods with similar 
functions. In that case, the author should at least compare to simple logistic regression or random forest 
model (predicting the activity score 0/1 from the input vector. For example, the model can be trained with 
neurons with (1) and without (0) stimulations.  

Response: We thank the reviewer for this feedback. In addition to the scaled additive approach from our 
initial submission, we have added two additional methods to benchmark NEUROeSTIMator performance. 
We summarize the findings of our expanded benchmarking analysis in Supplementary Figure 7, where 
we depict the difference in AUC between NEUROeSTIMator and each of the comparisons for various 
groups of labeled data from the test set. The mean AUC of the “naive” scaled additive approach across all 
cell groupings was 0.541. One of the new comparisons, which we refer to as the ‘PC1’ approach, uses 
target gene principal component loadings from the training data to compute PC1 scores for each cell in 
the test set. Not only does this approach have the advantage of being derived from hundreds of thousands 
of neurons, but it also serves as a baseline dimensionality reduction comparison that lacks non-linearities 
and broader transcriptomic inputs. This approach outperformed the scaled additive approach with a mean 
AUC of 0.658. The other new comparison method we added was to train a version of NEUROeSTIMator 
with identical parameters but cut off all information from non-target inputs. We refer to this as the ‘targets 
only neural network’, or ‘targets only NN’ for short. We implemented this by initializing the same model 
architecture NEUROeSTIMator was built from, and then set all non-target inputs to zero as well as 
freezing their weights and bias to zero. We confirmed these frozen weights were not updated during 
training. This method contains all the non-linearities and regularization of NEUROeSTIMator but cannot 
utilize information from non-target genes in the broader transcriptome. This approach marginally 
outperformed the ‘targets PC1’ method with a mean AUC of 0.666. NEUROeSTIMator outperformed all 
other comparisons with a mean AUC of 0.724. We would point out that in the machine learning literature 
generally, such an improvement in AUC over the previous state of the art would be seen as noteworthy or 
even appreciable (see https://www.nature.com/articles/s41467-020-20657-4). More details can be found 
in the methods on line 701, results on line 368, and the data is depicted in Supplementary Figure 7 and 
8. 

 
1.4 Besides those major comments, the paper also has many minor issues 
(1)The author described the deep learning model in all text, which makes it uneasy to follow. A simple 
schematic overview figure should make it more clear. Also, the author should provide the detailed loss 
function they employed for their model. 

Response: We thank the reviewer for this recommendation. In our revision, we have provided a diagram 
of the model architecture (see Supplementary Figure 10). Our ZINB reconstruction loss function is the 
same as the one described in DCA, and we have added additional information about it on lines 578-589, 
and we have made the loss function code accessible on our GitLab repository.  
 
1.5 (2) Many figures are missing Panel numbers (e.g., A, B,C), which makes it difficult to relate the figure 
with its legend.  



Response: We apologize for this oversight and thank the reviewer for catching it. We have updated the 
figures and legends to be easier to follow in the revision. 

 
1.6 (3)The authors mentioned that they trained the model for 10 epochs. This is very limited. Is the model 
converged?  
 
Response: Due to specifics of the model architecture and the size of the training data set, training 
convergence was indeed rapid. Specifically, we used ELU activations on the dense layers of the encoder 
and decoder, batch normalization after each of those dense layers, and used ADAM as the optimizer. We 
also tested multiple epoch and learning rate parameters and ultimately selected the final model based on 
cross-validation (again, with model selection being guided in part by the loss observed in the labeled 
data). 

  



Reviewer #2: 
 

Remarks to Authors 
 
Overall I find this study not only to be novel, but in the bigger picture to be a step towards unifying high-
throughput molecular biology and electrophysiology, so that we can say something about the brain 
activity consequences of the omics profiling studies of disease, which are becoming increasingly large, 
important and common.  It's from this macro perspective, as much as the specific findings, that I think it is 
appropriate for publication (after revisions) in Nat Comm.  As such, I think that this research is going to 
have ~2x the interest of the average article, as it's going to pull in two different communities which don't 
typically talk to each other, as much as would be helpful to.  I understand how challenging it is to obtain 
a suite of experimental results (you had a nice array of pharma, physiological and recent tech 
applications, which I know didn't happen by accident) in tandem with building computational models. My 
questions to the authors below largely relate to if the model could easily and substantially be improved by 
modifying a few relatively arbitrary assumptions, and clarifying all of these points in the text. 
 
2.0 Line 116 talks about weighting cells to account for less popular types, but then the next sentence 
seems to say you literally input an equal number of each cell type into the model, so not sure what was 
actually done. 

Response: We thank the reviewer for their enthusiasm for our work and, in particular, for this comment. 
We have clarified the description of sample weighting in the manuscript on lines 537-549. The full 
original dataset was highly imbalanced in terms of species, class label, subclass label, QC metrics, and 
target gene expression. For example, roughly 25% of the entire dataset consisted of mouse layer 4 cortical 
neurons. We downsampled the dataset to increase relative diversity of all neuron populations, as well as 
to improve training efficiency. To accomplish this resampling, we gave each cell a weight inversely 
proportional to its frequency in the original dataset. For example, in each neuron subclass, we set the sum 
of weights for cells expressing target genes to be equal to the sum of weights for cells with no target gene 
expression. Because there were fewer cells expressing target genes than not, each target-expressing cell 
had a higher weight. We did this in a nested manner, adjusting these weights so that the sum of weights 
for each neuron subclass was equal. We similarly adjusted the total weights for GABAergic cells to equal 
to the sum of weights for glutamatergic cells. If a specific neuron subclass only has one cell with 
relatively high target gene expression, this approach virtually guarantees it will be retained in sampling. 
We tried downsampling to several choices of N and monitored Shannon’s entropy, a measure of class 
imbalance, at each value of N, for all levels of cell type grouping (species, cell class, brain region 
neighborhood, cell subclass, and a grouping based on quantiles of sequencing depth and PC1 values for 
target gene expression). We ultimately chose 500,000 to strike a balance between dataset diversity and 
training efficiency. We have included a new figure (see Supplemental Figure 2) showing the entropy 
metrics as well as the preferential retention of rare neuron populations.  

2.1 What are the genes and functions that predict voltage barrier to depolarization (your main activity 
features) in patchseq?  Right now you are building a predictor of genes which theoretically should be 
relevant to that, and it's cool that you find they are relevant to a degree, but you could just do some 
univariate stats to see what biological functions are relevant and might be surprised.  Also potential to 
build a ML model for this purely in patchseq data,  May not be enough for your AI model (have you 
tried?) but other models might work in it directly to establish the target gene set. 

Response: This is an excellent point, and we thank the reviewer for this comment, which inspired a new 
analysis (see description of CCA below). It’s an interesting idea to build a model directly on the Patch-seq 
data. One could predict the electrophysiology features alone to establish the target genes or predict them 



alongside the target genes used for NEUROeSTIMator to guide the training process towards learning a 
mutually informative representation. The current challenges are the scarcity of Patch-seq datasets and the 
lack of ideal controls (i.e., cells undergoing the Patch-seq protocol without injected current). However, in 
the spirit of this idea, we used canonical correlation analysis (CCA) to explore gene expression profiles 
with shared relationships to both predicted activity and the electrophysiology features. We then performed 
gene set enrichment on the CCA loadings and found several significant gene ontology terms related to 
general cell response systems. Those include MAPK signaling and regulation, transcription activator 
activity, RAS signaling, and NTRK signaling. Some of the genes common to these pathways with the 
highest loadings included Dusp6, Dusp10, Map3k4, Ntrk2, Rasgrp1, and Prkca. Further details can be 
found on lines 208-222 and Supplemental Figure 4d. 

