Supporting information:

Multi-micron crisscross structures grown from DNA-origami slats

Authors:

Christopher M. Wintersinger^{1,2,3,4*}, Dionis Minev^{1,3,4,*}, Anastasia Ershova^{1,3,4*}, Hiroshi M. Sasaki^{1,6}†, Gokul Gowri^{1,3,4,6}, Jonathan F. Berengut^{1,3,5}, F. Eduardo Corea-Dilbert³††, Peng Yin^{1,6}, William M. Shih^{1,3,4,#}

Affiliations:

¹Wyss Institute for Biologically Inspired Engineering at Harvard University; ²Harvard John A. Paulson School of Engineering and Applied Sciences; ³Department of Cancer Biology, Dana-Farber Cancer Institute, ⁴Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; ⁵EMBL Australia Node for Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney; ⁶Department of Systems Biology, Harvard Medical School; #Correspondence: <u>William_Shih@dfci.harvard.edu</u>

*Denotes equal contribution

† HMS current address: 10x Genomics, Inc., Pleasanton, CA, USA.

†† FECD current address: Geisel School of Medicine at Dartmouth, Hanover, NH, USA.

Table of contents

Table of contents	1
Supplementary Text 1: Comparison to methods that generate periodic multi-origami assemblies	3
Supplementary Text 2: Design notes regarding the 12HB slat	4
2.1 Derivation of 12HB slats from 6HB slats	4
2.2 Yield differences and the consequence on downstream usage of the slats	4
Supplementary Text 3: Algorithm for selection of the handle sequences	6
3.1 Initial sequence generation	6
3.2 Optimizing for sequence orthogonality	6
3.3 Discussion about the final sequences and pertinence to megastructures	7
Supplementary Text 4: Relationship between the number of unique slats in a design versus relative rate of growth	the 8
4.1 Growth slows when large numbers of unique slats are mixed simultaneously	8
4.2 Growth of finite megastructures with large numbers of unique slats can be accelerated by add the slats in multiple steps	ing 9
Supplementary Text 5: Detailed characterization of binding handles	11
5.1 How the number of binding sites (i.e. v16 or v8) versus temperature influences spontaneo nucleation	ous 11
5.2 How the base-pairing strength of the binding site handles versus temperature influences growth r and spontaneous nucleation	rate 11
Supplementary Text 6: Kinetics of ribbon assembly	13
6.1 Calculation of the number of slats added to the ribbon	13
6.2 Approximation of growth using pseudo-first order kinetics	13
6.3 How the base-pairing strength of the binding-site handles influences growth rate	14
Supplementary Text 7: Sequence assignment to megastructures from the 2048-handle sequer library, optimization of the Hamming distances of slats within megastructure designs	nce 15
7.1 Increased pairwise complementarity between slats (i.e. minimized Hamming distances) cau drastic slowdown of 1D ribbon growth	ises 15
7.2 Possible mechanism for how complementarity between the slats causes growth slowdown	16
7.3 Discussion of the Hamming distances used in the finite and periodic megastructure designs	17
Supplementary Text 8: Potential future applications	18

1

Supplementary Figures Fig. S1–Fig. S45

Fig. S1–Fig. S8: Slat and seed design and folding, qualitative energetics of crisscross assembly, selection of initial binding-site strength, energies of various binding-handle sets, and need for T-linkers 21

Fig. S9–Fig. S15: Models of finite megastructures, preparation time for each design, and additional TEM results of finite megastructures 29

Fig. S16–Fig. S27: Models of periodic megastructures, growth comparison of different ribbon designs, relationship between growth rate and number of unique slats, and additional TEM results of periodic megastructures 37

Fig. S28–Fig. S31: Model of the DNA nanocube, additional TEM of nanocube patterns, and DNA-PAINT results of 1D ribbons and 2D sheets 48

Fig. S32–Fig. S34: TEM results when no seed added, AGE results of single DNA origami square versus scaffold, representative TEM of megastructures versus concentration of seed 52

Fig. S35–Fig. S40: Standard curve of ribbons, melt temperature of v16 7-nt ribbons, temperature characterization and melt temperature of v8 7-nt, v16/v8 6-nt, and v16/v8 8-nt ribbons, growth versus time for 6-nt and 8-nt v16 ribbons 56

Fig. S41–Fig. S45: Hamming-distance analysis of 1D ribbon growth, mechanistic testing for growth changes to 1D ribbons vs. kinetic trapping of slats resulting from Hamming distance, and optimized Hamming distances of all the megastructure designs tested in this work 64

Table 1–Table 8: Core-strand sequences for 6HB, 12HB, seed, and single origami reference square;Sequences of the 6-, 7-, 8-, 9-, and 10-nt handles; Nanocube strand sequences70

Supplementary references

87

Supplementary Text 1: Comparison to methods that generate periodic multi-origami assemblies

We believe the method developed by Tikhomirov et al. is the most relevant benchmark for our work, where the key enabling feature is the large number of unique DNA origami that are specifically positioned within the megastructures. In contrast, other reported methods can give rise to megastructures with larger overall mass, however these are periodic structures with a much smaller unit cell.

Xin and colleagues reported a megastructure assembled from DNA origami that is a lattice with a surface area of 19 cm^{2 53}. However, this was a periodic assembly, where the size of the unit cell was a single DNA origami.

The Dietz lab has introduced a powerful shape-complementary paradigm for self-assembling periodic DNA megastructures that extinguish their growth at gigadalton size ranges^{16,17,21}. Here the rigid geometry of the origami-sized building blocks enables formation of self-limiting finite assemblies from one or a small number of unique monomers, analogous to self-assembly of viral capsids. However, it is unclear how well this method would scale for assembly of megastructures composed of thousands of unique monomers, such that the entire megastructure would be uniquely addressable, which some applications would demand. Three concerns are listed below:

(i) The apparent second-order rate constant for assembly has been reported as $1.7e4 \text{ M}^{-1}\text{s}^{-1}$ ³⁹, which is ~50 times slower than what we have observed here for crisscross polymerization of origami. Therefore assembly with hundreds of distinct shape-complementary components in the same pot would be exceedingly slow.

(ii) A different set of staple strands may be required to generate each of the unique shape-complementary interfaces between building blocks, therefore it likely would be far more expensive to create thousands of unique building blocks (c.f. only modular 2048 strand library required for crisscross origami). Furthermore it remains to be seen whether thousands of functionally orthogonal interfaces could indeed be generated with the shape-complementary architecture.

(iii) A key enabling feature of crisscross polymerization is absolute control over nucleation. With shapecomplementary monomers that make contacts only with nearest neighbors, such as what has been demonstrated thus far, nucleation control will be far less robust²⁶. It may be possible to construct architectures that exploit non-nearest neighbor contacts in the context of shape-complementary interactions and thereby achieve robust nucleation control; extending the paradigm of crisscross polymerization in this way would be an interesting next direction to pursue for the field.

Supplementary Text 2: Design notes regarding the 12HB slat

The following section describes how the 12HB slats were derived from the 6HB design and explains the consequences that this choice had for folding and experimental usage.

2.1 Derivation of 12HB slats from 6HB slats

The crossover pattern and staple set for the 12HB slat was derived from the design for the 6HB (Fig. S3). The reason for this was so that we would not have to purchase additional handle strands for the 12HB slats. Rather, we were able to apply the 2048-strand library from the 6HBs to also make the shorter 12HB slats. For the 12HB, a subset of staple strands in the middlemost segment of the 6HB was left out or modified to act as a hinge, so that the 6HB could fold back upon itself to make a half-length 12HB.

2.2 Yield differences and the consequence on downstream usage of the slats

One shortcoming of the approach in Supplementary Text 2.1 was that the yield of 12HBs was much lower compared to the equivalent 6HB (~10% versus ~80%, see Fig. S4). We realized that the process of folding the 6HB back upon itself was inefficient because there was a propensity for the slats to dimerize or else make other higher molecular-weight byproducts. The gel in Fig. S4B indicates that roughly similar amounts of desired monomer and byproduct dimer formed even in the best folding condition. We hypothesized that the hinge did not allow complete freedom for the 6HBs to flex into the desired half-length 12HBs and that this process was perhaps energetically unfavorable. We expect that we could make formation of the half-length 12HB higher yielding by changing the scaffold routing to eliminate this flexing back in the folding pathway. However, that would require purchasing additional handle library strands to accommodate the different scaffold routing.

We note that high yield in the folding of the slats is critical for making downstream preparation of the megastructures easy and straightforward. The ~80% yield of the 6HBs gave us the ability to pool and concentrate the slats into a smaller volume using only PEG precipitation. By contrast, the low ~10% yield of the 12HBs required us to pool the slats, separate them from the undesired dimers by excision from an agarose gel, and then subsequently concentrate the 12HBs into a smaller volume with PEG precipitation. We generally observed ~80% recovery of a pool of raw 6HB slats versus about an order of magnitude decrease for the 12HB slats. We would suggest further optimization of the 12HB design with a different library of staple strands with the 32 possible handles should a user desire to make larger quantities of 12HB

megastructures than as tested here. We also advise any user who conceives of alternative slat designs to optimize design and folding of the slat to make it easier to prepare at high yield for use in megastructures.

Supplementary Text 3: Algorithm for selection of the handle sequences

We generated 6-nt, 7-nt, and 8-nt handle sequences so that each sequence of a given length had roughly similar binding energies and were as orthogonal from one another as reasonably possible. The following section describes the sequence-selection algorithm that we used to choose sequences for the 32 7-nts in the 2048 handle strand library, as well for the 256 6-nts, 7-nts, or 8-nts in the various 512-handle strand libraries. The former 2048 -strand library was used to create the diversity of finite and periodic megastructures, versus the latter 512-strand libraries which were used to make only v16/v8 staggered ribbons to characterize growth and nucleation of different strength binding sites (as detailed in Supplementary Text 4).

3.1 Initial sequence generation

We created all possible 6-nts, 7-nts, and 8-nts using a Python script. We removed the reverse complements for each sequence and sequences with either extremely high or low GC content, and computed the pairwise mean free energy of the sequence with its exact complement in NUPACK 3.0⁵² (using parameters DNA with 25 mM Mg²⁺ and 2 mM Na⁺). We considered this value as the binding energy of the handle. To make the sequences roughly isoenergetic, we removed sequences where the binding energy was some arbitrary number of standard deviations above or below the mean energy of the total set.

3.2 Optimizing for sequence orthogonality

We computed the matrices of pairwise mean free energies between each handle with the other handles, reverse complements of the other handles, and reverse complement of the handle with the reverse complements of the other handles. As a measure of orthogonality of one handle versus another, we normalized the computed free energies in each matrix to the binding energy of the handle in question. We assumed this ratio for a given pair of sequences would lessen if the handles being compared were more orthogonal. As such, we set an arbitrary maximum for this ratio (i.e. a minimum threshold for orthogonality) that we allowed for binding-handle sequences in the library. We removed subsets of sequences that failed to meet this criteria most frequently with other sequences in the library and repeated this process until every handle satisfied the threshold.

3.3 Discussion about the final sequences and pertinence to megastructures

The computed sequence energies of the handles as selected for this study are shown in Fig. S7. We note that only the 6-, 7-, and 8-nt handles were subjected to the selection criteria as above. The 9- and 10-nt handles used initially to test viability of different handle lengths (Fig. S6) were chosen randomly without the careful selection criteria as described above. By linear fitting of the computed energies, we found that each increment of one base pair decreased the mean free energy per handle by -1.26 kcal mol⁻¹, where the spontaneous nucleation was negligible with 7-nt handles versus prolific with 8-nt handles.

It is unclear to what extent the handle-design process in the prior sections is necessary for the successful assembly of megastructures. In our implementation, we hypothesized that orthogonality of the individual handles would be important so as to limit misbinding of the slats where base pairing is made between a handle other than its appropriate complementary handle. We further hypothesized that by making the relative binding energies of a given length handle similar to one another would make the boundaries clearer between where spontaneous nucleation becomes prevalent versus the threshold length of binding handle. However, we did not seek to accept or refute either of these hypotheses and rather used them as best practices to choose the handle sequences that we thought would be most successful to create megastructures. We also note that our analysis is subject to the shortcomings of the *in silico* tools which we used to measure binding energies. For instance, most of our decisions about whether to use a sequence or not were derived using the pairwise mean free energy in NUPACK 3.0^{52} (with parameters of DNA with 25 mM Mg²⁺ and 2 mM Na⁺). We are unclear as to how well these calculations would align to experimental measurements. It might be the case that an experimentalist would be able to create megastructures with less care in the sequence selection of the binding handles, though this topic must be studied further to make any conclusions.

Supplementary Text 4: Relationship between the number of unique slats in a design versus the relative rate of growth

We sought to determine the relationship for the growth of megastructures versus the concentration of the slats and number of unique slats in the design. Our intuition was that a higher concentration of each slat would increase the growth rate of a megastructure, as shown in the middlemost panel of Fig. 5D where there were 16 unique slats in the design. However, we note that the apparent rate of growth seemed noticeably slower as the total concentration of slats was increased past 1 μ M (Fig. S22). We speculated that at these concentrations, liquid crystalline behavior of the slats may be occurring, thereby slowing down the rotational diffusion of slats, which may retard the rate of slat addition. This section will describe how this effect was even more dramatic for when more unique slats were added to the design. Using these observations, we describe general best practices for selecting the slat concentration and multi-pot slat addition steps to optimize growth.

4.1 Growth slows when large numbers of unique slats are mixed simultaneously

We realized that the fastest growth is a balance between the concentration of each free slat versus the total concentration of all the slats in the reaction. In Fig. S21, we studied the growth of v16 staggered ribbons versus designs with increasing numbers of unique slats (i.e. decreasing sequence symmetry as shown in Fig. S20). We note that Hamming distances between the different slats are also an important parameter influencing growth, as described in Supplementary Text 7. All the designs with different numbers of unique slats generally had similar Hamming distances (as shown in Fig. S45G–J) so as to not make this a confounding variable.

As expected, the 2x symmetry design with 32 unique slats grew longer per unit of time when 15 nM per slat was added (i.e. 480 nM total slats) versus when 10 nM per slat was added (i.e. 320 nM total slats). Similarly, this also occurred with the 1x symmetry design with 64 unique slats where the 15 nM per slat (i.e. 960 nM total slats) condition grew faster compared to when 5 nM per slat (i.e. 320 nM total slats) was added. However, this relationship of faster growth with higher per slat concentrations was not maintained with the 0.5x symmetry design with 128 unique slats. After 12 hours of growth, there was no measurable assembly with 15 nM per slat (i.e. 1920 nM total slats) was added. While after 38 hours of growth there was some measurable assembly for the 15 nM per slat (i.e. 1920 nM total slats) was added. While after 38 hours of growth there was some measurable assembly for the 15 nM per slat (i.e. 320 nM total slats) condition, the ribbons were of comparable length for the 2.5 nM per slat (i.e. 320 nM total slats) condition or even longer for when 5 nM per slat (i.e. 640 nM total slats) was added.

We concluded that although higher concentrations of each slat generally allow for faster growth, there are limits to which trend applies. There is some threshold between 1 and 2 μ M where the total concentration of slats seems to cause an impediment to growth. This was further substantiated in Fig. S22, where the relative rate of growth of ribbons (using small 4x symmetry designs with 16 unique slats) was diminished as the total concentration of slats was increased towards 2 μ M.

4.2 Growth of finite megastructures with large numbers of unique slats can be accelerated by adding the slats in multiple steps

We predicted that growth of finite megastructures with large numbers of unique slats (e.g. >100) would be slow if all the slats were added simultaneously, because the total concentration of slats would exceed the 1 μ M threshold causing growth impediment (see Fig. S21 and explanation in Supplementary Text 4.1). For instance, addition of all slats for the finite 1022-slat sheet at a low concentration of 2 nM per slat would make the total concentration surpass 2 μ M. Hence, we considered an alternative approach where we sequentially added the slats in multiple stages to maintain a relatively high per-slat concentration, but without the total slat concentration ever exceeding 1 μ M. We note that the initially added seed (and therefore the growing megastructure) is progressively diluted as more slat stages are added, though this was not problematic in this work. Future approaches could attempt to grow megastructures attached to a solid support, enabling circumvention of megastructure dilution.

We initially tested this approach for the elongated 320-slat plus symbol (see Fig. S14). In one approach, we incubated all the slats simultaneously during the initial preparation of the reaction, versus the other approach where half of the total slats (i.e. 160 slats) were added during the initial preparation and incubated for ~38 hours, at which point the remaining 160 slats were added and incubated again for a comparable amount of time. We note that the concentration per slat in the first approach was ~3 nM (i.e. 1000 nM total slats), versus ~5 nM per slat (~800 nM total slats at any given time) in the second approach. We observed that growth using the second approach with multiple slat additions resulted in completed megastructures at an earlier time versus when all the slats were added at once. One explanation of this faster growth with the second approach could be the ~66% higher concentration of a given slat during each stage. Users are advised to keep in mind the observations as explained in Fig. S21 and Supplementary Text 4.1, which suggest that increasing the total slat concentration towards 2 μ M would likely impede the growth.

Given all of the above observations, we concluded that growth of the finite megastructures with the largest numbers of unique components should be conducted with the slats being added in multiple stages (see Fig. 2Biii–vi for the final structures, with the different stages shown in Fig. S9C–D and Fig. S10). The

megastructures with the initial set of slats were incubated with 5 nM seed for three days, at which point an aliquot was taken and diluted 2.5x fold into the next series of slats for three more days, with the latter process being repeated five more times until all the slats were added (seed concentration estimated at 50 pM after final dilution). In our implementation, we maintained a concentration per slat for a given stage of \sim 4–5 nM and ensured that the total concentration of slats did not exceed 1 μ M.

Supplementary Text 5: Detailed characterization of binding handles

To fully characterize how the base-pairing strength of binding handles informs growth and spontaneous nucleation, we studied v16 and v8 ribbons using one of either 6-, 7-, or 8-nt handles at various temperatures. We used the ribbons as a model system for megastructure growth and nucleation because they were easy to identify, had lengths that could be readily measured in low-magnification TEM images, and could be applied to the TEM-grid substrate with high density so as to count many ribbons per image but where the lengths of single particles could still be resolved. All ribbon reactions for assessment of growth versus temperature had 20 nM per slat, 0.5 nM of seed, and 15 mM Mg²⁺. Spontaneous nucleation was quantified by counting ribbons in a control reaction where no seed was added. The following section elaborates and discusses the results from the main text more deeply.

5.1 How the number of binding sites (i.e. v16 or v8) versus temperature influences spontaneous nucleation

To understand how the number and strength of binding sites on the slats inform nucleation and growth, we also tested v8 6-, 7-, and 8-nt ribbons. With fewer binding sites, the v8 designs formed the longest ribbons at lower temperatures where higher spontaneous nucleation was observed. This is evident with the 7-nt design where growth of v16 could be maintained at 31°C, 34°C, 36°C, and 38°C with no observable spontaneous nucleation, versus the v8 design where this could only be maintained at 30.5°C and 32.5°C (Fig. S38, Fig. S39). Similarly, low amounts of spontaneous nucleation (i.e. one order of magnitude greater than the 0.3 pM detection limit) could be maintained at 43.7°C, 47.3°C, and 50.2°C with the v16 8-nt design, versus only over a narrower range (40°C and 42.5°C) with the v8 8-nt design (Fig. S38, Fig. S39). We were not able to observe these differences using the 6-nt binding sites because no spontaneous nucleation was observed at any of the temperatures tested (Fig. S38, Fig. S39). We conclude that the v16 design where more binding sites are used allows growth using a broader window of temperatures where spontaneous nucleation is not observed, which is consistent with prior findings with ssDNA slats³³.

5.2 How the base-pairing strength of the binding site handles versus temperature influences growth rate and spontaneous nucleation

We grew v16 6-, 7-, and 8-nt ribbons with and without the seed for ~16 hours at various isothermal temperatures to determine if fast growth and controlled nucleation could be attained simultaneously (Fig. S38). Additionally, we determined the temperature where grown ribbons melted apart (Fig. S37). We sought to find the breadth of growth temperatures that were below the melting point where no measurable spontaneous nucleation occurred, because the span of this window represents the utility of a particular

length binding site for controlling nucleation of the slats. We can see that the v16 8-nt design is subject to spontaneous nucleation at all temperatures tested (see rightmost Fig. S38A and top panel of Fig. S39). However, no spontaneous nucleation for the v16 6- and 7-nt designs was observed using a large window of temperatures up to ~11°C below the melting temperatures (see left two panels in Fig. S38A and top section of Fig. S39). With the 7-nt design, only minimal spontaneous nucleation that was about an order of magnitude greater than the 0.3 pM detection limit was observed at the lowest 28°C condition tested (middle panel of Fig. S38A). Taken together, we can see that either the 6- or 7-nt binding sites provide leeway with choosing fast assembly conditions that are far below the melting temperature where nucleation is strictly seed dependent. In practice, this window gives the experimentalist freedom to set up origami-megastructure growth reactions at room temperature without the slats becoming aggregated into undesirable byproducts, to be able to accommodate variations in the ion and slat concentrations, and be able to use a breadth of growth temperatures where fast growth and seeded nucleation predominate without significant formation of unseeded byproducts.

In the growth-temperature trials, we also sought to find the "optimal" growth-temperature range where the fastest growth occurred in the window of nucleation control. Temperatures in this window serve as a guideline for reaction conditions that an experimentalist might select for fast, seed-dependent growth. The results are summarized as dark blue bars in the top portion of Fig. S39. We find that the optimal growth temperature ranges were $22.5-25^{\circ}$ C, $31-34^{\circ}$ C, and $43.7-47.3^{\circ}$ C for the v16 6-, 7-, and 8-nt ribbons, respectively. Thus, each increment of one base pair in the v16 ribbon binding sites increases the optimal temperature range by ~10°C. We note that defining exact bounds for an "optimal" temperature range is arbitrary, which would also depend on parameters such as slat and cation concentration.

Supplementary Text 6: Kinetics of ribbon assembly

We determined the kinetics of slat addition by measuring the length of ribbons at different timepoints (see Fig. S40), then converting the length measurements into an estimated number of slat additions, and approximating the second-order rate constant (k_{on}) of assembly by considering the growth as a pseudo-first order phenomenon. The following section explains how these measurements were determined, our assumptions, and how the base-pairing strength of the binding site influences these rates.

6.1 Calculation of the number of slats added to the ribbon

We assume that each 6HB slat on the v16 staggered ribbons extends the ribbon roughly by \sim 10.1 nm, as explained in Fig. S19C. Hence, the number of slats in a ribbon is given by equation 6.1.

number of slats =
$$\frac{(nm \ length)}{10.1 \ nm \ slat^{-1}}$$
 (6.1)

6.2 Approximation of growth using pseudo-first order kinetics

We consider that growth of an *n* length ribbon with an additional slat proceeds as a second-order reaction:

$$ribbon_n + slat \rightarrow ribbon_{n+1}$$
 (6.2)

The starting concentration of n = 0 length ribbons is equal to the concentration of the seed, and the slats were in huge excess with respect to the seed (i.e. 40-fold excess, or ~20 nM of each slat and 0.5 nM seed in experiments where ribbon lengths were measured versus time; see Fig. S40). Because of these excesses, the relative concentration of slats does not change appreciably during the early growth times, and we may thus model this reaction as a pseudo-first order phenomenon. It follows that the k_{on} second-order rate constant may be computed as below. In equation 6.3, the length of the ribbons was divided by two to account for how the ribbons grow bidirectionally from the seed.

$$=\frac{(nm \ length)}{2} \frac{1 \ slat}{10.1 \ nm} \frac{1}{[concentration \ per \ slat \ in]}$$
(6.3)

One reasonable criticism of this model would be that the relative concentration of the slats might be depleted after long growth times, to the extent that the pseudo-first order simplification would no longer apply. We note that the ribbon designs tested in Fig. S40 uses 4x sequence symmetry (also see Fig. S20 for explanation of symmetry) and were thus composed of 16 unique periodic slats with 20 nM of each slat. If we imagine that every one of the seeds added triggers growth of a ribbon, then complete depletion of the slats would net ribbons that are each ~6.5 μ m long. By examination of the data in Fig. S40i, we can see that the mean length of ribbons at the longest time points approach or exceed this ~6.5 μ m threshold. It follows that slat depletion effects are significant at the longest time points and this might explain the gradual decline of the apparent second-order k_{on} values versus time (as shown in Fig. S40ii). Nonetheless, the pseudo-first order assumptions should explain the length of the much shorter ribbons, such as after one hour of growth.

6.3 How the base-pairing strength of the binding-site handles influences growth rate

The rate of ribbon growth was increasingly faster as the strength of the binding sites were increased from 6, to 7, and to 8 nt. This is shown in Fig. S40 where the length of v16 ribbons was compared at different time intervals using a growth temperature where little to no spontaneous nucleation was observed. The mean lengths for the ribbons after 1 hour of growth were ~ 1 , ~ 1.3 , and $\sim 3.1 \mu m$ for the v16 6-, 7-, and 8-nt designs, respectively, as shown in Fig. S40Ai, Bi, and Ci. After 16 hours of growth, these increased to ~4.2, ~4.9, and ~8.1 µm for the v16 6-, 7-, and 8-nt designs, respectively. This suggests surprisingly fast kinetics for addition of the 6HB slats-converting the mean length of the ribbons (as explained in Supplementary Text 5.1) after 1 hour of growth gives the observed second-order rate constants for growth of $\sim 0.66*10^6$, $\sim 0.86*10^6$, and $\sim 2.13*10^6$ M⁻¹s⁻¹ for the 6-, 7-, and 8-nt ribbons respectfully, as shown in Fig. S40Aii, Bii, and Cii. After 16 hours of growth, the observed second-order rate constants for growth were $\sim 0.18 \times 10^6$, $\sim 0.21 \times 10^6$, and $\sim 0.35 \times 10^6$ M⁻¹s⁻¹ for the 6-, 7-, and 8-nt ribbons. We attribute this decrease in the apparent rate constants over time to accumulation of errors on the slats on a growing ribbon end that might slow further growth, and lack of consideration of depletion of slats in the calculation. As with any folded DNA origami, there is only some probability (e.g. perhaps ~80–90% per handle) that a 3' handle sequence is available on a 6HB or 12HB slat. A multitude of errors on a ribbon end might temporarily stall or entirely stop the addition of more slats.

Supplementary Text 7: Sequence assignment to megastructures from the 2048-handle sequence library, optimization of the Hamming distances of slats within megastructure designs

The megastructure designs were implemented from the 2048-sequence library by randomly assigning one of the 32 possible handle sequences to each of the intersections in the interface between the perpendicular layers of slats, as explained in Method 2. In the initial explorations with periodic v16 7-nt ribbons as shown in Fig. 3Ai, we discovered that particular random assignments of sequences sometimes resulted in drastic growth differences. We realized that certain designs that grew less prolifically had particular pairs of perpendicular slats where a multitude of complementary handles were matching and aligned to one another. We hypothesized this unintentional alignment of complementary handles caused the formation of kinetic traps with pairs of slats undesirably bound to one another (see Fig. S41). We designated the maximum number of matches between some pair of slats in a megastructure design as having a kinetic trap of kstrength. For example, a design with a maximum kinetic trap k6 has one or more pairs of slats where the two slats may be aligned with six complementary binding handles engaged together. We quantified this design property of the random sequence assignments for megastructures by measuring Hamming distances between each of the slats in one layer with each of the slats in the other perpendicular layer. This section explains the initial findings with periodic ribbons that suggest the need to maximize Hamming distances (also see Fig. S42), results showing a mechanism for how single kinetic traps in a pair of slats influences ribbon growth (also see Fig. S43), and the Hamming distances of the megastructure designs as implemented in this paper (also see Fig. S44-Fig. S45).

7.1 Increased pairwise complementarity between slats (i.e. minimized Hamming distances) causes drastic slowdown of 1D ribbon growth

We generated random permutations from the strand library of v16 ribbons and selected designs where the minimum Hamming was marginally increased (see Fig. S42A). The designs tested had distributions of slat pairs where there were maximally 6 and 8 complementary binding sites aligning between them (i.e. k6 and k8 strength kinetic traps, respectively). The length of ribbons as measured by TEM after overnight growth of the k6 and k8 designs at various temperatures is plotted in Fig. S42B. There was no appreciable growth of the k8 ribbons at any of the temperatures tested, versus the k6 ribbons which grew prolifically at all the temperatures. Examples of the differences between growth versus no growth for the k6 and k8 designs are shown in low-magnification TEM images in Fig. S42C–Di. Closer inspection revealed infrequent short, stubby k8 ribbons in select higher-magnification images, but their relative number was too few to

quantitatively compare to the k6 counterpart (see Fig. S42Dii). To rationalize these extreme growth differences, we considered the Hamming distances in the k8 design more closely. We realized that of the total eight top and eight bottom slats in the design, five of the slats from either layer had eight complementary binding sites that could align with one another as a k8 strength kinetic trap. We hypothesized that these unintentional "strong" k8 interactions between over half of the total slats among themselves prevented the slats from readily being recruited to the ribbons. Regardless of the cause of the varied growth, these results suggested that avoiding low Hamming distances between the slats is important to achieve the best possible growth of a megastructure.

7.2 Possible mechanism for how complementarity between the slats causes growth slowdown

To test our hypothesis that alignment of complementary handles between slat pairs causes the formation of kinetic traps that prevent the slats from freely being added to megastructures, we tested growth of several ribbon designs where we incremented the strength of a kinetic trap between a single pair of slats (see Fig. S43A). The mean length of the ribbons at different temperatures versus the single k8, k10, and k12traps are shown in Fig. S43B–C, versus a k6 control. The ribbons were progressively shorter at all temperatures versus the k6 control as the strength of a single kinetic trap k was incremented from k8 to k10to k12. We also found periodic defects in the k10 and k12 ribbons with every eighth slat in a particular layer that was frequently missing in close-up images of ribbon segments (see Fig. S43Diii-iv). We note that the designs tested here use 4x sequence symmetry with eight repeating top-slats and eight repeating bottomslats, such that a particular missing slat in each layer would appear at such intervals (for details regarding symmetry see Fig. S20). The observation of both slower overall growth and missing single slats with the strongest kinetic traps support the mechanism that low Hamming distances cause kinetic trapping of slats that impede their addition to a megastructure. Different segments of other ribbons with the k10 and k12traps were observed to have the full set of periodic slats without the missing slat, suggesting that the trapped slat pairs could eventually be added. We suspect ribbon growth where a slat pair is strongly trapped becomes temporarily stalled because it is often missing from the growing ribbon edge. The missing trapped slats are added at a slower rate compared to other free slats and are perhaps skipped and added to the completed segments of ribbon later in time. Henceforth, we concluded that the Hamming distances between slats should be maximized to the greatest extent possible to limit kinetic trapping to best allow free slats to be added to megastructures.

7.3 Discussion of the Hamming distances used in the finite and periodic megastructure designs

For the optimized finite and periodic designs, the multiplicity for each possible number of matching, complementary handles for the slats from one layer with respect to the other layer of slats are shown in Fig. S44–Fig. S45. The largest finite designs in Fig. S44D–F maximally had *k8* kinetic traps, with the smaller finite designs having weaker traps as the number of slats in the design was lessened. In general, the maximal traps were larger for designs with more unique slats because there are more possible interactions between the various slats. For instance, the 64-slat square had maximally five undesired complementary binding sites between slats (i.e. a *k5*-strength kinetic trap) versus the 1022-slat sheet which had maximally eight undesired complementary binding sites (i.e. a *k8*-strength kinetic trap), as shown in Fig. S44A versus Fig. S44F.

We note that the results in Fig. S42 showed that ribbon designs with $k\delta$ traps either struggled or were incapable of appreciably growing into ribbons, which suggest that the designs in Fig. S44D–F should not be viable for growth. However, we hypothesized that the multi-step addition of slats for the finite designs with the largest numbers of slats (as per Method 10) would have resulted in particular slats being at a different concentrations compared to other diluted slats from prior stages. That is, the growth hindrance resulting from particular kinetic traps could have been lessened because of the differing stoichiometric amounts of particular slats. We also hypothesize that a few isolated "strong" $k\delta$ kinetic traps in the largest finite design would be less deleterious to growth compared to a periodic design with a similar-strength trap. With the finite design of unique slats, a single pair of trapped slats would only be skipped once (and perhaps slowly added at some later time), versus periodic designs where skipping of the trapped slat would be encountered repeatedly.

The periodic ribbon designs used to study the nucleation and growth behavior of the origami megastructures were generated from permutations from 256 different 6-, 7-, or 8-nt handles using a 512-strand library, and had maximally *k4*-strength kinetic traps (see Fig. S45A–B). Other periodic designs that were generated from the 32 different 7-nt handles using the 2048-strand library all had maximally *k6*-strength kinetic traps (see Fig. S45C–J). We attribute these differences between the maximum-strength kinetic traps to the differences in the number of different handle sequences with each of the different strand libraries.

Supplementary Text 8: Potential applications

We expect the earliest applications will accrue from the ability to construct megastructures with similar functional complexity as a single DNA origami, but simply spanning length scales that are 1–2 orders of magnitude larger.

1. Addressable megastructures could enable positioning of multiple 100 nm+ nanoparticles needed for creation of digital metamaterials that could manipulate visible light⁵⁴, and that could be scaled to high copy number through self-assembly. By contrast, individual DNA origami are too small to organize a large number of nanoparticles in this size range.

2. Artificial cell-surface mimics that span the micrometer length scale could allow investigation of how spatial organization of ligand-receptor pairs on those length scales can dictate cell-cell communication. Some exploration of this issue has been carried out by the laboratory of Jay Groves, using micropatterned surfaces⁵⁵. Crisscross addressable megastructures substantially add to this toolbox by offering much finer pixel pitch for addressing functionalities to a surface, in addition to all the other versatile functional potentials of DNA nanostructures. Furthermore, crisscross addressable megastructures are self-assembled, therefore could be scaled to high copy numbers, and potentially could interact with cells in suspension.

3. Harnesses that are large enough to cup a biological cell could impart polarization on those cells, and thereby enable novel strategies for self-assembly of such cells into artificial tissues, or else to self-assemble micron-scale colloidal particles into larger collections for photonics and other applications. An example of this strategy as applied to imparting addressability to large nanoparticles was reported by Ben Zion et al.⁵⁶ In this case, a construct composed of three DNA origami was used. A crisscross megastructure could be used to impart addressability to a much larger surface area (e.g. surface of a microparticle or biological cell). A large enough crisscross megastructure could directly coordinate the organization of more than a pair of cells.

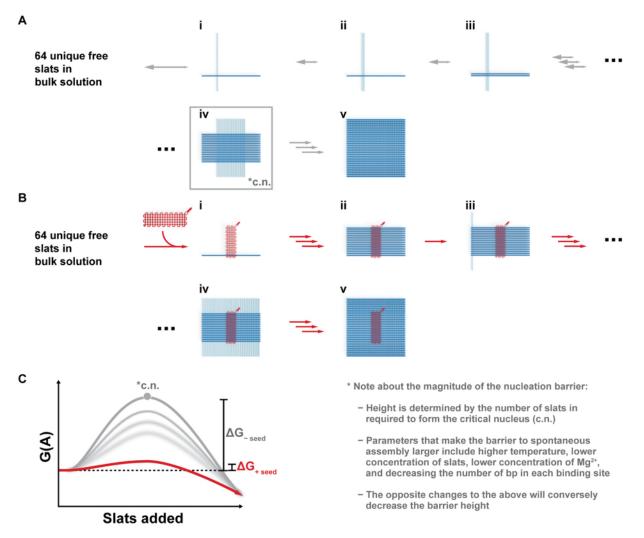
4. The large size of megastructures enables one to use diffraction-limited optical microscopy to resolve the orientation of those megastructures, instead of requiring more constrained or expensive imaging modalities (e.g. atomic-force microscopy is slow, electron microscopy is limited to samples that are stained or cryopreserved). In this way, research with DNA megastructures can be more accessible than that with individual DNA origami, through reduced barriers to effective imaging.