 
2.2 How do you propose to interpret data from regions of the mouse brain with more/less microglia or 
non-neuronal cell types, and will that potentially influence the magnitude or variance in fig 5d? 

Response: We thank the reviewer for another excellent idea, which inspired another analysis and figure 
(see lines 334-354 and Supplemental Figure 6). The reviewer brings up a great point – each 
measurement sample from the Visium data is composed of multiple brain cells of different types. As we 
have demonstrated, the model is not necessarily specific to neuron activity, so our predictions on any 
sample with properties of bulk tissue may represent a combination of activity signatures from multiple 
cell types. Furthermore, in samples with varying neuron densities, coefficient estimates for differential 
activation may be amplified or diluted depending on which cell types have been activated and the 
percentage of cells responding. We performed a new cell type deconvolution analysis on our spatial 
transcriptomic data to investigate whether neuron density influences our learning-induced coefficient 
estimates in Figure 5d. We confirm that, indeed, the coefficient estimate is correlated with estimated 
neuron density (Spearman correlation = 0.52, p = 0.01). To interpret the coefficient estimates, we propose 
to first residualize them for the region-averaged estimate of neuron density. Depending on the question of 
interest, one might be interested in either the raw coefficients, or the neuron-density-corrected 
coefficients. 

 
2.3 On the selection of stimulus response genes - triple intersection is reasonable, but to actually prove 
that would want to see that gene sets only in one or two lists perform worse.   

Response: Our new PCA analysis (see Supplemental Figure 1) provides additional rigor and clarity to 
the selection of target genes and addresses the reviewer’s comment here. Further, we have included a 
brief analysis examining the average feature attributions of non-target genes that were present in 0, 1, 2, 
or 3 of the lists and show that, on average, the more lists a gene was present in (of 3), the greater the 
gene’s contribution to model (see Supplemental Figure 3). This analysis demonstrates a core 
methodological innovation of NEUROeSTIMator – that genes throughout the transcriptome can provide 
meaningful information to the model’s predictions, without being a target gene itself, through associations 
with target gene expression. 

 
2.4 What is the intrinsic dimensionality of the patchseq ephys parameters?  Is 90% of the variance on the 
first PC and so it's reasonable to pull a single value from it, or would a multi-dimensional representation 
be more appropriate, and could that be wed to more than a single-variable activity value? 

Response: The reviewer brings up an excellent point, and the analyses below demonstrate the aspects of 
electrophysiology that NEUROeSTIMator does and does not capture (it most robustly captures neuron 
excitability). There are other latent dimensions to the e-phys features that are neither correlated with 



NEUROeSTIMator nor other latent gene expression signatures (this may include confounding technical 
variables that are beyond our reach). This is a highly interesting point, but we would point out that 1) such 
an exercise is beyond the scope of the current work and 2) it would require a Patch-seq dataset orders of 
magnitude beyond what is currently possible (our non-Patch-seq training data set here was 500,000 cells, 
vs. the ~4,000 available Patch-seq interneurons). To the reviewer’s specific point, fifteen principal 
components were required to capture approximately 90% of the variance in the e-phys features of the 
Patch-seq cells; three PCs were significantly correlated with our activity score (see also Supplementary 
Fig. 4c).  

2.5 The ontological characterization of gene contributing to the activity score doesn't reveal 
tremendously high p-value. If this diversity is also accompanied by diverse expression profiles, I wonder 
about the ability to represent them with the current (possibly) overly narrow bottleneck architecture or if 
modifications might improve performance significantly? 
Statement on line 578 " We selected a final set of 20 targets based on consistency of  coexpression 
patterns across datasets and broad cell classes" is not precise enough to know what you did.... maybe 
modify with "... as follows." if you indeed strictly followed the path of the next few sentences.  Indeed, I'd 
been wondering all along how your 20 genes were distributed across coexpression modules, but then 
when you talk about picking the "top" genes, but it's not clear what that means in terms of coexpression 
values. 
Also, it seems to me there's a sort of typographic error that prevents me from knowing what you did at a 
key point.  You say onf 583:  "...top 20 genes were selected as final the final set of output target genes".  I 
can't tell what's going on from that statement... maybe you had an initial 20 targets and then somehow 
there's maybe a different 20 at the end?  It really matters how these genes were selected, but I can't really 
even know what questions to ask without this being patched up first.  To reiterate, I'm looking for the 
precise formula for how you ended up with these from your coexpression matrices. 
Do all 20 of your final targets fall into a single coexpression module?  I can't tell exactly how you picked 
these, but it seems like your methods are generally pointed towards picking a broadly correlated gene 
set?  If you had genes falling into more than one module do you think your 1D autoencoder and activity 
measure wouldn't work as well? 

Response: We thank the reviewer for the invitation to develop a more rigorous approach for selection of 
the target genes. In our revision, we revisited this early decision point and used a more reasoned approach 
to selecting target genes. Ultimately, this led us to a slightly different set of target genes and thus required 
us to rebuild the training dataset and rerun cross validation. The ultimate performance and broad 
conclusions, however, remain comparable to our initial submission. 

Intersecting the three lists of stimulus response genes provided 41 candidate target genes. Four genes 
were excluded due to ambiguous or failed cross-species gene identifier mapping. We excluded an 
additional eight genes that had poor detection rates (detected in less than 1% of cells for any of the four 
species-by-class groups, i.e., mouse-GABA, mouse-glut, human-GABA, human-glut). We did this to 
mitigate the potential for the model to learn spurious correlations to cell type markers or species. 

At this point we considered the possibility that the remaining 29 candidate target genes could comprise 
multiple coexpression modules. If our targets fell into multiple coexpression modules, the model would 
struggle to recapitulate them with a 1-unit bottleneck. For reasons outlined above in response to reviewer 
one, we felt the 1-unit bottleneck was the most appropriate architecture choice, so we needed to select a 
core set of target genes that belong to a single module. We did not find compelling evidence supporting 
multiple coexpression modules, but we did find that some of the 29 genes were simply not correlated with 
any of the other candidates. WGCNA, a common coexpression module-detecting approach, was only able 
to find one module, though we did not include this analysis as we could not get a good scale-free 
topology fit (too few genes) as outlined in the WGCNA documentation, which could invalidate the result. 