The more profound advantages may accrue in the longer-term from the ability to construct megastructures with thousands of times the number of functional features as compared to a single DNA origami. This will enable a new dimension of experimental access to two powerful, overlapping metaphors: "wet molecular robots" that are as programmable and sophisticated as macroscale robots, but that can operate on molecules and cells and can be produced in massive copy numbers through self-assembly; "artificial cells" that approach the sophistication of biological cells, but that may operate using very different organizational paradigms, e.g. optionality of membranes; DNA-based artificial cytoskeletons; powered by cycling external fields in addition to or exclusive of chemical fuels, etc. The ability to scaffold arrangements of large numbers of molecular machines on length scales up to $1-10 \mu m$ could enable booting up artificial cells to initial conditions (i.e. xyz positions of each agent) that may be difficult to achieve otherwise.

For example, DNA origami have been investigated as breadboards for strand-displacement circuits⁵⁷; localization enables faster computation and increased insulation/modularity. Therefore it is plausible that molecular breadboards supporting thousands to millions of addressable circuit elements may provide a path to more complex and sophisticated wet molecular computation, much as the increase in complexity of integrated circuits has been the key to massive expansion in processing power in the computer industry. Furthermore, large breadboards could support not just a large number of circuit elements that communicate to nearby neighbors, but also nanoscale conveyor belts that could actively shuttle material over micron-scale distances.

Oftentimes cost can be an important consideration for how widely applicable a method can be.

(i) However, there are no other methods known at present, expensive or otherwise, for creating addressable micron-scale megastructures such as what we have demonstrated, i.e. there are no "simpler and easier production methods" currently available. There are methods for assembling periodic megastructures with single-origami unit cells, however these lack the unique addressability that is the key enabling feature of our megastructures.

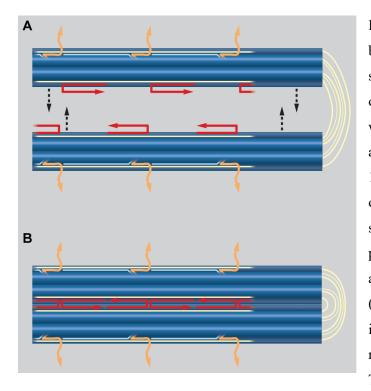

(ii) Costs in principle could be managed through sharing and collaboration between multiple research groups. The cost of an acoustic liquid handler is comparable to that for a low-end transmission electron microscope, or an atomic-force microscope. Many individual research groups in the nanoscience community have been able to adapt to these instrumental needs by subscribing to institutional core facilities and paying an hourly fee (not inexpensive, but often the only viable option). The cost for the 2048-strand library reported here, which is analogous to printer ink in that it can be used to generate hundreds of distinct

megastructures before being depleted, is around USD\$10k. This material cost would become comparable to other consumable costs in cases where several research groups could collaborate on splitting the costs; ideally state-funded foundries or else commercial entities could offer a form of effective cost sharing in this way. Furthermore, through such collaborative efforts, strand pools could be created in bulk and then aliquoted for distribution to individual laboratories; this would greatly reduce the number of strand transfers that need to be done by a single laboratory. Even for a single laboratory, USD\$10k is not automatically an unthinkable cost, considering that the cost for supporting salary and fringe for a single postdoctoral fellow can be up to an order of magnitude larger figure per year.

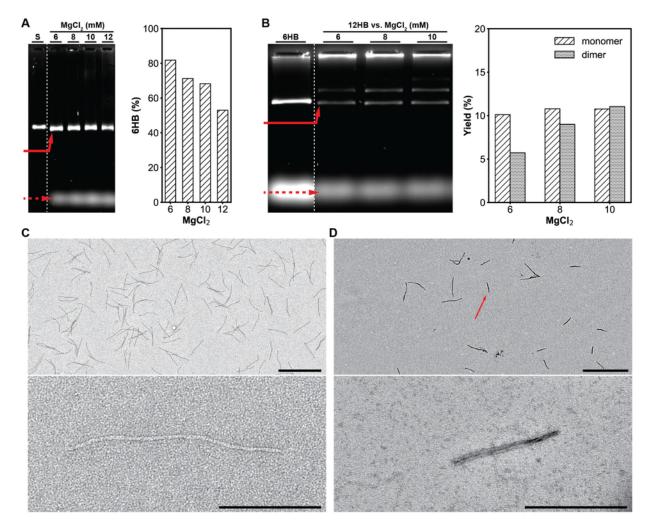
(iii) As described above, micron-scale DNA megastructures can be designed with features that can be resolved by diffraction-limited optical microscopy. Thus our method could lower the cost for doing research with DNA nanostructures, through bypassing the need for an electron microscope or atomic-force microscope.

Supplementary Figures Fig. S1–Fig. S45

Fig. S1–Fig. S8: Slat and seed design and folding, qualitative energetics of crisscross assembly, selection of initial binding-site strength, energies of various binding-handle sets, and need for T-linkers


Figure S1 Qualitative energy landscape of the nucleation barrier in crisscross assembly for the 64 6HB slat finite megastructure. This figure elaborates on the energetic pathways introduced in Fig. 1C. A shows unseeded assembly of the slats when no seed is added to the reaction. Single pairwise interactions between slats are weak and transient, with the reverse reaction of slat dissociation favored over forward assembly, as shown in Ai–iii. Stable addition of slats does not occur until the formation of the metastable critical nucleus (c.n.) in Aiv. Once the critical nucleus forms, the remaining slats may readily bind to the critical nucleus to complete the megastructure as in Av. **B** shows assembly when the seed is added to the reaction.

Each of 16 cells in the seed have binding sites that strongly engage one 6HB slat, as shown in Bi–ii. Steps Biii–v with the remaining slats (e.g. 48 slats as shown here) bypasses the critical-nucleation pathway, because the parallel 16 slats in Bii stably localize columns of weak binding in close proximity. In the experimental assembly, we incubate the reactions initially for 4 hours at a higher temperature that does not let the reaction proceed past Bii. Next, the reaction is incubated at a lower temperature that favors binding of the remaining slats with weak binding sites, as in Biii–v. These two possible assembly pathways are qualitatively plotted, as shown in **C**. The various experimental and design parameters that influence the magnitude of the energy barrier to spontaneous assembly are described in the notes on the right.


Figure S2 Large renderings of designs for the 6HB slat, 12HB slat, and gridiron seed. Panel **A** shows the overall structure of each origami component, with the background grid representing 42 bp. The orange ssDNA sites along the top and bottom of each slat are the nodes which may be arbitrarily addressed with cargos as modifications to a staple will allow. In particular, we used these nodes for weak handles to bind

the slats to other slats, for strong 10-nt handles to bind the slats to the sockets on the seed, for strong 16-nt handles to bind DNA nanocubes (see Fig. S28), or as 3' biotin sites to bind DNA megastructures to substrates for DNA-PAINT imaging. The orange notches in the seed in *Aiii* are exposed 10-nt regions of scaffold which serve as "sockets" to strongly bind slats via complementary "plug" handles. The seed has 16 columns as oriented, where five horizontal helices (i.e. five sockets) in each column may cooperatively engage a single slat with five strong 10-nt handles. The black lines indicate the region shown more closely in panel **B**, where the orange line represents the staple strands for addressable nodes on a slat, light yellow lines represent the scaffold strand, and cyan lines as other core staple stands.

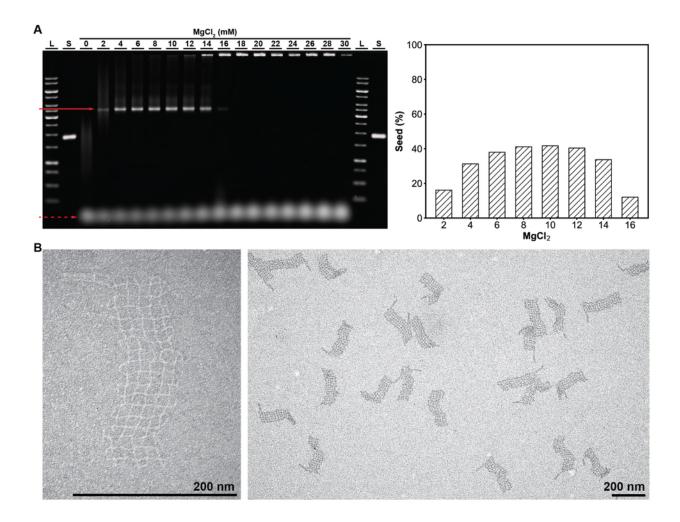


Figure S3 Strategy in which the 6HB slat folds back upon itself to make a half-length 12HB slat. Extreme right in panel **A** shows a region of light yellow scaffold that was left as ssDNA without any staple strands. This region acts as a hinge to allow the 6HB to fold back into a 12HB, using the red staple strands to bridge opposite ends of the top helix together. Panel **B** shows a segment of completed 12HB that was properly folded back. This scaffold routing allows us to use the same base staple sequences (i.e. the orange staple strands) for the 12HB as is used with the 6HB, so that the same 2048 7nt strand library can be applied to either slat. The consequence of this design on the final slat

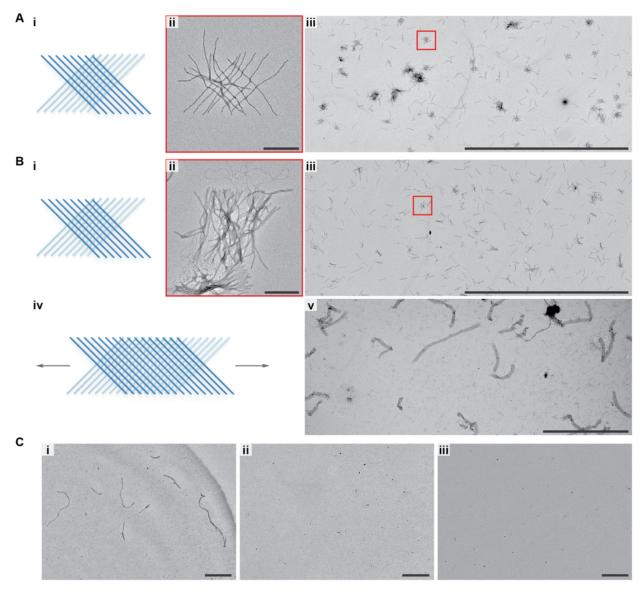

yield is explained in Supplementary Text 2 and shown in Fig. S4.

Figure S4 Folding of the DNA-origami 6HB and 12HB slats. Leftmost **A** and **B** show agarose gels to optimize MgCl₂ for folding of the 6HB and 12HB slats respectively, with the solid red arrow pointing to the slats and the dashed arrow pointing to excess staple strands. Control lanes (S) is the scaffold only for the 6HB in *A*, versus a 6HB reference for the 12HB in *B*. The folding yields were determined in the rightmost of *A* and *B* using densitometry of the agarose gel, where the intensity of the desired slat band was compared to the overall intensity of all the elements that migrated slower than the staple band. Roughly 80% yield for 6HB slats was obtained in the 6 mM MgCl₂ condition, versus 10% yield for monomeric 12HB slats in the 8 mM MgCl₂ condition. See Supplementary Text 1 for further explanation of the differences between these slats. TEM images of the raw, folded 6HB and 12HB slats are shown in **C** and **D**, respectively. Only the monomeric 6HB is observed, versus the 12HB where there is a mixture of the desired 12HB monomer (as shown with the red arrow) and an undesired double length 12HB dimer. Scale bars are 1 µm and 200 nm in the top and lower images of *C* and *D*, respectively.

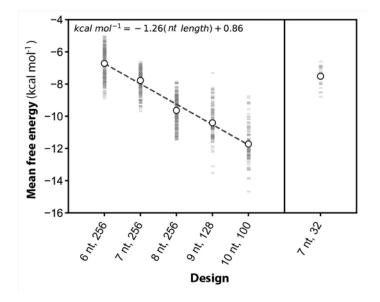


Figure S5 Folding of the gridiron DNA-origami seed. Leftmost **A** shows an agarose gel to optimize $MgCl_2$ for folding of the seed, with the solid red arrow pointing to the seed band and the dashed arrow pointing to the staple strands. Lanes (L) indicate ladder and (S) indicate scaffold only. The folding yields were determined in rightmost **A** using densitometry of the agarose gel, where the intensity of the seed band was compared to the overall intensity of the elements that migrated slower than the staple band. Roughly 40% of seed monomer was obtained for the 8 mM and 10 mM MgCl₂ conditions, which we deemed to be the folding conditions with the highest yield. **B** shows TEM images of negatively (left) and positively (right) uranyl-formate-stained gridiron seeds. We note that only a single design seed with the same scaffold register was used for all the megastructures in this work, such that the socket sequences needed for each structure were universal. Scale bars are 200 nm.

Figure S6 Qualitative assessment of unseeded spontaneous nucleation of 10-, 9-, 8-, 7-, and 6-nt binding sites for crisscross assembly. Binding-site designs where nucleation of assemblies was observed using typical conditions that might be encountered in routine experimental procedures were determined not suitable for seeded nucleation control. A shows that 10-nt binding sites had prolific error-prone assembly of the finite 16-slat assembly (*Ai*), as shown by TEM (*Aii–iii*). Similarly, spontaneous assembly of something assumed to be some portion of the 16-slat test structure was also observed with 9-nt binding sites, in **Bi–iii**. Structures similar to the closeup from panel *ii* are highlighted in red in panel *iii*. In **Biv–v**, the propensity of spontaneous nucleation with the 9-nt design was further shown using a v8 ribbon design. As such, we further tested v8 ribbons using 8-, 7-, and 6-nt binding sites, in **Ci–iii** respectively. Prolific ribbon growth occurred using the 8-nt design. However, it was not observed for either the 7- or 6-nt designs such that we concluded either these strength binding sites would be suitable for seeded nucleation control

of the origami slats. Assembly of the 16-slat test structure was for 16 hours at 25°C in 10 mM MgCl₂ using 2 nM of each slat, and assembly of the v8 ribbons was for 16 hours at 32.5°C in 15 mM MgCl₂ using either ~6.6 nM or 20 nM (in *Biv–v* and *C*, respectively) of each slat. Scale bars are 200 nm in *Aii* and *Bii*, and 10 μ m in all other images.

Figure S7 Calculated mean free energy of the sequence handles versus their base-pair length, as determined in NUPACK 3.0⁵². <u>More negative free energy indicates a stronger interaction.</u> Each faint gray bar plotted is the energy of a single handle, with the circular data points indicating the mean energy of the library tested. The 6-, 7-, and 8-nt sequences were selected as described in Supplementary Text 3. The 256-sequence set was used to characterize growth and nucleation of origami megastructures as

described in Supplementary Text 4, and the rightward 7-nt 32-sequence set was used for the 2048-strand library to create a diversity of megastructures. The strongest 9-nt 128-sequence and 10-nt 100-sequence sets were used only for initial testing of sequence-handle length (see Fig. S6). For the leftward sequences, a linear fit suggests that each single-nt increment of the handle increases the binding energy by -1.26 kcal mol⁻¹.

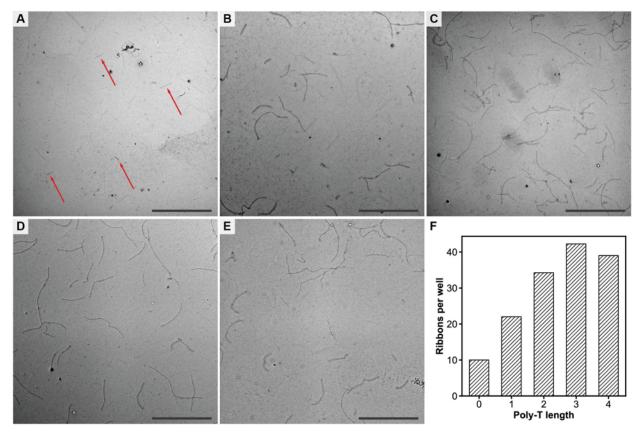


Figure S8 Addition of a poly-T-linker before the binding sites is necessary for allowing assembly of megastructures from DNA-origami slats. The relative number of seeded v8 8-nt ribbons as counted on TEM grids was increased if a 1T, 2T, 3T, or 4T linker was used to separate the handle from the core staple sequence versus if no linker was used. Representative TEM images for the 0-4T linkers are in panels A-E respectively, with the average number of ribbons counted per defined imaging area plotted in F. The red arrows in panel A point to the stubby ribbons that were much shorter compared to the longer ribbons that formed when a linker was used. This observation may be due to relaxation of electrostatic repulsion of the slats that would otherwise impede megastructure assembly. The relative difference in the number of ribbons counted was similar for 2T, 3T, and 4T linkers. We therefore decided to use 2T linkers for the 8-, 7-, and 6-nt handle designs, as shown in Fig. 1Di. We further note that the 9- and 10-nt binding sites as tested in Fig. S6A–B did not use any T-linker, though were still able to nucleate prolifically into unseeded crisscross test structures. We conclude that T-linkers are necessary to allow the assembly of DNA-origami megastructures using weak binding sites that are less than or equal to 8 nt. This observation does not seem to hold true for when stronger handles are used, though we did not study this phenomenon with such designs. Scale bars are 10 μ m. N = 3 images were counted for the 0T design, and N = 4 images were counted for all the other designs.