We only mention it here because it is something we investigated. Next, we performed a principal 
component analysis (PCA) on the candidate target genes and found that PC1 explained a majority of the 
variance (~15%; 3x greater than PC2) and would be the only component selected per the scree or elbow 
method heuristic (Supplemental Figure 1a). Examining the gene loadings onto PC1, we found that all 
but one gene had a positive loading, though several genes had a loading near zero. We identified genes 
that had ‘extreme’ loadings by comparing them to an outlier threshold based on PC1 loadings from a 
shuffled, null PCA. The outlier threshold was defined as the median null loading plus or minus three 
times the median absolute deviation of the null loadings. A scaling factor, the ratio of variance from the 
observed PC1 to the null PC1, was used to make the loadings comparable. We found that 22 of 29 genes 
had loadings considered to be outliers under the null expectation (Supplemental Figure 1b). We then did 
1000 bootstrap permutations of this analysis, each using random samples of 10,000 cells, and counted the 
number of permutations where each gene’s loading surpassed the outlier threshold. Seven genes produced 
PC1 loadings that exceeded the null expectation in less than 5% of the bootstrap samples and were thus 
discarded from the target set because of their lack of consistency with the dominating IEG expression 
pattern (i.e., PC1, see Supplemental Figure 1c). With evidence of robust coexpression, we selected those 
22 genes as the final set of targets for our neural network. Details of this analysis were added to the 
methods on line 485. 

  



Reviewer #3: 
 

Remarks to Authors 
 
The authors have drafted a manuscript focused on a highly interesting and important topic, namely the 
extent to which a cell’s transcriptome is reflective of its neurophysiological state. The authors utilize a 
deep learning model adapted from DCA to build a classifier of neuronal activity based on transcriptomic 
information. Although the proposed model has some appealing features, the data provided are not 
supportive of the conclusions that NEUROeSTIMator meaningfully outperforms a more traditional 
additive model of IEG expression, nor that the NEUROeSTIMator activity score is robustly predictive of 
the neurophysiological properties of individual neurons. 
 
3.0 In Figure 2c, the authors report that the “random forest predictions were significantly correlated with 
NEUROeSTIMator output (R = 0.11, p = 7.86x10-10)”. NEUROeSTIMator output explains only ~1.2% 
of the variance in the random forest predictions, for which the highly significant p-value is likely driven 
by the large sample size. 

Response: We thank the reviewer for the enthusiasm for this area and our initial submission. With respect 
to this point, although the correlation between the NEUROeSTIMator output and the random forest 
predictions was relatively weak, it was highly significant. In our revision we approached this analysis 
using a glmnet model instead of a random forest to simplify the interpretability of electrophysiological 
feature importance. In the revised analysis, the cross-validated glmnet reaches a considerably higher 
correlation of r = 0.234. 

 
3.1 In Figure 2d, the authors tested for differences in voltage barrier between the high and low activity 
groups in four types of neurons. However, these are group-level differences, rather than predictions at 
the level of individual neurons. Moreover, these group-level differences are between “high” versus “low” 
activity groups, which leaves out predictions for the substantial proportion of neurons that are found in 
the intermediate range of activity scores between “high” and “low” activity. 

Response: We appreciate the reviewer’s comment and would like to make clear that all predictions are 
indeed at the level of individual neurons, both in the initial submission and in this revision. In Figures 2, 
3, and 4, and especially in panel 2a,c,e, note that individual NEUROeSTIMator predictions are for 
individual cells (largely neurons). The only NEUROeSTIMator predictions in this manuscript that are not 
at the individual cell level are those for the spatial transcriptomics data, which are for individual spots. 
We have updated the manuscript to make clearer to the reader that NEUROeSTIMator is designed to 
work at the single cell level (though as demonstrated it has utility in bulk gene expression settings).  
Further, in the revised analysis we have included the full range of predictions of individual neurons in the 
Patch-seq dataset. In addition, we now more extensively describe the connection between 
electrophysiological features and NEUROeSTIMator output (see Figure 2 and Supplemental Figure 4). 
In brief, we find evidence that the composite gene expression signature captured by NEUROeSTIMator 
predicts excitability in individual Patch-seq murine interneurons. This was further validated in a second 
Patch-seq data set (new in this revision) of human excitatory neurons, demonstrating the generalization of 
this signal across major neuron types and species.  We feel that our extensively revised analysis and 
addition of new data on this specific point provides a compelling response to the reviewer’s comment. 

 
3.2 In the analyses of pharmacological activation shown in Figure 3, these are again group-level 
analyses rather than for individual neurons. Moreover, in none of these datasets is electrophysiological 



data available. Rather, the authors infer a broad concept of “neuronal activation” on the basis of 
biological knowledge of the pharmacological agents, which greatly reduces the utility of these data to the 
extent that these analyses are being used to validate the ability of the NEUROeSTIMator to predict 
electrophysiological activity at the level of individual neurons. 
 

Response: We appreciate the reviewer’s concerns, and we would like to clarify the intent and scope of our 
model: to identify single-cell transcriptional signatures of stimulus response that generalize across various 
neuron types and stimulation paradigms, rather than to predict precise electrophysiological states of 
neurons. Inferring a “broad concept of neuronal activation” is exactly the intent of our model. 
Consequently, neither the analyses of pharmacological agents, nor any application from Figures 3, 4, or 5 
were intended to validate the Patch-seq findings. It’s actually the other way around: the fact that we 
observed robust association with e-phys indicators of excitability was itself a compelling validation of our 
ability to infer a “broad concept of neuronal activation” from gene expression. 

Furthermore, the Allen Institute’s Patch-seq dataset is unique in throughput, cell type representation, and 
accessibility. To our knowledge, it is currently the only publicly available dataset of its kind. While we 
believe a model capable of robustly inferring electrophysiological measures of activity from single-cell 
RNA-seq data would be an incredible advancement of neuroscience, this option is currently precluded by 
the scarcity of Patch-seq data. However, despite these limitations, we did include an analysis of a new 
Patch-seq dataset of human neurons from the Allen Institute in our revised manuscript, which 
corroborated our initial observations in the mouse interneurons. On lines 199-206, we use this dataset to 
validate our finding that input resistance of a neuron is predictive of NEUROeSTIMator output (see 
Figure 2e).  

The group-level analyses featured throughout the manuscript demonstrate that NEUROeSTIMator can 
discern between labeled stimulation groups. In every dataset we analyze except for the Patch-seq data, the 
stimulus is not administered to cells individually. Drugs are administered to bulk tissue or cultures, or 
complex brain circuits are activated through natural means such as sensory exposure or learning. The true 
neuron activity state of individual neurons is not known in these data. In these experiments, the ground 
truth of stimulated vs unstimulated exists only at the group level, and so consequently we did group-level 
analyses. Still, each observation in each group is, in fact, a prediction on an individual neuron. 

 
3.3 In addition, for the KCl and visual cortex (light stimulation) datasets, the longitudinal time series 
would be a unique opportunity to examine the accuracy of the NEUROeSTIMator under well controlled 
conditions. However these datasets do not contain electrophysiological data to validate whether the 
NEUROeSTIMator activity scores are indeed predictive of neurophysiological activity at the level of 
individual neurons. 

Response: As the KCl and light stimulation datasets lack e-phys features, they cannot validate our 
electrophysiology findings, although that was not their intended purpose. In our revised manuscript we 
have added an abundance of clarification regarding the purpose of each application dataset. 

 
3.4 Lastly, in comparing the performance of the NEUROeSTIMator against an additive model for group-
level discrimination, the authors conclude that the NEUROeSTIMator has “drastically” and 
“substantially” improved performance, yet over half of the cell types examined have a delta AUC <0.05 
and ~15% of cell types have an AUC less than 0. 



Response: In the revision, we have edited the text to have a more measured and humble tone. Still, 
NEUROeSTIMator offers a measurable and meaningful improvement over the other options that we 
benchmarked against (mean AUC of 0.724; AUC improvements over other methods ranging from 0.058 
to 0.183). Across all competing methods, NEUROeSTIMator has a delta AUC > 0 in 88.1% of all cell 
groupings tested. On average, NEUROeSTIMator increased AUC by +0.110 while, in the remaining 
11.9% of groupings where NEUROeSTIMator was outperformed, the average decrease was -0.031, which 
is less than a third of the magnitude of NEUROeSTIMator’s average improvement (see lines 368-400 and 
Supplemental Figure 7). As mentioned above in our response to reviewer 1, such improvements in AUC 
would be seen as substantial in the machine learning literature (see for example 
https://www.nature.com/articles/s41467-020-20657-4); our AUC improvement is at least double the AUC 
improvement shown in this previously published example. 

 



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
I sincerely appreciate the authors' diligent efforts in revising the manuscript and addressing prior 
comments. They have made considerable progress, resolving several major concerns. However, 
despite the commendable effort, I maintain key reservations that prevent me from endorsing the 
publication of this manuscript in its current form. 
 
1.My central concern lies in the authors' continued reliance on approximately 20 biomarker genes 
to quantify neural activity. Their diligent curation of these established biomarkers is praiseworthy, 
and the selected genes may indeed be the best currently available set. Yet, I still firmly believe 
that using the complete transcriptome can provide a richer, more nuanced picture of neuronal 
activity for several reasons: 
 
Completeness: The full transcriptome offers a comprehensive view of all the genes expressed at a 
particular moment. Such an approach doesn't limit itself to genes directly involved in neural 
activity but also those indirectly affected or associated with related processes. 
 
Sensitivity: Alterations in neuronal activity might not consistently result in changes in the 
expression of the selected biomarker genes, yet it could impact other genes. The entire 
transcriptome analysis permits the detection of such subtler shifts. 
 
Robustness: A focus on a few biomarker genes could leave the results susceptible to noise or 
variable expression levels of these genes. The entire transcriptome analysis spreads this risk 
across many more genes, potentially boosting the robustness of results. 
 
Complexity: Neuronal activity isn't a simple binary phenomenon. Its complex nature, with varied 
types and patterns, could lead to different gene expression patterns. The use of the entire 
transcriptome enables capturing this intricacy. 
 
Potential for Novel Findings: Utilizing the entire transcriptome can lead to the discovery of new 
genes or pathways involved in neural activity, which could provide fresh insights into neuronal 
function. 
 
I acknowledge the authors' attempts to utilize the entire transcriptome for denoising the data and 
enhancing the signal of the ~20 genes. However, I suggest that the authors further investigate 
this approach by comparing it to other existing denoising methods such as MAGIC, which could 
provide a deeper understanding of the proposed method's performance. 
 
Finally, while I acknowledge the authors' diligent curation of the ~20 biomarkers, solely basing the 
quantification of neural activity on these genes may limit the potential for novel discoveries and 
introduce a bias towards existing knowledge. 
Instead, I urge the authors to integrate the existing knowledge into their deep learning network as 
regulatory parameters (or other strategy that could leverage the prior) to empowers unbiased and 
more systematically neural activity quantification with deep neural network. This will not only 
present more comprehensive and complete neural activity quantification, it will also enable the 
discovery of potential novel biomarkers for neural activity. 
 
2. The authors have responded comprehensively to my comments regarding novelty. However, I 
perceive potential issues that need further attention: 
 
Definition of Innovation: The response could benefit from a more precise articulation of what 
defines 'innovation' in this context. 
 
Claim of Uniqueness: The authors assert that no other method has attempted this type of 
modelling. Although this might be true, providing more specific references or evidence could 
substantiate this claim. 
 



Data Collection: The authors emphasize the importance of their dataset's size and diversity. While 
data collection is critical to any study, it's not typically considered a methodological innovation. 
 
Deep Learning Application: The authors mention using deep learning but could explain more 
thoroughly how they have applied it innovatively. 
 
Auxiliary Decoder Branch: A clearer explanation, possibly accompanied by a figure or diagram, 
could help clarify this aspect of their methodological innovation. 
 
In conclusion, while I appreciate the work that has gone into this manuscript, I believe that further 
revisions addressing these concerns (particularly the 1st major comment) are needed to 
sufficiently elevate its scientific contribution. I look forward to seeing how this work evolves and 
advances our understanding of neural activity. 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
I appreciate the authors' detailed responses, which are not mere verbiage, but accompanied by 
time-consuming and thoughtful analysis and fairly deep reconfiguration of their model. In 
particular admire your CCA, additional test of the triple intersection for selecting genes, and 
comments on the impact of glial proportions were slick. You've clearly got a diversely-talented yet 
integrated team working on this. 
 
There is one essential remaining point that's been brought up repeatedly, that has not been 
reasonably addressed. That is the issue of a single dimension bottleneck. The rationale for this is 
summarized by the authors below, with my comment in brackets. Generally I thought this 
justification lacked the data support and high rigor of all other responses. 
 
A single score is easier to understand [actually reviewers are having a harder time understanding 
it because it is so limited as to be difficult to square with ephys], visualize [millions of informative 
2d plots published each year], compare across samples [we routinely compare many dimensions 
across samples and, anticipating your response, while data reduction is helpful, I don't think 
anyone will balk at a couple of variables], and to integrate into downstream analyses such as 
classification or regression (e.g., as a covariate) [actually it looks straightforward]. While a 
bottleneck with additional capacity would undoubtedly capture more complex patterns [we don't 
know if they will be complex or not], it would also become more challenging to interpret the 
relationships between multiple dimensions [you don't know what without testing, an frankly 
anything is more challenging than no comparison (1D), but could also supply information that is 
useful], thus adversely impacting the tool’s ease of use in the intended applications [we live in a 
world of 100k-variable datasets popping out every day, so going from a 1d to 2d model cannot 
realistically be an objection]. 
 
I would suggest that exploring 2 and 3-node inner layers of your encoder is actually not contrary 
to your current position - if you try that and find it is not useful for various reasons, then you have 
actual support for the current model. If that's the case, in the future paper, you just have a 
sentence like: We explored a large bottleneck but found problems xyz. However, if you do make it 
work, you're opening the door to a more general methodology for inter-relating multi-scale 
systems vs more of a denoising mechanism (I'm simplifying, but I think you get it). 
 
This question is entwined with the findings that it takes 15 PC's to hit 90% of ephys variance and 
PC1 only providing 15% of the variance of your gene set. That latter is portrayed as high, but 
actually it's quite low for a set of genes thought to be functionally related. Both of these point to 
the potential for adding a few nodes to the bottleneck. I hope you can see from my prior 
questioning, I think this work has great potential, and I'm not just asking for stuff as an exercise, 
but think it's fundamental to realizing the direction on which you've already embarked. 
Regards, 
Chris Gaiteri 



Reviewer #3 (Remarks to the Author): 
 
The authors have made substantial improvements to the manuscript, in both the revisions to the 
text and additional analyses. Although the variance explained still remains small using a glmnet 
model (~5.4%) and the AUC improvements are somewhat modest, the results and models 
presented do represent an important step forward in understanding the relationship between the 
cellular transcriptome and its neuronal activity. I expect this manuscript to be well cited, and look 
forward to its reception and impact on the field upon publication. 
 