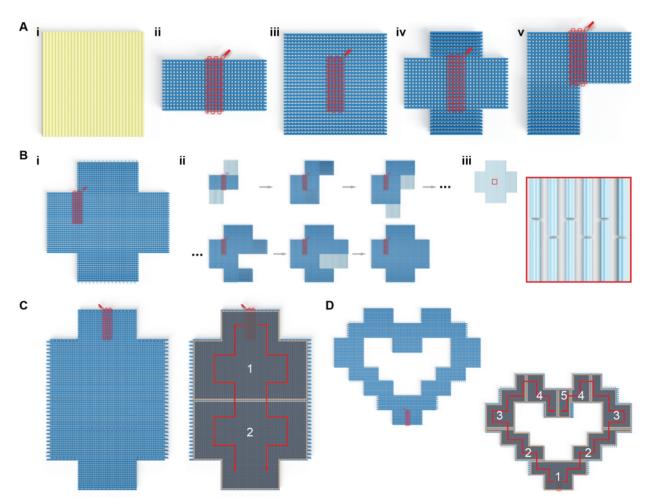
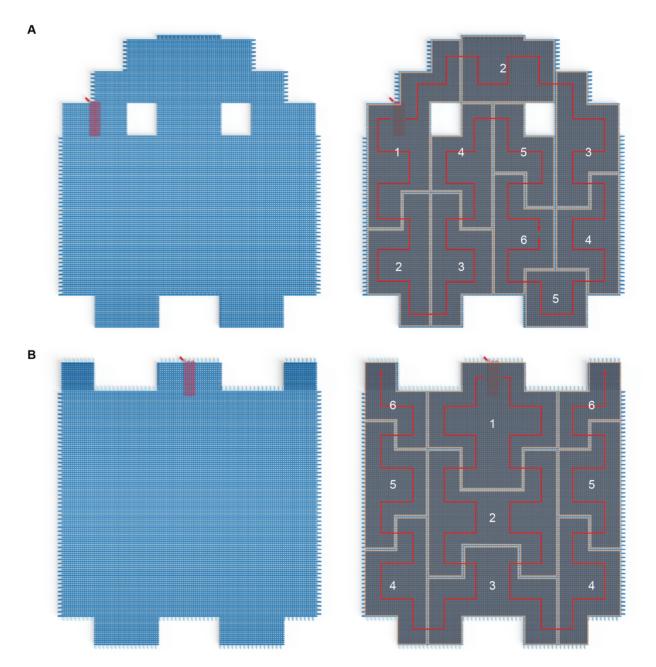
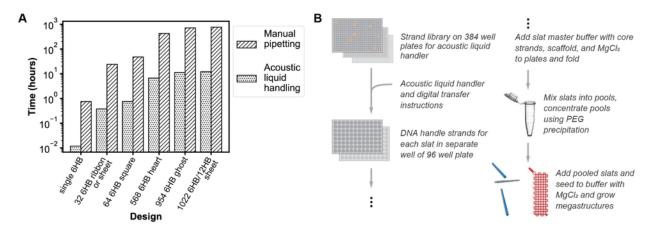
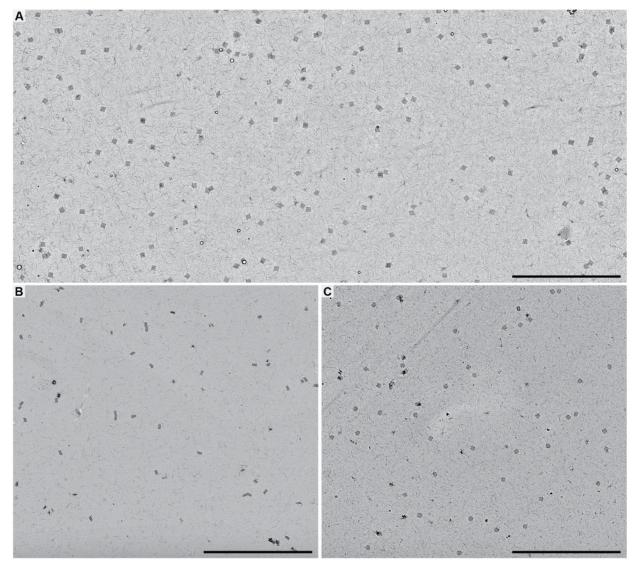
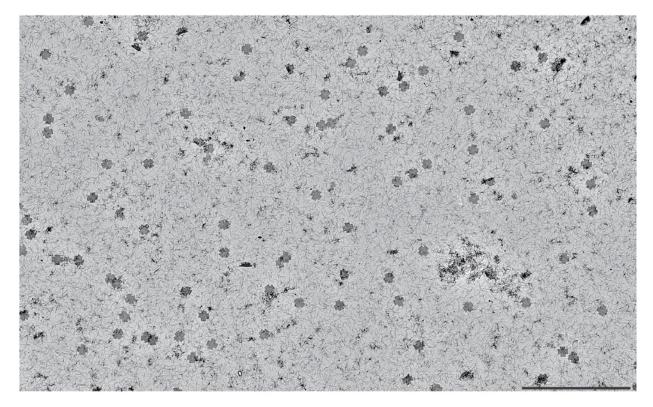


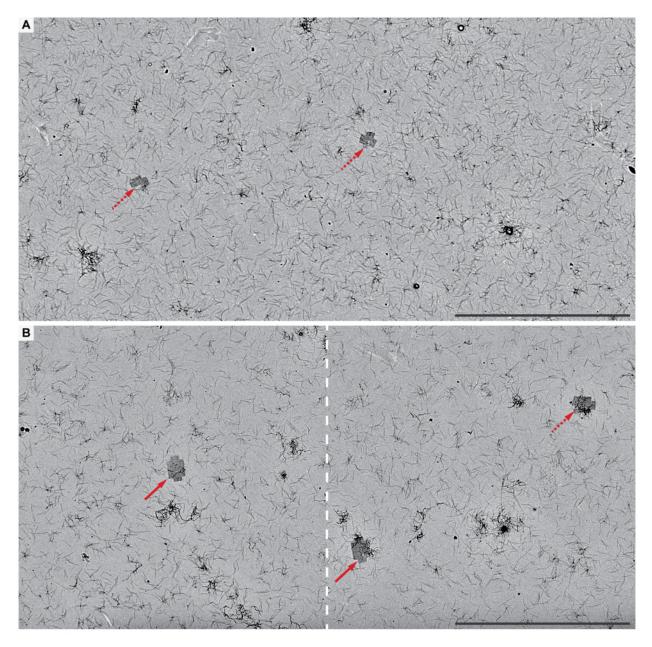
Fig. S9–Fig. S15: Models of finite megastructures, preparation time for each design, and additional TEM results of finite megastructures

Figure S9 Enlarged design renders of the various finite origamis and megastructures from Fig. 1C. **Ai** is a single-layer flat-sheet DNA origami that is folded from the same scaffold that is used to make the slats, **Aii** is a 48-slat rectangle composed of 16 6HBs and 32 12HBs, **Aiii** is a 64-slat square composed of entirely 6HBs, **Aiv** is a 64-slat plus symbol composed of 32 6HBs and 32 12HBs, and **Av** is a 64-slat L symbol composed of 32 6HBs and 32 12HBs. Panel **Bi** is a larger 191-slat plus symbol composed entirely of 6HBs, with various steps in its raster-fill growth in **Bii**, and **Biii** showing how the bottom-most vertical cyan slats were staggered to seal the middlemost horizontal seam. Such seams exist between the abutting edges of each ribbon-like section of the megastructure. The slats in one or both of the two layers can be staggered, such as done with the finite megastructures in *C*–*D* and Fig. S10, and the ribbon in Fig. 3iii. **C** leftward is the 320-slat elongated plus symbol. **D** leftward is the 568-slat heart. Rightward panels in C and D show the raster-fill growth as a red line, with the darkened overlays showing each of the distinct stages where up to

200 slats were added. The megastructures were incubated for about three days of isothermal growth before additional slats for the next stage were added. Images are not drawn to scale.


Figure S10 Enlarged renders of the largest designs in Fig. 1C. A leftward is the 968-slat ghost and **B** leftward is the 1022-slat sheet. Rightward panels in A and B show the raster-fill growth as a red line, with the darkened overlays showing each of the distinct stages where up to 200 slats were added. The megastructures were incubated for about three days of isothermal growth before additional slats for the next stage were added. Images are not drawn to scale.


Figure S11 General workflow to assemble DNA megastructures from slats. **A** shows approximate time to mix DNA handle strands for various crisscross megastructures from the 2048-strand library using an automated Labcyte Echo acoustic liquid handler versus a single-channel manual pipette. We determined an average transfer time of 42 seconds per strand using a manual pipette versus 0.66 seconds per strand using the liquid handler, as extrapolated using each method. These timings allow for preparations including manual loading of plates into the liquid handler, manual application of seals to the plates after automated strand transfer, and limited break times for the user. It would be untenable to make the largest megastructures from the strand library using a manual pipette. For instance, the 1022-slat finite sheet requires over 65,000 total strand transfers from the library and would require about one month of manual pipetting versus ~12 hours using the acoustic liquid handler. We note that the need for the acoustic liquid handler could be circumvented by purchasing the strands needed to make the slats for a given design arranged in an order where they could be manually combined using a multichannel pipette. However, this latter approach would not be amenable to having the strands readily rearranged into different crisscross megastructures. **B** shows the workflow for how megastructures are experimentally implemented from the strand library.

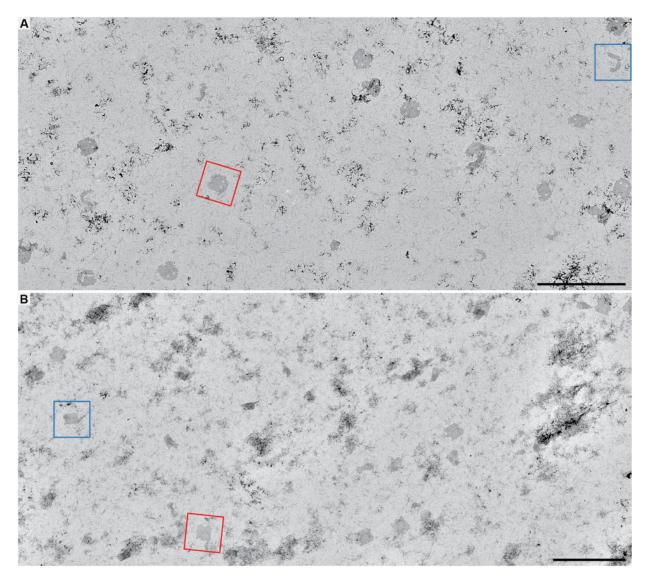

Figure S12 Low-magnification TEM images of small finite shapes showing that they assemble as dispersed, single particles. **A** is the 64-slat square assembled with 6 nM seed (also see design in Fig. S9Aiii), **B** is the 48-slat square assembled with 1.5 nM seed (also see design in Fig. S9Aii), and **C** is the 64-slat plus symbol assembled with 6 nM seed (also see design in Fig. S9Aiv). Scale bars are 10 µm.

Figure S13 Low-magnification TEM image of the rastering 191-slat plus symbol showing that it assembles as dispersed, single particles, with all slats added simultaneously to the reaction mixture. The raw assembly reaction used 1 nM seed with all the slats added simultaneously and a total isothermal incubation time of \sim 1.5 weeks. We note that \sim 3 days was a more typical incubation time for this number of slats, and the longer incubation time may explain why almost all the structures above have gone to completion. An aliquot of the final reaction was concentrated (and also to remove some of the excess slats) by centrifugation about 25-fold, so that it could be imaged with a higher density of particles as above. The scale bar is 10 μ m.

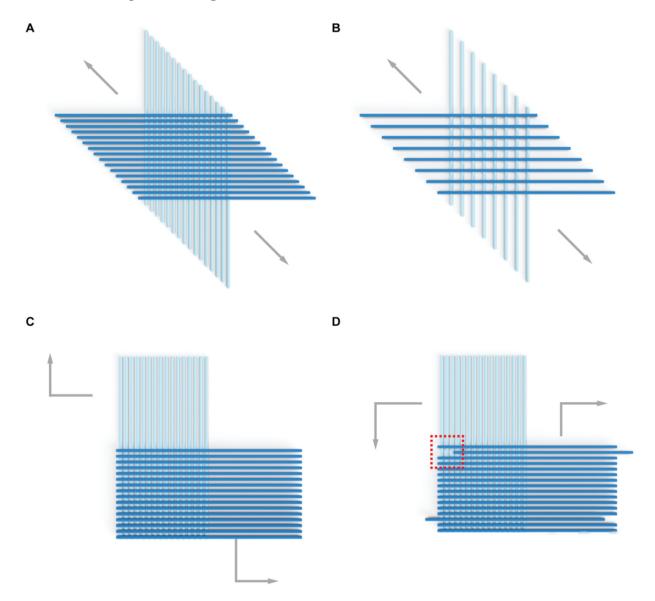

Figure S14 Low-magnification TEM images of the finite elongated 320-slat plus symbol after 90 hours of isothermal growth. Solid-red versus dotted-red arrows show complete and incomplete assemblies respectively. In **A**, all 320 slats were simultaneously added during the initial preparation of the reaction, versus **B** where half of the total slats (i.e. 160 slats) were added during the initial preparation. After 38 hours of growth, the remaining 160 slats were added to the reaction in *B*. The completed shape was not observed after 90 hours using approach *A*, versus *B* where it was frequently observed. We note that the concentration per slat in *A* was ~3 nM, versus ~5 nM per slat in *B*. This was selected so as to ensure that the total slat concentration did not exceed ~1 μ M, because extremely high concentrations of slats tended to impede growth as explained in Supplementary Text 4 and Fig. S21. Scale bars are 10 μ m.

Figure S15 Low-magnification TEM images of the largest finite 954-slat ghost (**A**) and 1022-slat sheet (**B**) to assess their relative completion. Completion of the megastructure was deemed all the corners and middle sections of the shape appropriately filled with slats. Examples in red boxes were deemed complete, versus examples in blue boxes were deemed incomplete. Roughly 22.5% of each of the above megastructures were complete by the end of the last stage of assembly. We made the assumption that incomplete structures at the end of a given assembly stage would not be able to continue growth once additional slats were added for the next stage of assembly. This assumes that partially formed structures at the end of a growth period are stalled/trapped because they have accumulated too many defective slats (e.g. those with missing or truncated handles). We considered that by adding more slats for the next growth stage, we would dilute out the remaining free slats needed to recover growth of a given stalled stage, to the extent that recovery would

be exceedingly slow. We postulated that the probability for any given growth stage to go to completion could be treated as the probability of a series of independent events, suggesting that over 75% of the assemblies at each stage were complete and suitable for continuing growth (i.e. $0.225^{1/6}$, as per six distinct stages of assembly). The multi-stage addition of slats is described in Method 10. N = 225 seeded particles were counted for the 954-slat ghost, and N = 267 particles were counted for the 1022-slat sheet. Scale bars are 10 μ m.

Fig. S16–Fig. S27: Models of periodic megastructures, growth comparison of different ribbon designs, relationship between growth rate and number of unique slats, and additional TEM results of periodic megastructures

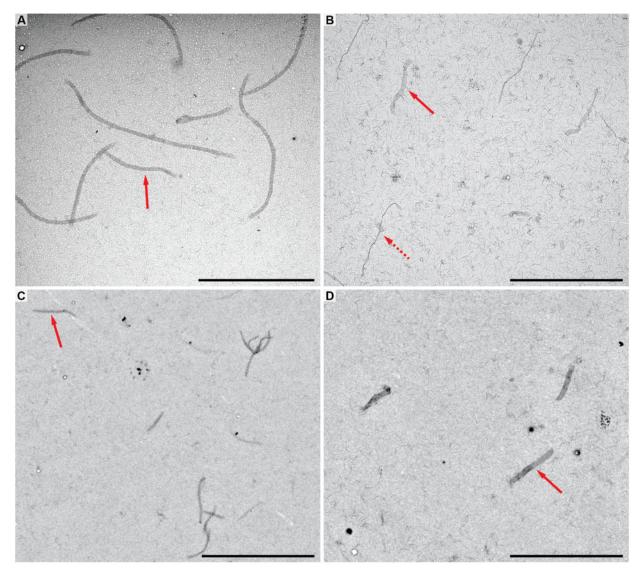


Figure S16 Renders of the ribbon designs shown in Fig. 3. Slats are oriented parallel/perpendicular to the edges of the page to show differences in the staggering of the slats added to the ribbon. In **A** and **B**, each slat added staggers one and two 42-bp spacings respectively, compared to the parallel slat that preceded it. (note: such ribbons within the supplement are defined as the "staggered" designs). The v16 ribbon in *A* is differentiated from v8 ribbon in *B* by the maximum number of binding sites that an incoming slat may make with perpendicular slats on the growing ribbon front (i.e. 16 versus 8 binding sites). In the completed v16 ribbon, a given slat has 32 perpendicular slats bound to all of its 32 possible binding handles, versus v8

which only has 16 slats bound to every other of its 32 possible binding sites. Assuming the binding energy per binding site is the same, the greater number of binding sites allow the v16 designs to be grown under more stringent reaction conditions (e.g. higher temperatures) where the rate of spontaneous nucleation is lower. The differences in nucleation performance are experimentally explained in Supplementary Text 4.1 and Fig. S38, and the energetic models explaining these differences are as discussed previously²⁶. C and D are v16 ribbons where each slat added does not stagger compared to either immediate parallel slat, creating "zig-zag" ribbons with jagged and flush edges. In *D*, two of the horizontal top blue slats were each staggered by two 42-bp units (as boxed in red) to seal the vertical seams (note: such ribbons within the supplement are defined as the "non-staggered" designs).

Figure S17 Design and testing of the periodic v8 ribbon. The v8 design uses every other binding site on the 6HB slat, with 16 slats bound to every other of the 32 possible binding sites. There is half the density of slats compared to its v16 counterpart. As such, the v8 ribbons were flexible and had a propensity to stretch and elongate compared to v16 ribbons which remained straighter and flatter (also see Fig. S18B) versus Fig. S18A). The close-up rightward negative-stain TEM image shows a flat segment of ribbon, with the inherent flexibility causing the curving, meandering ribbon edge. The scale bar is 500 nm.

Figure S18 Low-magnification TEM images of periodic 1D ribbons. Images in **A–D** correspond to the designs v16 staggered, v8 staggered, v16 non-staggered jagged, and v16 non-staggered flush ribbons respectively (also see Fig. 3i–iv, Fig. S11). Solid-red arrows point to flat-lying ribbons. The dotted-red arrow in *B* shows how the v8 ribbons had a propensity to adopt stretched and elongated morphologies on the TEM grids. Scale bars are 10 μ m.