RESPONSE TO REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
REVIEWER: I sincerely appreciate the authors' diligent efforts in revising the manuscript and 
addressing prior comments. They have made considerable progress, resolving several major 
concerns. However, despite the commendable effort, I maintain key reservaƟons that prevent 
me from endorsing the publicaƟon of this manuscript in its current form. 
 
1.My central concern lies in the authors' conƟnued reliance on approximately 20 biomarker 
genes to quanƟfy neural acƟvity. Their diligent curaƟon of these established biomarkers is 
praiseworthy, and the selected genes may indeed be the best currently available set. Yet, I sƟll 
firmly believe that using the complete transcriptome can provide a richer, more nuanced 
picture of neuronal acƟvity for several reasons: 
 
RESPONSE: We thank the reviewer for these comments and for their commitment to the rigor 
of this manuscript. We have done as the reviewer asked, and in brief, the results indicate that 
including the transcriptome as a predicƟve target does not improve performance. The 
reviewer’s comments and philosophy on this subject seem intuiƟve, however, the results of our 
invesƟgaƟons at the reviewer’s behest suggest that the resulƟng latent representaƟon learned 
by the model is inferior for this task. We detail below the invesƟgaƟons we undertook and their 
results. These results suggest that reconstrucƟng the whole transcriptome is counterproducƟve 
when the goal is a latent signal that predicts the immediate early gene response linked to 
neuronal acƟvaƟon.  We hope that the reviewer is saƟsfied by our extensive good faith efforts 
to invesƟgate this hypothesis.   
 
REVIEWER: Completeness: The full transcriptome offers a comprehensive view of all the genes 
expressed at a parƟcular moment. Such an approach doesn't limit itself to genes directly 
involved in neural acƟvity but also those indirectly affected or associated with related 
processes. 
 
RESPONSE: We agree in principle with the reviewer, though we would argue that completeness 
is already achieved by virtue of the inclusion of the whole transcriptome at the inputs. During 
training, signal from the whole transcriptome is consolidated (e.g., elicited in part by dropout 
layers, which tend to distribute predicƟve signal from the inputs) to best predict genes well-
established to be linked to neuronal acƟvity.  This approach is consistent with the general 
observaƟon in machine learning at large that noise is beƩer tolerated at the inputs vs. in the 
training labels. The 22 target genes, which are directly involved in neuronal acƟvity, serve to 
dictate the representaƟon the model learns. However, we must emphasize that those 
representaƟons are in fact informed by the whole transcriptome. We demonstrate in 
Supplemental Figure S3 (see lines 124-131) that several other non-target genes are impacƟng 
the latent space (i.e., acƟvity score), and therefore are impacƟng the reconstrucƟon of the 22 
target genes. These are the genes that, as the reviewer states, are indirectly affected by 



neuronal acƟvity or associated with related processes, and our approach is able to leverage 
informaƟon from them because it has a comprehensive view of the transcriptome, which is 
directly input to the model. Consequently, we see this as compelling evidence that the current 
model architecture achieves the “completeness” that the reviewer menƟons. On the other 
hand, as our results below demonstrate, forcing the model to reconstruct (e.g., at the output) 
the whole transcriptome adds significant noise to the task and hinders its accomplishment. 
 
REVIEWER: SensiƟvity: AlteraƟons in neuronal acƟvity might not consistently result in 
changes in the expression of the selected biomarker genes, yet it could impact other genes. 
The enƟre transcriptome analysis permits the detecƟon of such subtler shiŌs. 
 
RESPONSE: Our target gene selecƟon criteria idenƟfied targets that are consistently affected by 
neuronal acƟvity in mulƟple studies. Furthermore, there is ample evidence in the literature 
characterizing our target genes as being induced by neuronal acƟvity. We are not aware of any 
other module of acƟvity-dependent genes that are truly independent of these genes. If such 
expression modules exist, our model will not be able to pick up on that signal. We acknowledge 
that this is a limitaƟon of our model, though the recommendaƟon to reconstruct the enƟre 
transcriptome does not solve this, as demonstrated in our new results (lines 399-404). The 
target genes we selected consƟtute our prior belief, based on exhausƟve examinaƟon of the 
literature, of which genes are responsive to neuronal acƟvity. If acƟvity induces changes to 
expression that overlaps, or is associated with the inducƟon of our target genes, we can find 
that signal just by using the transcriptome as an input. If acƟvity induces changes that have 
evaded all previous aƩempts to idenƟfy them, then we simply cannot model that type of 
transcripƟonal acƟvaƟon without any prior informaƟon.  Finally, it is perhaps helpful to reiterate 
the primary purpose of this tool, which is to robustly idenƟfy cells and Ɵssues that show 
evidence of neuronal acƟvaƟon. Discovering wholly new mechanisms in the way the reviewer 
describes, while possible (and even demonstrated in this work, e.g., in Supplemental Figure 3b), 
is not the principal aim of this work. 
 
REVIEWER: Robustness: A focus on a few biomarker genes could leave the results suscepƟble 
to noise or variable expression levels of these genes. The enƟre transcriptome analysis 
spreads this risk across many more genes, potenƟally boosƟng the robustness of results. 
 
RESPONSE: The reviewer makes an excellent point, that focusing on a small number of genes 
leaves results suscepƟble to noise. In fact, this was one of our core moƟvaƟons for this project. 
In the broader neuroscience community, it is incredibly common to use expression of a single 
gene (typically Fos) as an indicator of neuron acƟvity (see Hudson 20187, Kawashima 20148, 
Guenther 20139, and Liu 201410). We have built a model that uses prior informaƟon of acƟvity-
dependent changes to examine neuronal acƟvity through the lens of 22 genes rather than just 
one. Further, our whole-transcriptome input provides supporƟng informaƟon from an even 
larger pool of genes coexpressed with our 22 acƟvity-dependent genes, and this seems to 
precisely saƟsfy the comment this reviewer has made here. In our previous revision, we 
demonstrated that the addiƟon of the whole-transcriptome *at the input* does indeed make 



the model more robust in comparison to model with only the 22 targets as input (see the 
‘Transcriptome Naive’ comparison in our benchmarking analysis, Supplementary Figures 7-8, 
lines 399-404). Conversely, forcing the reconstrucƟon of the whole transcriptome at the output 
dilutes the focus of the learning task, effecƟvely inducing noise in the boƩleneck. 
 
REVIEWER: Complexity: Neuronal acƟvity isn't a simple binary phenomenon. Its complex 
nature, with varied types and paƩerns, could lead to different gene expression paƩerns. The 
use of the enƟre transcriptome enables capturing this intricacy. 
 
RESPONSE: We agree that neuronal acƟvity is not a simple binary phenomenon. Although there 
are complex paƩerns of acƟvity, we have relaƟvely simplisƟc models of molecular kineƟcs of the 
resulƟng transcripƟonal acƟvaƟon that results from the neuronal acƟvity. The transcripƟonal 
response to acƟvity is structured in waves, where an iniƟal wave of immediate early gene 
transcripƟon and translaƟon gives rise to a downstream wave of effector gene transcripƟon. 
Most of the complexity in transcripƟonal response to neuron acƟvity exists in the downstream 
waves, as they have been shown to vary by neuron type. Our model reconstructs expression of 
immediate early genes, meaning its predicƟons pertain to iniƟal waves of transcripƟonal 
response. This iniƟal wave, with its transient nature, can be modeled as a binary phenomenon. 
We acknowledge that inability of our model to idenƟfy the highly variable and cell type 
dependent downstream waves of transcripƟon is a limitaƟon. However, the model can only 
learn representaƟons for what is present in the training data, and there are only two datasets 
containing Ɵme points where complex downstream transcripƟon is expected, and they are from 
different brain regions, different cell types, and different sƟmuli. We need far more data from 
later Ɵme points in different datasets to begin considering a model that could extract this 
informaƟon in a robust way. UlƟmately, any aƩempt to incorporate highly complex and variable 
transcripƟon paƩerns goes directly against our goal to create a broadly generalizable model to 
quanƟfy neuronal acƟvity. We believe that models of the complex downstream transcripƟonal 
waves would be useful to the neuroscience field, but we view such an endeavor as a future 
direcƟon and outside the scope of this paper. In response to this comment, we have expanded 
our discussion of limitaƟons in the manuscript (see lines 454-456).  
 
REVIEWER: PotenƟal for Novel Findings: UƟlizing the enƟre transcriptome can lead to the 
discovery of new genes or pathways involved in neural acƟvity, which could provide fresh 
insights into neuronal funcƟon. 
 
RESPONSE: Since we used the whole transcriptome as an input to our current model, the model 
was able to learn associaƟons with our target genes and genes in the broader transcriptome. In 
Supplemental Figure 3 (lines 131-145), we examine the funcƟons and pathway annotaƟons of 
informaƟve genes. We emphasize that we did look at the non-target genes (genes that we did 
not have prior expectaƟon for being involved in neuronal acƟvity). As an example of a novel 
finding, we found that informaƟve non-target genes were even more enriched for neurogenesis 
and PI3K/AKT signaling funcƟons than the target genes. 
 
REVIEWER: I acknowledge the authors' aƩempts to uƟlize the enƟre transcriptome for 



denoising the data and enhancing the signal of the ~20 genes. However, I suggest that the 
authors further invesƟgate this approach by comparing it to other exisƟng denoising methods 
such as MAGIC, which could provide a deeper understanding of the proposed method's 
performance. 
 
RESPONSE: We thank the reviewer for this suggesƟon. In this revision, we have added MAGIC as 
a compeƟng method for comparison to our model (see Supplemental Figure 7-8, lines 730-732 
& 399-404). MAGIC returns an imputed matrix of gene expression values, so we apply the 
scaled addiƟve approach to the imputed matrix to produce a single score for comparison to 
NEUROeSTIMator. The models in our benchmarking analysis were trained with a training set, 
and the AUC comparisons were done for the test set to ensure a fair comparison with fresh data 
not seen by any of the models. We were unable to idenƟfy funcƟonality in MAGIC that would 
allow a training set model to be built, and then subsequently applied to a test set. We tried 
running MAGIC with training and test set combined, as well as the test set alone, and found 
similar benchmarking performance. Consequently, because of these limitaƟons, the 
performance of the MAGIC approach is, if anything, an overesƟmate.  UlƟmately, we found that 
MAGIC was the lowest performing compeƟng model (Supplemental Figure 7). Furthermore, a 
crucial advantage NEUROeSTIMator has over MAGIC is that it can be applied ‘out-of-the-box’ 
and does not need to be retrained or recomputed on each dataset it is applied to. 
 
REVIEWER: Finally, while I acknowledge the authors' diligent curaƟon of the ~20 biomarkers, 
solely basing the quanƟficaƟon of neural acƟvity on these genes may limit the potenƟal for 
novel discoveries and introduce a bias towards exisƟng knowledge.  
Instead, I urge the authors to integrate the exisƟng knowledge into their deep learning 
network as regulatory parameters (or other strategy that could leverage the prior) to 
empowers unbiased and more systemaƟcally neural acƟvity quanƟficaƟon with deep neural 
network. This will not only present more comprehensive and complete neural acƟvity 
quanƟficaƟon, it will also enable the discovery of potenƟal novel biomarkers for neural 
acƟvity.  
 
RESPONSE: In response to these comments, we have created a new model, described on lines 
386-389, 613-615 & 738-740, that reconstructs expression of both 1) the set of 22 targets genes 
as well as 2) the broader transcriptome. We leveraged the prior informaƟon by spliƫng these 
gene sets into two separate outputs, and weighted them equally in the loss funcƟon. We 
trained the model and added the resulƟng latent space to our performance benchmarking 
analysis. We found that our current NEUROeSTIMator model (i.e., without whole transcriptome 
reconstrucƟon) outperforms the whole transcriptome output model with a mean AUC delta of 
0.03 (see Supplemental Figure 7, lines 399-404). This decrease in ability to differenƟate 
sƟmulated from unsƟmulated cells suggests that the addiƟon of the transcriptome output is 
detracƟng from the signal represented in the latent space of our current model. 
 
2. REVIEWER: The authors have responded comprehensively to my comments regarding 
novelty. However, I perceive potenƟal issues that need further aƩenƟon:  
   



 DefiniƟon of InnovaƟon: The response could benefit from a more precise arƟculaƟon of what 
defines 'innovaƟon' in this context.  
  
RESPONSE: We thank the reviewer for their invitaƟon to state the innovaƟon of this work more 
clearly. Building on the NIH's framework of innovaƟon, we view innovaƟon as not only the 
introducƟon of novel theories or methods but also the disrupƟon of exisƟng paradigms. In this 
vein, our work challenges the prevailing neuroscience paradigm of using single genes to 
esƟmate neuronal acƟvity. Our innovaƟve approach, NEUROeSTIMator (freely available on 
GitLab), is unique in uƟlizing the enƟre transcriptome, which offers a more comprehensive and 
accurate measure of neuronal acƟvity. To the best of our knowledge, our tool is the pioneer in 
this arena for RNA-seq based studies across Ɵssue and individual cells. 
  
The new main statement of innovaƟon, now found on line 57-62 is: 
  
“Using a comprehensive mulƟ-species gene expression dataset, our deep learning model 
employs a single unit boƩleneck to derive interpretable neuronal acƟvity scores and an auxiliary 
input to the decoder to counteract dataset-specific biases. This novel approach, which disƟlls 
the whole transcriptome into a single integraƟve acƟvity score, challenges the single-gene 
paradigm (e.g., Fos) for measuring acƟvity at the single cell and bulk Ɵssue level.”  
  
We provide addiƟonal detail in the point-by-point responses below: 
  
REVIEWER: Claim of Uniqueness: The authors assert that no other method has aƩempted this 
type of modelling. Although this might be true, providing more specific references or 
evidence could substanƟate this claim.  
  