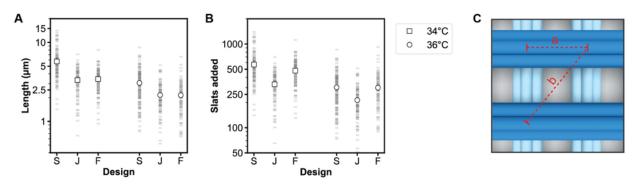
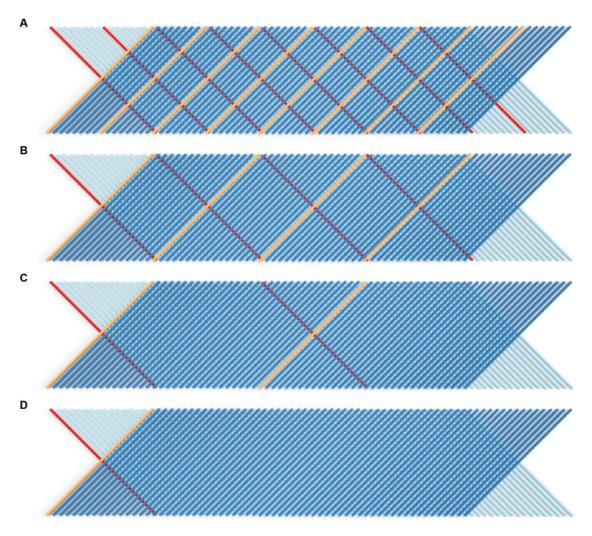
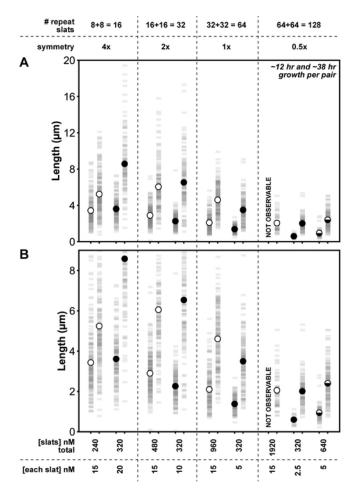
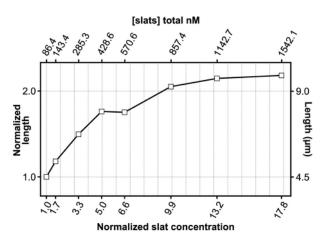
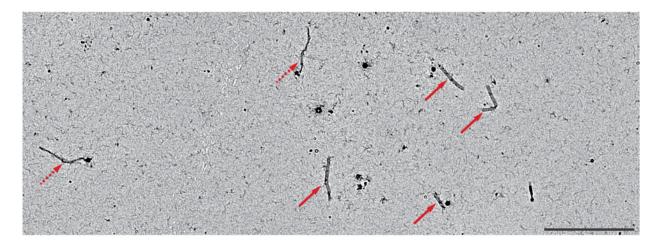



Figure S19 Length comparison of the various designs of v16 ribbons after 16 hours of isothermal growth. A shows the lengths as measured in low-magnification TEM images, versus B which shows the number of slats per ribbon as extrapolated using the theoretical nm per slat as calculated in C. Each faint gray bar in the plots is the measurement of a single ribbon, with the mean lengths shown with either the square or circular data points. 'S', 'J', and 'F' indicate the v16 staggered, non-staggered jagged, and non-staggered flush ribbons. The ribbons for the various designs for a given temperature grew to roughly similar numbers of slats (e.g. 200–300 slats at 36°C), suggesting that the pattern in which the slats are added does not greatly influence the kinetics of assembly. Small differences in growth might be due to small variations in experimental parameters or differences in sequence symmetry of the designs. The v16 staggered ribbons used 4x sequence symmetry, versus 2x sequence symmetry of the v16 non-staggered jagged and flush ribbons (see Supplementary Text 4 for an explanation of the relationship between symmetry and growth). In C, dimension 'a' is 42 bp or \sim 14.2 nm, versus dimension 'b' which is \sim 20.2 nm. We can see by considering the pattern of slat as per the design renders in Fig. 3: each pair of slats for the v16 staggered ribbons and v16 non-staggered jagged ribbons add one unit of 'b'; conversely, each pair of slats for the v16 non-staggered flush ribbons add one unit of 'a'. $N_{S_34^\circ C} = 133$, $N_{J_34^\circ C} = 104$, $N_{F_34^\circ C} = 109$, $N_{S_36^\circ C} = 170$, $N_{J 36^{\circ}C} = 102$, and $N_{F 36^{\circ}C} = 95$ ribbons were measured.

Figure S20 Design renderings showing variable sequence symmetries of the v16 staggered ribbons. That is, the number of slats that repeat in the periodic unit is arbitrary and can be programmed with as many unique slats as desired. Alternatively, sequence symmetry of a given slat is the copy number of another particular slat from the perpendicular direction to which it is bound. This is observed in the above where a given slat from the top-layer is colored orange, and a given slat in the bottom-layer that is colored red. **A** is 4x symmetry with 16 unique slats (i.e. 8+8 slats in each respective perpendicular layer), **B** is 2x symmetry with 32 unique slats (i.e. 16+16), **C** is 1x symmetry with 64 unique slats (i.e. 32+32), and **D** is 0.5x symmetry with 128 unique slats (i.e. 64+64). The v16 staggered ribbons in Fig. 3i use the 4x symmetry, the v8 staggered ribbons in Fig. 3ii use the 2x symmetry, the non-staggered jagged and flush ribbons in Fig. 3iii—iv use the 2x symmetry, the v16 staggered sheets in Fig. 4 and Fig. 5 use the 2x sequence symmetry. All origami crisscross growth characterization with respect to reaction conditions was studied using v16 staggered ribbons with 4x symmetry, or v8 staggered ribbons with 2x symmetry. In Fig. S21, growth versus symmetry design as shown above are compared.


Figure S21 Length of v16 staggered ribbons versus the number of unique slats in the unit repeat of the ribbon (i.e. symmetry as explained in Fig. S20), as obtained by measuring ribbons in TEM images after 12 and 38 hours of isothermal 34°C growth. Panels A and B are the same data, with the y-axis in **B** over a smaller range to better show the length differences. Each faded rectangle is the measurement of a single ribbon, with circular data points showing the mean length. In general, designs with a larger number of unique slats (i.e. lower symmetry) grew more slowly. We observed that the concentration of the slats is an important determinant for the rate of growth of a given symmetry design. The white data points indicate where we maintained the per slat concentration at 15 nM, versus the black data points where we maintained the total concentration of slats at 320

nM. The following number of ribbons were measured for each condition: $N_{8+8 \text{ slats}; 15 \text{ nM}}$ [each slat], 12 hr = 177, $N_{8+8 \text{ slats}; 15 \text{ nM}}$ [each slat], 38 hr = 192, $N_{8+8 \text{ slats}; 20 \text{ nM}}$ [each slat], 12 hr = 147, $N_{8+8 \text{ slats}; 20 \text{ nM}}$ [each slat], 38 hr = 117, $N_{16+16 \text{ slats}; 15 \text{ nM}}$ [each slat], 12 hr = 217, $N_{16+16 \text{ slats}; 15 \text{ nM}}$ [each slat], 38 hr = 147, $N_{16+16 \text{ slats}; 10 \text{ nM}}$ [each slat], 12 hr = 146, $N_{16+16 \text{ slats}; 10 \text{ nM}}$ [each slat], 38 hr = 129, $N_{32+32 \text{ slats}; 15 \text{ nM}}$ [each slat], 12 hr = 169, $N_{32+32 \text{ slats}; 15 \text{ nM}}$ [each slat], 38 hr = 179, $N_{32+32 \text{ slats}; 5 \text{ nM}}$ [each slat], 12 hr = 117, $N_{32+32 \text{ slats}; 5 \text{ nM}}$ [each slat], 38 hr = 143, $N_{64+64 \text{ slats}; 15 \text{ nM}}$ [each slat], 12 hr = 0, $N_{64+64 \text{ slats}; 15 \text{ nM}}$ [each slat], 38 hr = 58, $N_{64+64 \text{ slats}; 2.5 \text{ nM}}$ [each slat], 12 hr = 78, $N_{64+64 \text{ slats}; 5 \text{ nM}}$ [each slat], 12 hr = 78, $N_{64+64 \text{ slats}; 5 \text{ nM}}$ [each slat], 38 hr = 132.

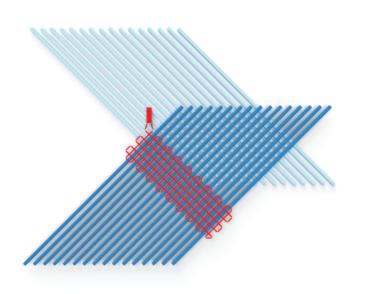
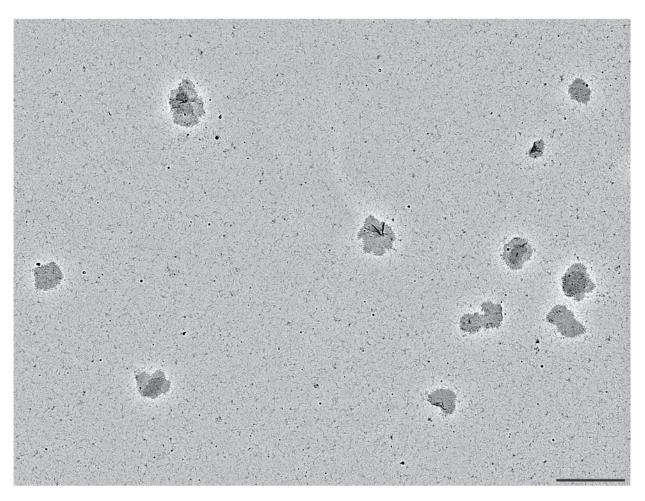
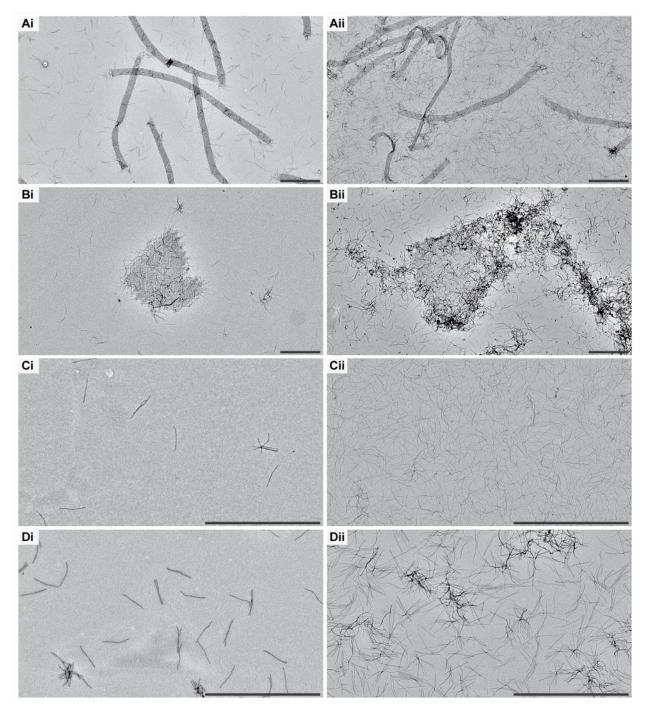


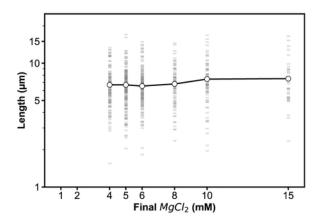
Figure S22 Normalized mean lengths of the ribbons are shown versus the concentration of the slats for the 4x sequence symmetry design (i.e. 16 total unique slats) using a constant concentration of seed. There is roughly a linear change in the mean length versus the slat concentration when the total slat concentration is below 500 nM, versus a lesser increase in length for when higher concentrations of slats were used. This experiment is replotted on a linear axis with the data from Fig. 5D. The dotted

grid lines are spaced to represent an increase in either the length or total slat concentration of one unit compared to the condition to which the data was normalized.

Figure S23 Tri-layer arrangement of slats on a v8 staggered ribbon for 2D growth, as shown in an overview image of the ribbon sample from Fig. 3B. The initial v8 ribbon with two layers of slats was grown isothermally overnight, at which point the additional third layer of slats was added and incubated for two further days. The ribbons with solid red arrows were those where a third layer was successfully added, versus the ribbons with dashed arrows where the third layer did not bind. We note that binding of the third layer appeared to be an all-or-nothing event for a given ribbon. It is unclear why the third layer slats did not bind to certain ribbons and will require further study and optimization to improve its efficiency. The scale bar is 10 µm.

Figure S24 Render of the repeating slat unit for periodic growth of 2D sheets. The pattern of growth is similar to the v16 staggered ribbons (see Fig. S16A), except that here the top- and bottom-layers of slats are shifted with respect to one another. The particular render and designs as tested in this paper used 2x sequence symmetry and were composed of 32 unique slats total.


Figure S25 Low-magnification TEM images of the periodic sheets after three days of isothermal growth.

The sheets were grown with 0.2 nM seed and generally appeared as well distributed single particles. The scale bar is $10 \ \mu m$.

Figure S26 Large periodic megastructures can be purified from excess free slats to a limited extent by low speed centrifugation. Rows **A–D** are ribbons, sheets, one layer of unassembled ribbon slats with no seed as

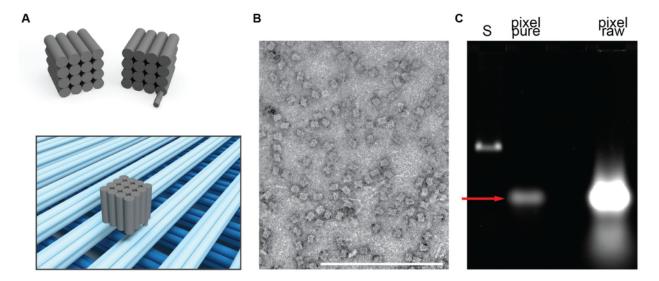

one control, and both layers of unassembled ribbon slats with no seed as another control, respectively. In column i, the samples were purified as described in Method 12, versus column ii which is the raw sample with no centrifugation. There are qualitatively fewer background free slats in the resuspended pellets in comparison to the raw samples. We note that the background free slats could be further lessened by repeating the centrifugation process two or more times. However, we were unable to extract all the background slats by centrifugation alone. There was a higher background of free slats in sample Di where the control slats had both handles and complementary handles from the other perpendicular layer, versus *Ci* where the control slats only had handles from one layer. We assume that transient interactions between free slats with complementary handles makes them prone to pelleting during centrifugation and that is the reason we could not completely remove the slat background in the megastructures samples in A and B by centrifugation alone. Further purification could potentially be achieved by attachment of the crisscross structures to microbeads or other surfaces (e.g. via biotin/streptavidin on the seed) and sequential washing away of unbound slats, under more stringent conditions (e.g. higher salt). Indeed, in our low-mag DNA-PAINT images (Figs. S29 and S30), in which flow over attached megastructures provides a degree of washing, qualitatively the background appears more evenly dispersed, with less bias towards overlap with the megastructures themselves. In the TEM images, it is likely that many of the overlapping slats are also trapped underneath the megastructures (in addition to laying on top), hindering their removal during the grid staining procedure. Efforts are underway in our laboratory to investigate these avenues for further purification. Scale bars are 2 µm.

Figure S27 Megastructures (i.e. periodic v16 ribbons) using the 7-nt binding sites were stable in lower-magnesium conditions from which they were initially grown. The ribbons were initially grown in 15 mM MgCl₂, then diluted 15-fold into the concentration of MgCl₂ as listed on the x-axis, incubated for ~48 hours at room temperature. There was negligible difference in the length of the

ribbons that were incubated in 15 mM MgCl₂ versus those that were incubated in 4 mM MgCl₂. No ribbons could be observed in either 1 mM or 2 mM MgCl₂ conditions, where they were presumed to have fallen apart. Possibilities for increasing stability in lower ion concentrations include coating megastructures with PEGylated oligolysine⁵⁸ and/or crosslinking the megastructures post-assembly⁵⁹. Each faint gray bar is the length measurement of a single ribbon, with the mean length indicated by the circular, white data point. N ribbons were measured for the conditions tested: $N_{4 mM} = 121$, $N_{5 mM} = 188$, $N_{6 mM} = 171$, $N_{8 mM} = 78$, $N_{10 mM} = 79$, $N_{15 mM} = 38$.

Fig. S28–Fig. S31: Model of the DNA nanocube, additional TEM of nanocube patterns, and DNA-PAINT results of 1D ribbons and 2D sheets

Figure S28 Strategy and folding of the DNA nanocube contrast agent to visualize arbitrary patterns on 6HB megastructure canvases. Uppermost **A** shows a rendering of the $10 \times 10 \times 10 \text{ nm}^3$ DNA nanocube, where we added a 16-nt handle with a 4T linker to the 3' end of one of the strands in the nanocube as published previously³⁷. The lowermost rendering shows the nanocube bound to the top layer of slats in a megastructure. The 3' end of one strand in the top helix of a cyan 6HB was extended with the 16-nt complementary handle at one of the 32 possible addressable sites. The negative-stain TEM image in **B** shows the nanocube after purification by excising them from an agarose gel. **C** shows an agarose gel of the nanocubes after and before purification, with the desired band shown with the solid red arrow. Densitometry of the raw folded nanocube suggests that ~64% of the total material was assembled into the desired structure. The scale bar in the TEM image is 200 nm.