RESPONSE: While numerous transgenic single-gene reporter systems exist to idenƟfy neuronal 
acƟvity(see Hudson 20187, Kawashima 20148, Guenther 20139, and Liu 201410), they necessitate 
geneƟc alteraƟons and are limited to model organisms. We underline that there is no exisƟng 
tool designed to gauge neuronal acƟvity using transcriptome-wide gene expression data from 
single cells.  
  
REVIEWER: Data CollecƟon: The authors emphasize the importance of their dataset's size and 
diversity. While data collecƟon is criƟcal to any study, it's not typically considered a 
methodological innovaƟon.  
  
RESPONSE: We value the reviewer’s insight into the role of data collecƟon in our study. While 
our work is anchored in machine learning, the foundaƟon of our model's success rests 
significantly on the curated dataset. We outline the following aspects that support the curated 
dataset’s contribuƟon to the innovaƟon of our work: 
  
1. GeneralizaƟon across species: Our curated dataset, comprising single cell gene expression 
data from mulƟple species' brains, is not merely about volume but breadth and depth. This 



diversity ensures our model learns a more holisƟc representaƟon, enabling broader applicability 
across varied contexts. 
  
2. MiƟgaƟon of biases: While every dataset carries inherent biases, our careful curaƟon across 
diverse species aims to miƟgate these. Ensuring data reliability is crucial for prevenƟng biases 
from skewing the model's predicƟons. 
  
3. Dataset as driver of innovaƟon: While there's undeniable value in refining model 
architectures, our belief is that a novel, well-curated dataset can also be a catalyst for 
groundbreaking results. It provides fresh insights that might be obscured in one-off datasets. 
  
4. Dataset longevity: As the field advances, model architectures will evolve. However, a 
comprehensive dataset, once curated, can conƟnue to serve as a bedrock for numerous future 
models, making its contribuƟon enduring. 
  
In essence, while the NEUROeSTIMator model architecture is central to our work, the 
underlying dataset is the bedrock upon which it stands. We believe this dual emphasis on data 
curaƟon and model development collecƟvely elevates the novelty and uƟlity of our study. We 
hope this clarifies the pivotal role our data curaƟon efforts play in the overall innovaƟon of our 
research. 
  
REVIEWER: Deep Learning ApplicaƟon: The authors menƟon using deep learning but could 
explain more thoroughly how they have applied it innovaƟvely.  
 
RESPONSE: Deep learning, with its inherent flexibility, has been a transformaƟve force in 
mulƟple domains. In our study, we've leveraged this capacity in two notable ways: the single 
unit boƩleneck and an auxiliary input to the decoder, both of which are tailored to our specific 
challenges in measuring neuronal acƟvity. 
  
1. Single unit boƩleneck for interpretable scoring: 
   - Purpose: In many deep learning applicaƟons, the latent space can be mulƟ-dimensional and 
challenging to interpret. With our single unit boƩleneck, we have intenƟonally constrained the 
complexity of this latent space. 
   - InnovaƟon: By doing so, we compel the model to disƟll vast amounts of data into a singular, 
interpretable score for neuronal acƟvity. This score, being derived from a highly complex input, 
embodies a condensed yet comprehensive representaƟon of neuronal acƟvity. It's akin to 
extracƟng the 'essence' of the input data, providing an elegant and efficient method to gauge 
neuronal acƟvity from the whole transcriptome. 
   - Advantage: This makes the results not only computaƟonally efficient but also readily 
interpretable by researchers, enhancing both the usability and interpretability of our model. We 
also invesƟgated, at the behest of reviewer 2, the possibility of a 2- or 3-unit boƩleneck, neither 
of which showed an improvement on this task over the single unit boƩleneck (see response 
below for further details). 
  



2. Auxiliary input to the decoder for bias miƟgaƟon: 
   - Purpose: In diverse datasets like ours, spanning mulƟple species and contexts, there's a risk 
of the latent space inadvertently capturing dataset-specific biases. These biases could skew the 
neuronal acƟvity score, reducing the generalizability and accuracy of the results. 
   - InnovaƟon: The auxiliary input to the decoder serves as a protecƟve mechanism. Instead of 
leƫng the single unit boƩleneck learn and represent these biases, the decoder captures and 
processes dataset-specific, cell type-specific, and QC-related informaƟon separately.  
   - Advantage: This bifurcaƟon ensures that the primary latent space remains unpolluted by 
external biases, focusing solely on neuronal acƟvity. It's a strategic modificaƟon of the 
tradiƟonal autoencoder architecture, ensuring that our model's outputs are not only accurate 
but also consistently unbiased across varied datasets. 
  
In summary, our approach to deep learning is tailored, considering the unique challenges posed 
by neuronal acƟvity esƟmaƟon from gene expression data. Through innovaƟons like the single 
unit boƩleneck (now further jusƟfied in the response to reviewer 2) and the auxiliary input to 
the decoder, we've craŌed a model that marries computaƟonal robustness with pracƟcal 
interpretability and bias miƟgaƟon. These innovaƟons are rooted in our commitment to 
advancing the understanding of neuronal acƟvity in the most rigorous and nuanced manner 
possible. 
  
REVIEWER: Auxiliary Decoder Branch: A clearer explanaƟon, possibly accompanied by a figure 
or diagram, could help clarify this aspect of their methodological innovaƟon.  
  
RESPONSE: We agree with the reviewer that the auxiliary decoder could be described in more 
detail. In our revision, we have expanded the details of this facet of the model architecture and 
produced a new graphical representaƟon of the model architecture (see lines 598-603 and 
Supplementary Figure 10a). To summarize, the auxiliary input to the decoder is a strategy to 
alleviate the latent space from pressure to learn dataset-specific, cell type specific, or QC-
related informaƟon for the reconstrucƟon of target gene expression. These three groups of 
variables represent some of the most profound sources of variaƟon in single cell RNA-
sequencing datasets. In early iteraƟons of the model, we found that the latent space was 
suscepƟble to learning shortcuts to reducing loss by recognizing a certain cell type marker as 
associated with target gene expression if the corresponding cell type had higher target 
expression on average, even at baseline. We viewed this behavior as undesirable and 
introducing bias, as we would expect different datasets or cell types to exhibit comparable 
distribuƟons of the latent space variable. The auxiliary input branch alleviates pressure to learn 
these biases by directly feeding dataset, cell type, and QC informaƟon into the architecture of 
the model aŌer the latent space as part of the decoder. Feeding these inputs in downstream of 
the latent space is crucial, because nothing beyond the latent space is used in NEUROeSTIMator, 
and therefore the end user does not need to provide any addiƟonal metadata about their 
samples when they use our tool. To reduce the risk of overfiƫng, this auxiliary input branch 
encodes approximately 50 variables into a dense layer of six units before joining the latent 



boƩleneck layer to form the decoder for target gene reconstrucƟon. This strategy is not novel in 
and of itself, though it is one of the ways we have modified the tradiƟonal autoencoder 
architecture to promote the learning of a latent space representaƟon that robustly 
differenƟates sƟmulated from non-sƟmulated neurons.  
  
REVIEWER: In conclusion, while I appreciate the work that has gone into this manuscript, I 
believe that further revisions addressing these concerns (parƟcularly the 1st major comment) 
are needed to sufficiently elevate its scienƟfic contribuƟon. I look forward to seeing how this 
work evolves and advances our understanding of neural acƟvity. 
  
RESPONSE: We have comprehensively addressed the reviewer’s comments. First, we have taken 
the recommendaƟon to reconstruct the whole transcriptome during the training of our model. 
The results, shown in an updated Supplementary Figure 7-8 and described in lines 386-389, 
613-615 & 738-740, show a reduc on in performance (average delta AUC -0.03) compared to 
our target-gene-only reconstrucƟon. Consequently, we are unable to find evidence that 
reconstrucƟng the transcriptome is an effecƟve approach for the task at hand. Second, we have 
further elucidated the specific innovaƟve aspects to our work, more concisely in the manuscript 
and more comprehensively in the response to the reviewer’s comments. These comments have 
strengthened the manuscript, and we hope that the reviewer finds these good-faith efforts 
saƟsfactory. 
 
  



Reviewer #2 (Remarks to the Author): 
 
REVIEWER: I appreciate the authors' detailed responses, which are not mere verbiage, but 
accompanied by Ɵme-consuming and thoughƞul analysis and fairly deep reconfiguraƟon of 
their model. In parƟcular admire your CCA, addiƟonal test of the triple intersecƟon for 
selecƟng genes, and comments on the impact of glial proporƟons were slick. You've clearly 
got a diversely-talented yet integrated team working on this. 
 
RESPONSE: We sincerely thank the reviewer for their conƟnued interest in our work, and for 
their insighƞul comments in this review. 
 
REVIEWER: There is one essenƟal remaining point that's been brought up repeatedly, that has 
not been reasonably addressed. That is the issue of a single dimension boƩleneck. The 
raƟonale for this is summarized by the authors below, with my comment in brackets. 
Generally I thought this jusƟficaƟon lacked the data support and high rigor of all other 
responses.  
 
“A single score is easier to understand [actually reviewers are having a harder Ɵme 
understanding it because it is so limited as to be difficult to square with ephys], visualize 
[millions of informaƟve 2d plots published each year], compare across samples [we rouƟnely 
compare many dimensions across samples and, anƟcipaƟng your response, while data 
reducƟon is helpful, I don't think anyone will balk at a couple of variables], and to integrate 
into downstream analyses such as classificaƟon or regression (e.g., as a covariate) [actually it 
looks straighƞorward]. While a boƩleneck with addiƟonal capacity would undoubtedly capture 
more complex paƩerns [we don't know if they will be complex or not], it would also become 
more challenging to interpret the relaƟonships between mulƟple dimensions [you don't know 
what without tesƟng, an frankly anything is more challenging than no comparison (1D), but 
could also supply informaƟon that is useful], thus adversely impacƟng the tool’s ease of use in 
the intended applicaƟons [we live in a world of 100k-variable datasets popping out every day, 
so going from a 1d to 2d model cannot realisƟcally be an objecƟon].” 
 
RESPONSE: The reviewer has made some excellent points challenging our raƟonale for only 
considering the single-unit boƩleneck. In response to these comments, we have built new 
models containing 2 and 3 units in the boƩleneck for comparison to the single-unit boƩleneck. 
Details of these new analyses can be found below, as well as on lines 389-391 & 741-744 and in 
Supplementary Figure 7-8. 
 
REVIEWER: I would suggest that exploring 2 and 3-node inner layers of your encoder is 
actually not contrary to your current posiƟon - if you try that and find it is not useful for 
various reasons, then you have actual support for the current model. If that's the case, in the 
future paper, you just have a sentence like: We explored a large boƩleneck but found 



problems xyz. However, if you do make it work, you're opening the door to a more general 
methodology for inter-relaƟng mulƟ-scale systems vs more of a denoising mechanism (I'm 
simplifying, but I think you get it). This quesƟon is entwined with the findings that it takes 15 
PC's to hit 90% of ephys variance and PC1 only providing 15% of the variance of your gene set. 
That laƩer is portrayed as high, but actually it's quite low for a set of genes thought to be 
funcƟonally related. Both of these point to the potenƟal for adding a few nodes to the 
boƩleneck. I hope you can see from my prior quesƟoning, I think this work has great 
potenƟal, and I'm not just asking for stuff as an exercise, but think it's fundamental to 
realizing the direcƟon on which you've already embarked. 
 
RESPONSE: As menƟoned above, we have built two new models containing 2 and 3 units in the 
boƩleneck (see lines 389-391 & 741-744 and Supplementary Figures 7-8). UlƟmately, we 
concluded that the addiƟonal capacity in the latent space was not parƟcularly useful for 
mulƟple reasons. First, we found that in both the 2-unit and 3-unit models, acƟvaƟon outputs of 
the boƩleneck units were highly correlated (test set correlaƟons between all unit-unit pairs 
were greater than 0.9). These high correlaƟons suggest that the latent space is not benefiƫng 
from the increased capacity of the network to reconstruct gene expression of the target genes. 
To summarize the outputs to a single score for the benchmarking analysis, we used the training 
set to fit a generalized linear model to predict sƟmulaƟon status from latent variables and 
applied it to the test set. These two models showed the highest performance of all compeƟng 
methods in our benchmark analysis, though our original model marginally outperformed them 
with a mean AUC increase of 0.007 for the 2-unit model and 0.015 for the 3-unit model (0.725 
and 0.717 vs. 0.732 for the single unit model). We also tried comparing performance to each 
individual unit from these two models, but none of those units outperformed our original 
model. 
 
In summary, the reviewer’s invitaƟon to invesƟgate alternaƟve 2- and 3- unit boƩlenecks has 
strengthened the manuscript and in parƟcular the jusƟficaƟon for using a single unit boƩleneck. 
Where before we relied on an appeal to intuiƟon for that design choice, we now can show 
empirically that higher-dimensional boƩlenecks do not offer superior performance. We 
appreciate the reviewer’s encouragement to explore this possibility.  
 
 
 
 
 
 
 
  



Reviewer #3 (Remarks to the Author): 
 
REVIEWER: The authors have made substanƟal improvements to the manuscript, in both the 
revisions to the text and addiƟonal analyses. Although the variance explained sƟll remains 
small using a glmnet model (~5.4%) and the AUC improvements are somewhat modest, the 
results and models presented do represent an important step forward in understanding the 
relaƟonship between the cellular transcriptome and its neuronal acƟvity. I expect this 
manuscript to be well cited, and look forward to its recepƟon and impact on the field upon 
publicaƟon. 
 
RESPONSE: We thank the reviewer for their comments here and in the previous review. We 
believe the changes we made in response to the previous review have substanƟally improved 
the quality of our manuscript. 
 



REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
Having reviewed the revisions made by the authors in response to my previous comments, I am 
pleased to note that all my concerns have been comprehensively addressed. I appreciate the 
efforts of the authors in making the necessary changes, and I believe that their revisions have 
enhanced the quality of the manuscript. 
Consequently, I recommend the acceptance of this manuscript for publication 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
Dear Authors, 
 
After this latest round of review and the extensive additional testing you have documented, I'm 
reasonably convinced of the robustness of the architecture and resulting biological conclusions. In 
particular, I appreciate the extensive comparisons to other methods, and exploration of alternative 
architectures, as I think this contributes to the broader need for understanding principles of DNN 
design, and of course, it's rather involved to do so. 
Regards, 
Chris 
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