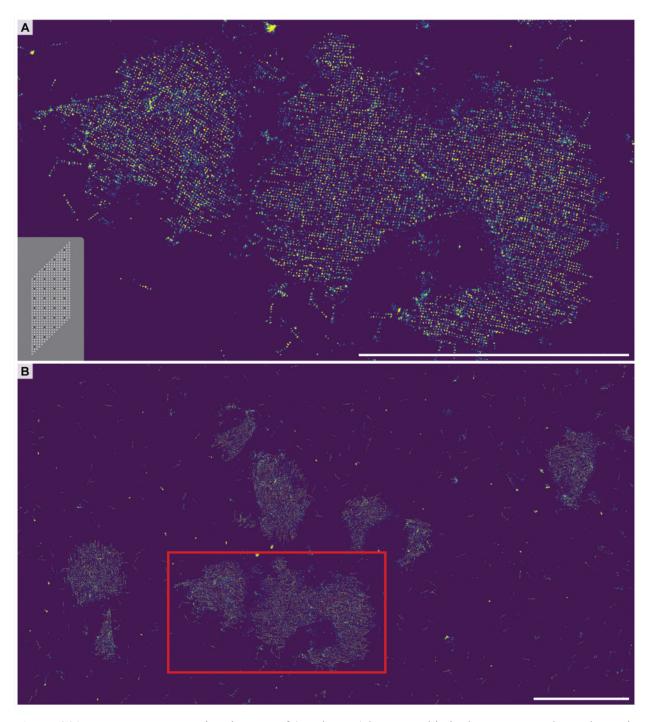
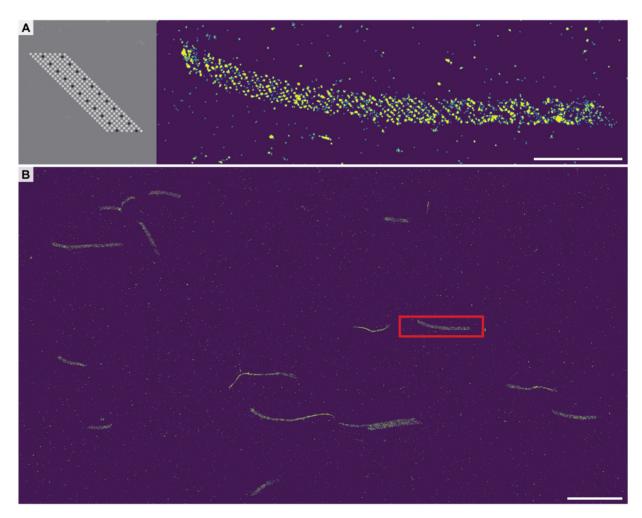
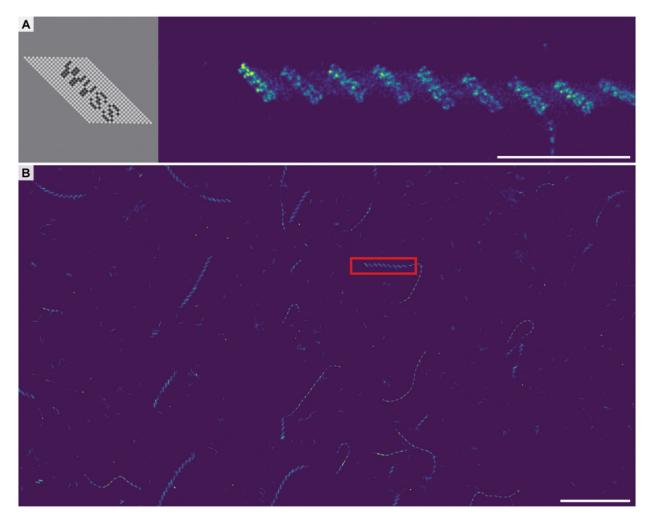




Figure S29 DNA-PAINT overview images of 2D sheets (also note, this is the same sample as shown in Fig. 4C) where the top layer of slats is tagged with complementary handles to the PAINT imager strands. The close-up region shown in A was selected from the boxed region in B. How the top slats are patterned is shown with the dark dots in the lower left of A, where every fourth node (~56.3 nm or 168 bp spacings) was decorated. We achieved single handle resolution, with each dot in the above images corresponding to

a single node on the canvas. The base of the sheets were intermittently decorated with biotinylated strands for docking to the imaging substrate. Scale bars are 5 μ m.

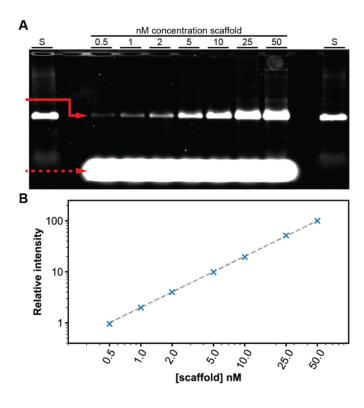
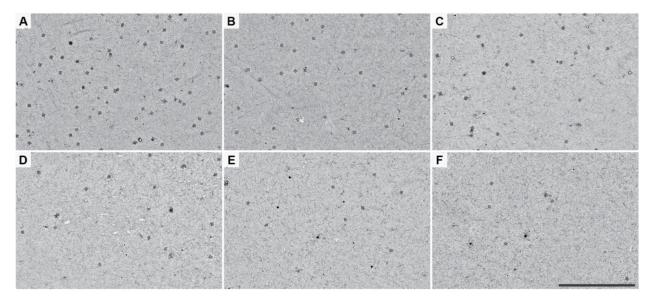
Figure S30 DNA-PAINT overview images of periodic v16 staggered ribbons where the top layer of slats is tagged with complementary handles to the PAINT imager strands. The close-up region shown in **A** was selected from the boxed region in **B**. How the top slats are patterned is shown with the dark dots in the left of *A*, where minimally every third node (~42.2 nm or 126 bp spacings) was decorated. We achieved single handle resolution on some examples of slats in *A*, though the resolution of the single handles was not as clear as in Fig. S29. We also note that the ribbons had a propensity to not bind completely flat to the imaging substrate and frequently appeared stretched and elongated. The base of the sheets were intermittently decorated with biotinylated strands for docking to the imaging substrate. Scale bars are 1 μ m in *A* and 5 μ m in *B*.

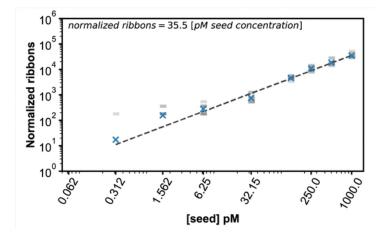
Figure S31 DNA-PAINT overview images of 1D v16 staggered ribbons where the top layer of slats is tagged with complementary handles to the PAINT imager strands, where the pattern resembles the lettering "WYSS." The close-up region shown in **A** was selected from the boxed region in **B**. How the top slats are patterned is shown with the dark dots in the left of *A*, where minimally every node (~14.1 nm or 42 bp spacings) was decorated. The resolution of single handles could not be distinguished, though there is resemblance to the designed pattern. We also note that the ribbons had a propensity to not bind completely flat to the imaging substrate and frequently appeared stretched and elongated. The base of the sheets was intermittently decorated with biotinylated strands for docking to the imaging substrate. Scale bars are 1 μ m in *A* and 5 μ m in *B*.

Fig. S32–Fig. S34: TEM results when no seed added, AGE results of single DNA origami square versus scaffold, representative TEM of megastructures versus concentration of seed

Figure S32 Low-magnification TEM image of a typical megastructure assembly reaction when no seed is added. No assembly was observed in the control for the finite 1022-slat sheet, as above. This was similarly observed in all control reactions for other finite and periodic megastructures from Fig. 2 –Fig. 4, with typical reaction conditions where fast, seeded growth is favored. For brevity, we show only the image of a single design here. The particular reaction as above is perhaps an extreme challenge of the nucleation control attainable with origami slats; slats were added in multiple three-day stages for the largest structures

as explained in Fig. S15. As such, the slats in the above 1022-slat sheet control were incubated at 34° C for over 18 days. In this particular experiment, we also had the thermocycler where we were growing the reaction fail. The reaction sat at room temperature for about one day before we noticed the breakdown, and despite this extended incubation at both these temperatures, no spontaneous growth could be observed. We argue that this leeway with experimental conditions where useful nucleation control can still be attained is a large factor of what makes crisscross assembly of origami a powerful advance to make it easier to create DNA megastructures. The scale bar is 10 μ m.

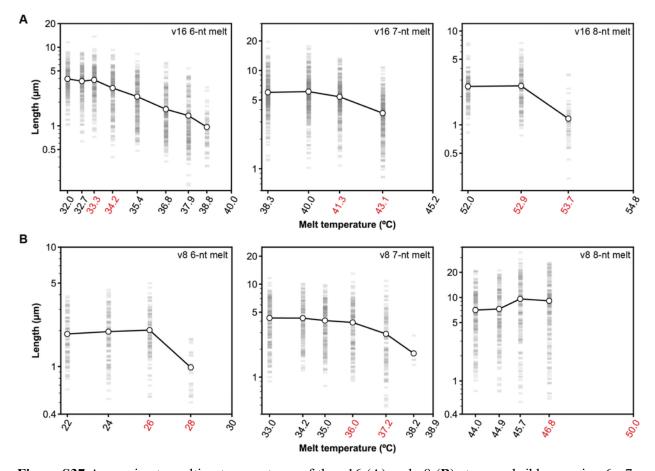




Figure S33 Agarose gel showing the amount of single DNA-origami reference square folded varies precisely with the amount of DNA scaffold added, to serve as a benchmark for nucleation control that we wished to match with assembly of origami-slat megastructures. A shows the agarose gel with the solid red arrow indicating the gel band for the square, the dashed red arrow indicating the excess staple strands, and lanes 'S' containing just the scaffold. In B, the gel density of the solid red gel band with respect to the 50 nM condition is plotted. The dotted line is a linear fitting of the data. indicating an almost perfect stoichiometric relationship between the amount of reference square folded versus

scaffold added. The concentration of scaffold was varied from 0.5–50 nM with the staple strands maintained at 400 nM per strand. This reference square folded as shown above and was also quantified by direct counting TEM images (see Fig. 5Ci).

Figure S34 Representative low-magnification TEM images of the 64-slat square versus different concentrations of seed. The concentrations of seed in A–F were 6, 4, 2, 1, 0.5, and 0.25 nM, respectively. There is a roughly linear relationship between the mean number of squares counted versus the amount of seed added, as plotted in the leftward panel of Fig. 5Cii. This approach of direct counting from ten TEM images to show control of assembly was also used for the reference origami square and other finite and periodic megastructures, as shown in Fig. 5C. The scale bar (which applies to all images A–F) is 10 µm.

Fig. S35–Fig. S40: Standard curve of ribbons, melt temperature of v16 7-nt ribbons, temperature characterization and melt temperature of v8 7-nt, v16/v8 6-nt, and v16/v8 8-nt ribbons, growth versus time for 6-nt and 8-nt v16 ribbons


Figure S35 Standard curve of the ribbons as derived from the experiment shown in the leftward panel of Fig. 5Ci. Ribbons were assembled in reactions where the seed was added in different amounts to a constant concentration of slats. The number of ribbons was counted in ten lowmagnification (i.e. 400x) TEM images and the number of ribbons was normalized with respect to the factor that the sample

was diluted (i.e. multiply by 250) and to a 100 μ m × 100 μ m area (i.e. divide by ~1.44, which is the number of 100 μ m × 100 μ m regions covered in a 400x image area with our microscope setup). This standard curve shows a ~0.3 pM limit-of-detection, where a single ribbon was observed in the ten images. We also note that we saw no ribbons in either the sample with no seed or the sample where ~0.062 pM seed was added. The blue 'x' markers indicate the mean number of ribbons counted per seed concentration. The dotted line and upper left formula is the linear fitting of the data, where the y-intercept was forced through zero to account for how no ribbons were observed when no seed was added. This equation was rearranged to compute the pM amount of spontaneously formed ribbons in Fig. 5D and Fig. S38, with the meaning of the white versus red data points versus the standard curve explained in Fig. S36.

Marker style	x (pM spontaneous nucleation)	Relative unseeded background (vs. 0.5 nM seed)
	x < 0.3	< 0.06%
	0.3 ≤ x < 5	< 0.99%
	5 ≤ x < 50	< 9.09%
	50 ≤ x < 500	< 50%

Figure S36 Table of markers used in Fig. 5D and Fig. S38 to denote spontaneous nucleation of ribbons as counted in the control reactions with no seed. There were fewer pM spontaneously nucleated ribbons counted in the average of ten TEM images of unseeded control reactions, as compared to the standard curve of ribbons in the leftmost panel in Fig. 5Ciii. Each seeded reaction was initiated with 500 pM seed, with the assumed relative proportion ribbons that would have been unseeded background for each temperature condition as listed for each marker. We posit that the relative background of

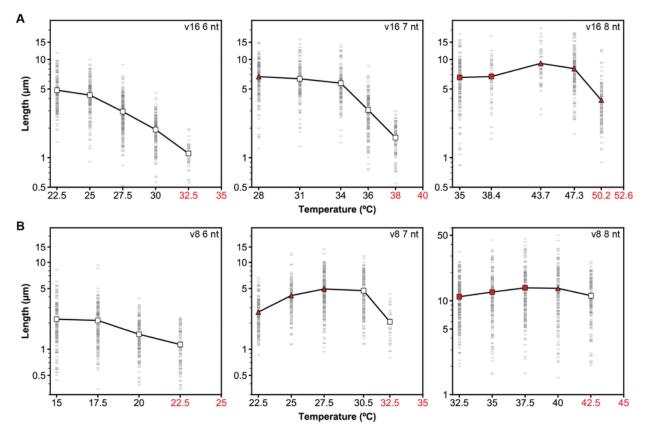

spontaneously nucleated ribbons is especially low for up to and including the red triangle data point, and would be of limited concern for routine nanofabrication of DNA megastructures, though the requirement of nucleation stringency might vary depending on the end application of the crisscross assembly. For instance, one could envision using crisscross growth to amplify some biomarker signal that might require lower background nucleation yet, which might be satisfied using reaction conditions with the white square marker.

Figure S37 Approximate melting temperatures of the v16 (**A**) and v8 (**B**) staggered ribbons using 6-, 7-, and 8-nt binding sites are within the red temperature bounds in the above plots. Ribbons were grown isothermally for \sim 12–16 hours at a temperature favoring seeded growth of long ribbons, at which point the temperature was increased across a gradient of possible melt temperatures for 3–4 hours. Samples were collected on TEM grids and the lengths of ribbons were recorded at the putative melt temperatures. The highest temperature tick on the plots is where no ribbons remained, and is hence above the melting temperature. Some range of temperatures below this upper bound was where the ribbons started to fall apart slowly. The shrinkage of the ribbons was typically most noticeable as observed at the second highest temperature tested, to the extent where sometimes only a small number of ribbons could be observed in the sample. The lower and upper temperature bounds containing this melt transition temperature are highlighted in red as above. N ribbons were measured for the conditions tested:

• v16 6-nt: $N_{32^{\circ}C} = 172$, $N_{32.7^{\circ}C} = 189$, $N_{33.3^{\circ}C} = 205$, $N_{34.2^{\circ}C} = 184$, $N_{35.4^{\circ}C} = 216$, $N_{36.8^{\circ}C} = 204$, $N_{37.9^{\circ}C} = 180$, $N_{38.8^{\circ}C} = 56$

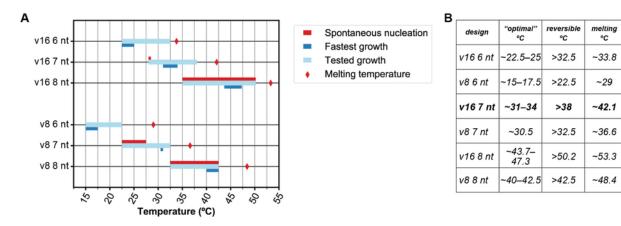

- v16 7-nt: $N_{38.3^{\circ}C} = 297$, $N_{40^{\circ}C} = 337$, $N_{41.3^{\circ}C} = 305$, $N_{43.1^{\circ}C} = 283$
- v16 8-nt: $N_{52^{\circ}C} = 124$, $N_{52.9^{\circ}C} = 141$, $N_{53.7^{\circ}C} = 51$
- v8 6-nt: $N_{22^{\circ}C} = 97$, $N_{24^{\circ}C} = 101$, $N_{26^{\circ}C} = 102$, $N_{28^{\circ}C} = 28$
- v8 7-nt: $N_{33^{\circ}C} = 174$, $N_{34.2^{\circ}C} = 148$, $N_{35^{\circ}C} = 183$, $N_{36^{\circ}C} = 146$, $N_{37.2^{\circ}C} = 114$, $N_{38.2^{\circ}C} = 4$
- v8 8-nt: $N_{44^{\circ}C} = 183$, $N_{44.9^{\circ}C} = 166$, $N_{45.7^{\circ}C} = 151$, $N_{46.8^{\circ}C} = 177$

Figure S38 Length of the ribbons versus growth temperature for seeded v16 (**A**) or v8 (**B**) ribbons using either 6-, 7-, or 8-nt binding sites. The v16 7-nt middle plot is the same data as from the leftmost plot in Fig. 5D and is replicated for easy comparison to the other designs. The x-axis ticks shown in red are the growth temperatures flanking the reversible temperature for slat binding to a ribbon end, where the seeded ribbons were first observed to be short and then entirely not observed. The longest seeded ribbons with the fastest growth were generally observed at lower growth temperatures several degrees below reversibility. The shape and color of the mean-length data points represent the number of spontaneously nucleated ribbons as counted in control reactions where no seed was added. White square points are where no

measurable ribbons were observed and were below the 0.3 pM ribbon detection limit, and red points represent some amount of measurable unseeded growth. Details regarding the degradations of these red data points are explained in Fig. S36. Further discussion and consideration of the above results are in Supplementary Text 4 and Fig. S39. Each seeded reaction was mixed together with 20 nM per slat, 0.5 nM of seed, and 15 mM Mg²⁺ and incubated for 4 hours at a temperature above the ribbon melt temperature where binding of slats to the seed was favored. Subsequently, the reaction was incubated isothermally for ~16 hours at the temperature as indicated on the x-axis, at which point was diluted and with images of the ribbons collected by TEM. Each faint gray box is the length measurement of a single ribbon, with the large data point representing the mean length. N ribbons were measured for the conditions tested:

- v16 6-nt: $N_{22.5^{\circ}C} = 156$, $N_{25^{\circ}C} = 154$, $N_{27.5^{\circ}C} = 234$, $N_{30^{\circ}C} = 162$, $N_{32.5^{\circ}C} = 38$
- v16 7-nt: $N_{28^{\circ}C} = 149$, $N_{31^{\circ}C} = 139$, $N_{34^{\circ}C} = 133$, $N_{36^{\circ}C} = 170$, $N_{38^{\circ}C} = 91$
- v16 8-nt: $N_{35^{\circ}C} = 144$, $N_{38.4^{\circ}C} = 51$, $N_{43.7^{\circ}C} = 46$, $N_{47.3^{\circ}C} = 154$, $N_{50.2^{\circ}C} = 120$
- v8 6-nt: $N_{15^{\circ}C} = 145$, $N_{17.5^{\circ}C} = 166$, $N_{20^{\circ}C} = 137$, $N_{22.5^{\circ}C} = 81$
- v8 7-nt: $N_{22.5^{\circ}C} = 141$, $N_{25^{\circ}C} = 128$, $N_{27.5^{\circ}C} = 201$, $N_{30^{\circ}C} = 140$, $N_{32.5^{\circ}C} = 34$
- v8 8-nt: $N_{32.5^{\circ}C} = 206$, $N_{35^{\circ}C} = 150$, $N_{37.5^{\circ}C} = 171$, $N_{40^{\circ}C} = 141$, $N_{42.5^{\circ}C} = 150$

Figure S39 Growth and melt temperatures as determined for various ribbon designs are plotted in **A**, with the plotted data numerically shown in table **B**. The light-blue lines indicate the different temperatures tested in Fig. S38, where growth of ribbons was observed when the seed was added. The highest light-blue points are the temperatures where ribbon growth drastically slowed, and approached the reversible temperature for slats to bind either 16 (for v16) or 8 (for v8) binding handles on a ribbon end. The red diamonds are the average temperatures where previously assembled ribbons were observed to fall apart (i.e. the approximate melt temperature), as determined in Fig. S37. The lowest light-blue points are the lowest growth at lower temperatures yet. The dark-blue points were designated as the "optimal" growth temperatures favoring fast, seed-driven growth of the ribbons as determined from Fig. S38. We discuss the selection of these temperature optimums in more depth in Supplementary Text 5.1. The red points were where measurable spontaneous nucleation was observed in Fig. S38 that was some amount greater than the 0.3 pM ribbon detection limit.

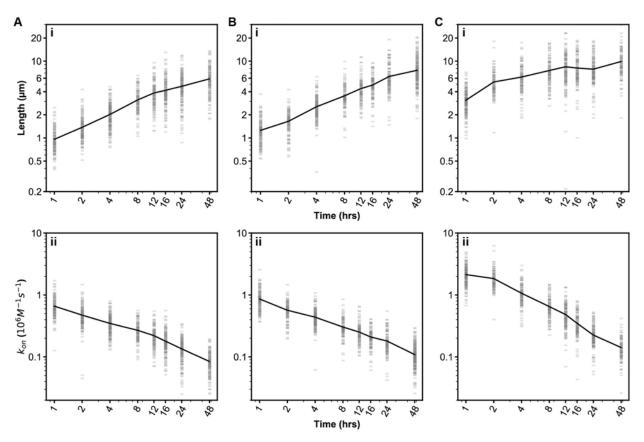


Figure S40 Length of the ribbons (see i) and extrapolated kinetics (see ii) for v16 6-, 7-, and 8-nt ribbons versus time in A, B, and C respectively. Panel Bi is replicated from Fig. 5E for clearer comparison of the three designs. Each faint gray bar represents the length measurement of a single ribbon, with the mean lengths indicated by the line. The mean lengths for the ribbons after 1 hour of growth were ~1, ~1.3, and ${\sim}3.1~\mu m,$ and after 16 hours of growth were ${\sim}4.2,~{\sim}4.9,$ and ${\sim}8.1~\mu m$ for the 6-, 7-, and 8-nt designs, respectively. Explanation for how the mean lengths were extrapolated into kon rates are discussed in Supplementary Text 6. The rates of growth were increasingly faster for the 6-, 7-, and 8-nt designs. The observed average forward rate of assembly after one hour of growth was ~0.66*10⁶, ~0.86*10⁶, and ~2.13*10⁶ M⁻¹s⁻¹ for the 6-, 7-, and 8-nt designs. The average rates were observed to gradually decline over time, such as ~0.18*10⁶, ~0.21*10⁶, and ~0.35*10⁶ M⁻¹s⁻¹ for the 6-, 7-, and 8-nt designs after 16 hours of growth. We hypothesize that this decline was because of temporary stalling and permanent halting of growth due to accumulation of errors with missing handles on the growing fronts of ribbons, or else due to depletion of the free slats which may have caused inaccuracy of the pseudo-first order kinetic assumptions as explained in Supplementary Text 6.2. All assembly reactions had 20 nM per slat, 0.5 nM of seed, and 15 mM Mg²⁺ and were conducted at growth temperatures where spontaneous nucleation was limited. N ribbons were measured for the conditions tested:

- v16 6-nt: $N_{1 hr} = 130$, $N_{2 hr} = 141$, $N_{4 hr} = 179$, $N_{8 hr} = 114$, $N_{12 hr} = 119$, $N_{16 hr} = 146$, $N_{24 hr} = 177$, $N_{48 hr} = 128$
- v16 7-nt: $N_{1 hr} = 131$, $N_{2 hr} = 107$, $N_{4 hr} = 158$, $N_{8 hr} = 107$, $N_{12 hr} = 106$, $N_{16 hr} = 106$, $N_{24 hr} = 118$, $N_{48 hr} = 204$
- v16 8-nt: $N_{1 hr} = 188$, $N_{2 hr} = 108$, $N_{4 hr} = 112$, $N_{8 hr} = 108$, $N_{12 hr} = 143$, $N_{16 hr} = 125$, $N_{24 hr} = 148$, N_{48} hr = 100

Fig. S41–Fig. S45: Hamming-distance analysis of 1D ribbon growth, mechanistic testing for growth changes to 1D ribbons vs. kinetic trapping of slats resulting from Hamming distance, and optimized Hamming distances of all the megastructure designs tested in this work

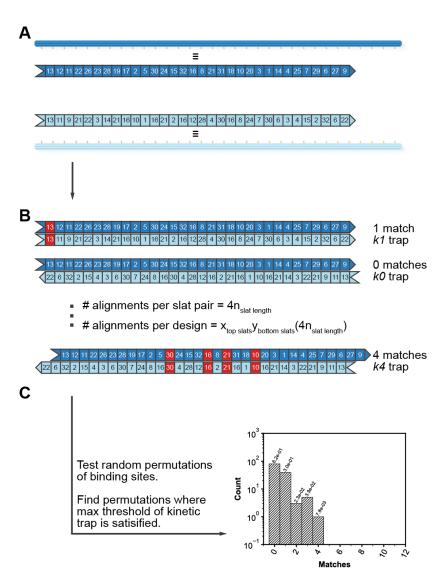
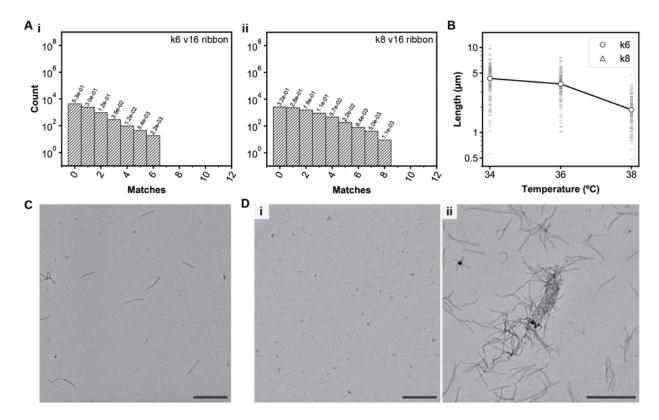
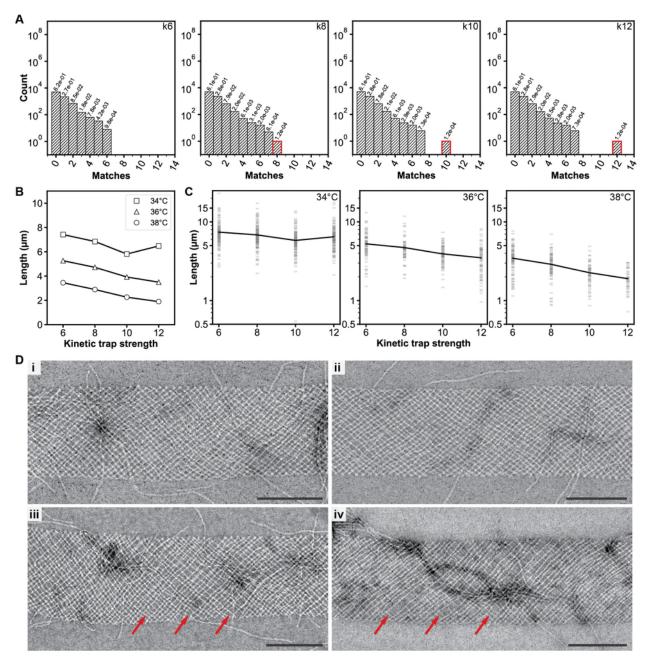




Figure S41 Schematic showing analysis of Hamming distances between a single pair of slats. In A, a pair of example slats are extracted from some random permutation of binding sites for а megastructure. Rendered images of 6HB slats are drawn proximally to the numeric representation, where each slat abstracted is as а onedimensional list which is n_{slat} *length* long (i.e. n = 32 for the 6HB slat). In **B**, the Hamming distance between the various forward and reverse alignments is measured to determine the number of matching, complementary handles between the pair of slats (where matches the sample in alignments are in red). There are

 $4n_{slat \ length}$ alignments per slat pair, and x^*y slat pairs in a megastructure composed of x top-slats and y bottom-slats. For the example slat pair, the maximum number of matches is four and is designated as a kinetic trap of strength k4. In **C**, the strength of the total 128 alignments for the example slat pair are shown in a histogram, with the max-strength kinetic trap shown in the rightmost bin.

Figure S42 Increasing the *k* kinetic-trap strength (i.e. the number of matching complementary binding sites between pairs of slats resulting from smaller Hamming distances) nearly stops the growth of v16 7-nt ribbons. The number of kinetic traps between one layer of slats and the other perpendicular layer is shown for two ribbon designs in **Ai–ii**. There are maximally six or eight matching binding sites between the slats (i.e. *k6* and *k8* strength kinetic traps) in each of the designs, respectively. The relative fraction of each strength trap of the total interactions measured is shown above each histogram bar. In **B**, the length of ribbons as measured by TEM after overnight growth of the *k6* and *k8* designs at various temperatures is plotted. We note that no appreciable growth of the *k8* ribbons was measured at any of the temperatures tested. Each faint gray box represents the length measurement of a single ribbon, with the circular and triangular white points showing the mean. Low-magnification TEM image of the *k6* growth is in **C**, versus the unobservable growth of the *k8* design in **Di** and one of the infrequently observed short *k8* ribbons in **Dii**. Isothermal growth was conducted for 16 hours using 15 mM Mg²⁺, with either ribbon design using 4x sequence symmetry with binding sites as selected from the 2048-strand library. Scale bars are 10 µm in *C* and *Di*, and 1 µm in *Dii*. N ribbons were measured for the conditions tested: N_{k6 34°C} = 118, N_{k6 36°C} = 108, N_{k6 38°C} = 94.

Figure S43 Introducing a single kinetic trap between a single pair of slats of max strength k progressively slows the growth of v16 7-nt ribbons as k is increased. Histograms in **A** show the number of kinetic traps between one layer of slats and the other perpendicular layer in the different ribbon designs tested. The k6 sequence permutations is a control with the maximal Hamming distance that we attained for a 4x symmetry ribbon using the 2048-strand library. The k8 permutation is distinct from the k6 control, with the k10 and k12 that were generated from small manipulations of the k8 design. Each of these latter three designs have only a single kinetic trap of either k8, k10, or k12 strength. The relative fraction that each kinetic trap comprises of the total interactions measured is written above each bar. **B** shows the mean length of the

ribbons at different temperatures versus the different max-strength kinetic traps. In general, the ribbons were shorter at a given temperature when the kinetic trap was stronger with a larger k trap where more matching binding sites entrapped one pair of slats. C shows the raw measured-length data of each design for each temperature tested. In D, close-up negative-stain TEM images show segments of a ribbon for k6, k8, k10, and k12 traps in **i**–**iv**, respectively. Red arrows point to periodic missing slats in one layer of the ribbon which appeared every eighth slat. Scale bars are 200 nm. The length of N ribbons were for each of the conditions tested above:

- At 34°C: $N_{k6} = 124$, $N_{k8} = 138$, $N_{k10} = 122$, $N_{k12} = 129$.
- At 36°C: $N_{k6} = 77$, $N_{k8} = 61$, $N_{k10} = 78$, $N_{k12} = 72$.
- At 38°C: $N_{k6} = 91$, $N_{k8} = 81$, $N_{k10} = 61$, $N_{k12} = 41$.

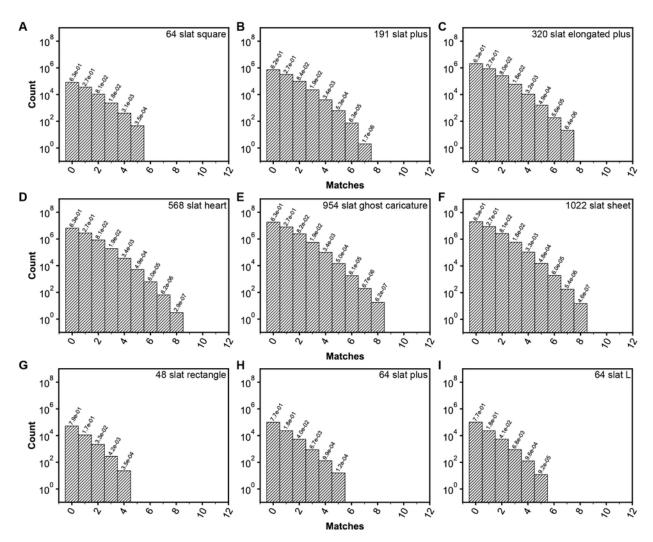
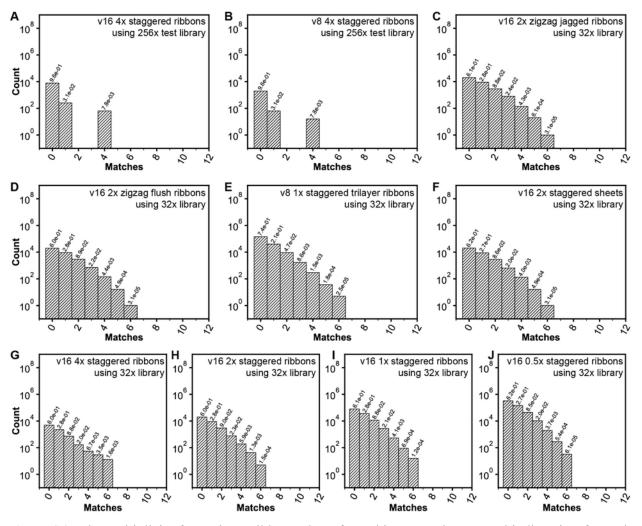



Figure S44 The multiplicity for each possible number of matching, complementary binding sites for each

of the slats from one layer with respect to each of the slats in the other layer are shown as histograms, for the optimized finite megastructure designs as tested in Fig. 3. The relative fraction that each match comprises of the total interactions is written above each bin. We minimized the maximum number of matches for each design as discussed in Method 2 and Supplementary Text 7.4.

Figure S45 The multiplicity for each possible number of matching, complementary binding sites for each of the slats from one layer with respect to each of the slats in the other layer are shown as histograms, for the optimized periodic megastructures in this paper. The relative fraction that each match comprises of the total interactions is written above each bin. We minimized the maximum number of matches for each design as discussed in Method 2 and Supplementary Text 7.3. The ribbon designs in **A–B** have maximally *k4* traps, with permutations generated from 256 different 6-, 7-, or 8-nt handles from a 512-strand library. All other periodic designs in **C–J** have maximally *k6* traps, with permutations generated from 32 different 7-nt handles in the 2048-strand library. Design *A* is for the 4x symmetry v16 staggered ribbon as used in

Fig. 3Ai, Fig. S18A, Fig. S19A–B design 'S', Fig. S27, Fig. S35, Fig. 5Ciii ribbons, and v16 ribbon characterization in Fig. 5D–E and Fig. S37–Fig. S40; design *B* is for the 4x symmetry v8 staggered ribbon as used in Fig. S17Aii, Fig. S18B, and v8 ribbon characterization in Fig. S37–Fig. S38; designs C-D are for the 2x symmetry v16 non-staggered ribbons as used in Fig. 3Aii–iii, Fig. S18C–D, and Fig. S19A–B designs 'J' and 'F'; design *E* is for all tri-layer designs; design *F* was used for any staggered sheet; designs G-J are for the ribbons in Fig. S21.

Table 1–Table 8: Core-strand sequences for 6HB, 12HB, seed, and single origami reference square; Sequences of the 6-, 7-, 8-, 9-, and 10-nt handles; Nanocube strand sequences

6HB universal core staples	6HB top staples (h5)
ACCATCACCCAAACTATTAAAGAACGTGGAGAGAGAGTGCA GCAAGCGGTCCACGGTTTTCTTTTTCTCACCATAAAGCCTGGGG TGCCTAATGAGTGGTGGAAATTGTTTTCCCCTGCGGCGCAGAA TGCGGCGGGCCGTGCCGCCGCAGGCGCGGCGC	<pre>1; CCTGGCCCTCTCCAACGTCAAAGGCGACTTGACGGGAAAGG 2; CATAAAGTGGTGAGACGGCAACACTGAGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCAAGAAG</pre>
CACTANATCGGANGATAGGGTTGGGAGAAATCCTGT TTGATGGTTACGCGGGGGAGGGGGGGGGG	6HB bottom staples (h2)
TTTCCCAGTCACGCACCGCTTCGGGCCACTGCACGGTGG AGGGACGACGGCGCTGGGCTCCTGTTTGCATTGCA	<pre>1; GGCGCCAGGGTGCTGGTTTGCCCAGCAGGTTCCAGTTTGG 2; TAGCTGTTCCTAGGTAACTCACATTAATTGGTTGCGTATT 3; CAGCGGTGCCGGGTACCTGCGGGTATCCTGCGGCGGTATCCTGCAGC 4; AACCAGCTGTGTGCGCTGCGGCGGAACCATCCCACAGC 5; CTTTAGTGATGACACGCACAGCAGCAGACAGCCCCCCCAGGCGG 6; GAACCATCGGCAAGCAGCAGCGCAGAACAGCCCCCCCACAGGCGG 7; CCGTAAACTAGCGGTAACGTTAAGTTGGTAAACGTGCACCGGG 8; TCAAACTAAGGGTTACTTGTTAAAAGCAGTCACAGCGGCA 1; ACGCGAAAAGCAGCCCCCAGAGCAGCAGCAGCAGCAGCAG</pre>

AGTTTCGTCACCAGCAGTTGGCAAATCACACCCTCAGAACCG	
AGGATTAGCGGGGTCTAAAATATCTTTACAGTGCCCGTATAA	
ATGGAAAGCGCAGTCGTCAATAGATAATAACCACCACCAGAG	
TTCATAATCAAAATTTACAAACAATTCGAATCAGTAGCGACA	
GTCACCGACTTGAGCGTTATTAATTTTAATGGTTTACCAGCG	
CAGTATGTTAGCAAGAACAAAGAAACCAGTAAGCAGATAGCC	
GAGCGCTAATATCACCTGATTATCAGATATGAAAATAGCAGC	
ACCAACGCTAACGATGTTTGGATTATACGAGGCGTTTTAGCG	
GCACTCATCGAGAACCATATCAAAATTAGAAAAATAATATCC	
TAAAGTACCGACAATGCGTAGATTTTCAGCCAACGCTCAACA	
CCGACCGTGTGATACAGTACCTTTTACACTGATGCAAATCCA	
TAGATTAAGACGCTATTGCTTTGAATACCAGTACATAAATCA	
CCGGCGAACGTGGCAAATCAAAAGAATAGCCCGACCCTAAAG	
GCGGGCGCTAGGGCCTGCATTAATGAATCGGCCCCGAAATCG	
GCGGGGGCTAGGGCCTGCATTAATGAATCGGCCCCGAAATCG	
GCGTACTATGGTTGTGTGTTCAGCAAATCGTTATCTTCGCGT	
CTCGTTAGAATCAGAACCGCAAGAATGCCAACGGTCATAAAC	
AGGGATTTTAGACAGTGTACATCGACATAAAAAGTGGTGCTG	
GTTTTTATAATCAGGCCAAGCTTTCAGAGGTGGTGCCGCCA	
ATCACGCAAATTAACACTCCAGCCAGCTTTCCGGACGTTGTA	
ATTACGCAAATTAACACTCCAGCCAGCTTTCCGGACGTTGTA AATAACATCACTTGACGCCATCAAAAATAATTCCAGTATCGG	
CTTGCTGGTAATATGTCATTGCCTGAGAGTCTGAGCTCATTT	
AACAGGAAAAACGCAGAAGCCTTTATTTCAACGGAGAGATCT	
AATCGTCTGAAATGTCGCAAATGGTCAATAACCTGACCCTGT	
CACACGACCAGTAACAGGTCAGGATTAGAGAGTTTAGTTTGA	
AGAACCCTTCTGACGTCATAAATATTCATTGAAACCAGACCG	
CAATATTTTTGAATCAGTTGAGATTTAGGAATAATAGCGTCC	
TAGCCCTAAAACATCATTCAGTGAATAAGGCTTTTATTACAG	
AGCAGAAGATAAAAATAAATTGTGTCGAAATCCCAAATCAAC	
GCCTGCAACAGTGCACGAGGGTAGCAACGGCTAACGGAGATT	
ATCTAAAGCATCACAAAAGGCTCCAAAAGGAGCCAGCAGCGA	
AATCAATATCTGGTTACAAACTACAACGCCTGTTTTCACGTT	
TTGAGGAAGGTTATTTTGCTCAGTACCAGGCGGGTAACACTG	
TAATAGATTAGAGCCTCTGAATTTACCGTTCCAAGAAGGATT	
AGAAGTATTAGACTCACCGGAACCAGAGCCACCAAAGCCAGA	
ATCCTTTGCCCGAACCATTTGGGAATTAGAGCCTGCCATCTT	
ATTATCATTTTGCGACGTAGAAAATACATACATATTATCACC	
ATTATCATCATATTGAGAGATAACCCACAAGAACTTATTACG	
AATATAATCCTGATGCGTCTTTCCAGAGCCTAAAGGGTAATT	
AGGGTTAGAACCTACAAGCAAGCCGTTTTTATTCTGAATCTT	
AGAAATAAAGAAATAAGGTAAAGTAATTCTGTCCCAAGTACC	
TGAATATACAGTAAAATAAGGCGTTAAATAAGAAAGAGAATA	
AACGGATTCGCCTGGAGAAGAGTCAATAGTGAATTTGAAATA	
GCGCAGAGGCGAATAATTACCTGAGCAAAAGAAGCGATAGCT	

Table 1 Oligonucleotide staple strand sequences for the 6HB slat. The 127 universal core staple strands are unchanging across all the 6HB slats folded, versus the 32 top- and 32 bottom-staple strands which are modified on their 3' end to encode functionality in the slats. The latter top- and bottom-staple strands are arranged in the order in which they are displayed along the length of the slat, where the nodal position is indicated with the leading number. Given top- and bottom-staple strand pairs with the same number overlay one another. In general, we reserved the top-staple strands to append handle or complementary handle sequences to bind the slats to one another. The bottom-staple strands were alternatively appended with strong handle "plug" sequences to bind slats to the gridiron seed, the complementary 16-nt handle sequence to bind the nanocube contrast agent, the complementary handle sequence to bind DNA-PAINT imager strands, with biotin to affix the megastructures to streptavidin coated flow chambers for DNA-PAINT, or with complementary handle sequences to bind other slats in case of the tri-layer ribbon.

12HB universal core staples	12HB top staples
ACCATCACCCAAACTATTAAAGAACGTGGAGAGAGAGTGCA	1; CCTGGCCCTTCCAACGTCAAAGGGCGACTTGACGGGGAAAG
GCAAGCGGTCCACGGTTTTTCTTTCACCATAAAGCCTGGGG	2; CATAAAGTGGTGAGACGGCAACAGCTGAGAAAGCGAAAGGA
TGCCCTAATGATTGGTGTGAAATTGTTATCCCTGCGGCCAGAA	3; TCTGTGGTGGCCACACGGCCACCGGTCACCCGTCCGC
TGCGGCGGGCCGTTGCCCCCGCCACGAGCGCTGCCGG	4; ATCCCCCGGGATCCACGCGCGTGTCACCCGGCCAGGAGGCCGATTAA
TATGAGCCGGGCCGTGCCGCTGGAGGGTGCCAGCAGCGCGCGGCAG	5; TTTTCGTCTTCAGCGGGGCCATTGCAGGGTATAACGTGCTTC
CCTCCGCCCAGAAGAAGCTAAACGTAAACGAGGGGAAGGGATA	6; TTTCTCCGTTGCTATTGCCGGTCCGGCAGGAGGCGATTAA
GCTCCTACGGAAGAAAACGTACAGCCCATCCAGCGCGCGAA	7; GCTATTACGGTTTACCAGTCCGGCAGATGGAATCCTGCGAAAGT
AGGGGATGTGCTCCATTCAGGCTGCCGAAGGGATAGGTCAC	8; GACCGTAATCTGTTGGGAAGGGCGATCGAAAGAGTCTGTCC
GTTGGTGTAGATGGTGAGCGAGTAACGACAACCATCAAATA	9; GGAAGATTGCGTCGGATCTCCCGTGGGACTCGATTAGT
TTTAAATTGTAAACATGCAACACCTATAGCAAACAACTATGCAAATA	10; AGACAGTCACCCGGTGGTAATATCGAACTCAAACTATCGGC
TATGAATTCCAACAATGCCCGGGGAAAGGAATAGGCAA	11; GGCAAGGCATAGGTAAAGATTCAAAGGCCGCCAGCCATTGC

AATTAAGCAATAAGGCATCAATTCTACTAACTAAAGTACGGT	12; AATATGCAATAGTAGTAGCATTAACATCACATTTTGACGCTC
GTCTGGAAGTTTCTGGCTTAGAGCTTAATTCATCAAAAAGAT	13; AGCGGATTGGCTGAATATAATGCTGTAGGCAGATTCACCAGT
TAAGAGGAAGCCCCCATAAATCAAAAATCACAAAATAGCGAG	14; GATAAAAACGGTCTTTACCCTGACTATTTGGCCAACAGAGAT
AGGCTTTTGCAAAACGAGGCATAGTAAGAGGCTCATTATACC	15; TAAGAACTGCAACACTATCATAACCCTCATACGTGGCACAGA
ACTAAAACACTCACCATTAAACGGGTAAAAATAACCGATATA	16; ACGGTGTACACTTTAATCATTGTGAATTAATGCGCGGAACTGA
TTCGGTCGCTGAGTTCTTAAACAGCTTGATCAACTTTCAACA	
GTTTCAGCGGAGTAAGTTTTGTCGTCTTTCGAACCGCCACCC	
TCAGAGCCACCACTAGGTGTATCACCGTACGCCCCCTGCCTA	
TTTCGGAACCTATGGTAATAAGTTTTAACGGCATTGACAGGA	1000 hatten sterles
GGTTGAGGCAGGTCACCCTCAGAGCCACCATTGCCTTTAGCG	12HB bottom staples
TCAGACTGTAGCGAAACGTCACCAATGAAAAAAGGGCGACAT	_
TCAACCGATTGAGATAAGTTTATTTTGTCATACCAGAAGGAA	
ACCGAGGAAACGCGCAATAGCTATCTTACCGAGAATAACATA	
AAAACAGGGAAGCTCCAAATAAGAAACGATACTTGCGGGAGG	
TTTTGAAGCCTTACAGATATAGAAAGGATACTAGGAGGAGG	1; TCTGTAAATTAACAATTTCATTTTTTTTTTTTTTTTTTT
	2; ATATATGTGATATAACTATATGTAAATGTCGGGAGAAACAAT
AGAAACCAATCAAGCGCCTGTTTATCAACAAATTGAGAATCG	3; ATCGCAAGAAAATTCTTACCAGTATAAAGGTTTAACGTCAGA
CCATATTTAACAATATCATATGCGTTATACCAAAGAACGCGA	4; GTAGGGCTTATAGATAAGTCCTGAACAATTTGCACGTAAAAC
GAAAACTTTTTCACCGGCTTAGGTTGGGTTAGTGAATAACCTTGCT	5; CATCCTAATTCCGGTATTCTAAGAACGCTTCTGAATAATGGA
CACTAAATCGGAAGATAGGGTTGAGTGTTGCGAAAATCCTGT	6; AACCTCCCGTTTTTGTTTAACGTCAAAAGATGGCAATTCATC
TTGATGGTGGTTAACGCGCGGGGGGGGGGGGGGGGGGCGCGTTGCGCTCAC	7; CTTTACAGAGAAGCCCTTTTTAAGAAAACCAGAAGGAGCGGA
TGCCCGCTTTCCTACCGAGCTCGAATTCGGGTTTCTGCCAGC	8; GAACAAAGTCAATCAATAGAAAATTCATAAAGTTTGAGTAAC
ACGCGTGCCTGTACGGCATCAGATGCCGGGTAATGGGTAAAG	9; CCAAAGACACCATCGATAGCAGCACCGTACAACTCGTATTAA
GTTTCTTTGCTCGCAGCACCGTCGGTGGTCGTGCCCGGACTTG	10; GAATCAAGTCCCTCAGAGCCGCCACCAGACATTTGAGGATTT
TAGAACGTCAGCAATCCCGTAAAAAAAGCGGATCAAACTTAA	11; CCGCCGCCAGGGTCAGTGCCTTGAGTAAGGAGCACTAACAAC
ATTTCTGCTCATAGCCGCCACGGGAACGGGTAACGCCAGGGT	12; ACAGTTAATTCAGGAGGTTTAGTACCGCACAGTTGAAAGGAA
TTTCCCAGTCACGCACCGCTTCTGGTGCCATCTGCCAGTTTG	13; CCACCCTCACAGACGTTAGTAAATGAATAATAATAATCAAACCCTC
AGGGGACGACGAGCGTCTGGCCTTCCTGTATTCGCATTAAAT	14; TTTGCTAAAACCGATAGTTGCGCCGACAGCAGCAAATGAAAA
TTTTGTTAAATCGAGCAAACAAGAGAATCAATGCCGGAGAGG	15; CGCCCACGCTACGTAATGCCACTACGAATCAGTATTAACACC
GTAGCTATTTTTCAAGGATAAAAATTTTTTTAAATCGGTTGTA	16; ACGAAAGAGCCGAACTGACCAACTTTGACCGAACGAACCACC
CCAAAAACATTATGTTTAGCTATATTTTCTTCCCCAATTCTGC	
GAACGAGTAGATACCTTTAATTGCTCCTTCGTTTTAATTCGA	
GCTTCAAAGCGATCCCCCTCAAATGCTTTGGTAATAGTAAAA	
TGTTTAGACTGGCCACATTCAACTAATGCAATAAAACGAACT	
AAACAAAGTACACAGAGGCTTTGAGGACTGCCGCTTTTGCGG	
GATCGTCACCCTCTTTAATTGTATCGGTTCTAAAGGAATTGC	
GAATAATAATTTAGCATTCCACAGACAGCCCAAGCCCAATAGG	
AACCCATGTACCATAAGTGCCGTCGAGAGTATTAAGAGGCTG	
AGACTCCTCAAGGTAAGCGTCATACATGGATTCACAAACAA	
TAAATCCTCATTACCGGAACCGCCTCCCTCGGTCATAGCCCC	
CTTATTAGCGTTAGCAAAATCACCAGTAGGACGGAAATTATT	
CATTAAAGGTGAAAAGGTGGCAACATATAAAAAGAACTGGCA	
TGATTAAGACTCTTGAGTTAAGCCCAATAAACTGAACACCCT	
GAACAAAGTCAGTTTGCCAGTTACAAAATTTTTGCACCCAGC	
TACAATTTTATCTTCATCGTAGGAATCATTATCATTCCAAGA	
ACGGGTATTAAACAGACGACGACAATAAAGCAGAGGGCATTT	
CGAGCCAGTAATAAAAACACCGGAATCATTCATCTTCTGACC	
TAAATTTAATGGTTTATCAAAATCATAGGTTCCCTTAGAATC	
GGAGCCCCCTTTTTTTTTGATTTAGAGAAAACCGTCTATCA	
GCAAAATCCCTTATGAGAAAGGAAGGGAATTGCCCTTCACCG	
ACCTGTCGTGCCAGGCTGGCAAGTGTAGATACGAGCCGGAAG	
CCGTGAGCCTCCTCCGCCGCGCTTAATGGCGCGCCTGTGCAC	
ATCCCTTACACTGGCTTTGACGAGCACGCGCTTTCGCACTCA	
GTCTGGTCAGCAGCGGGAGCTAAACAAACGCGGTCCGTT	
GCAGTTGGGCCGGTTGGAACGGTACGCCATGTGAGAGATAGAC	
AAACGACGGCCAGTTGAGGCCACCGAGTGTGCGGGCCTCTTC	
CCTCAGGAAGATCGCCGTTGTAGCAATAACAAACGGCGGATT	
TTTAACCAATAGGACCTGAGTAGAAGAAAAGCCCCCAAAAACA	
ACAAAGGCTATCAGCCAGAACAATATTAGTGAGAAAGGCCGG	
AATACTTTTGCGGGTCATGGAAATACCTCAATAAATCATACA	
CCATTAGATACATTGATTATTTACATTGCTCAACATGTTTTA	
GAAGCAAACTCCAATAAAAGGGACATTCATAGTCAGAAGCAA	
AATACTGCGGAATCCTGAAAGCGTAAGAGTTTACCAGACGAC	
GTAGAAAGATTCATGGCTATTAGTCTTTACCTTATGCGATTT	
GTAACAAAGCTGCTCGCCATTAAAAATAAAGAGGACAGATGA	
TGTATCATCGCCTGCAGAGGTGAGGCGGGGGCACCAACCTAAA	
AAGACAGCATCGGACACGCTGAGAGCCAATGACAACCAAC	
GAAAATCTCCAAAACTTGCTGAACCTCATTTCTGTATGGGAT	
AGTTTCGTCACCAGCAGTTGGCAAATCACACCCTCAGAACCG	
AGGATTAGCGGGGTCTAAAATATCTTTACAGTGCCCGTATAA	
ATGGAAAGCGCAGTCGTCAATAGATAATAACCACCACCAGAG	
TTCATAATCAAAATTTACAAACAATTCGAATCAGTAGCGACA	
GTCACCGACTTGAGCGTTATTAATTTTAATGGTTTACCAGCG	
CAGTATGTTAGCAAGAACAAAGAAACCAGTAAGCAGATAGCC	
GAGCGCTAATATCACCTGATTATCAGATATGAAAATAGCAGC	
ACCAACGCTAACGATGTTTGGATTATACGAGGCGTTTTAGCG	
GCACTCATCGAGAACCATATCAAAATTAGAAAAATAATATCC	
TAAAGTACCGACAATGCGTAGATTTTCAGCCAACGCTCAACA	
CCGACCGTGTGATACAGTACCTTTTACACTGATGCAAATCCA	
TAGATTAAGACGCTATTGCTTTGAATACCAGTACATAAATCA	
CCGGCGAACGTGGCAAATCAAAAGAATAGCCCGACCCTAAAG	
GCGGGCGCTAGGGCCTGCATTAATGAATAGCCCCGACCCTAAAG	
GTAACCACCACACCACGTTGAGGATCCCCCGGGAGTCGGGAA	
GCGTACTATGGTTGTGTGTGTCAGCAAATCGTTATCTTCGCGT	
CTCGTTAGAATCAGAACCGCAAGAATGCCAACGGTCATAAAC	
AGGGATTTTAGACAGTGTACATCGACATAAAAAGTGGTGCTG	
GTTTTTATAATCAGGCCAAGCTTTCAGAGGTGGTGCCGCCA	
GTTTTTTATAATCAGGCCAAGCTTTCAGAGGTGGTTGCCGCCA ATCACGCAAATTAACACTCCAGCCAGCTTTCCGGACGTTGTA	
AATAACATCACTTGACGCCATCAAAAATAATTCCAGTATCGG	
CTTGCTGGTAATATGTCATTGCCTGAGAGTCTGAGCTCATTT	
AACAGGAAAAACGCAGAAGCCTTTATTTCAACGGAGAGATCT	
AATCGTCTGAAATGTCGCAAATGGTCAATAACCTGACCCTGT	
CACACGACCAGTAACAGGTCAGGATTAGAGAGTTTAGTTTGA	
AGAACCCTTCTGACGTCATAAATATTCATTGAAACCAGACCG	
CAATATTTTTGAATCAGTTGAGATTTAGGAATAATAGCGTCC	
TAGCCCTAAAACATCATTCAGTGAATAAGGCTTTTATTACAG	
GCCTGCAACAGTGCACGAGGGTAGCAACGGCTAACGGAGATT	
ATCTAAAGCATCACAAAAGGCTCCAAAAGGAGCCAGCAGCGA	
AATCAATATCTGGTTACAAACTACAACGCCTGTTTTCACGTT	
TTGAGGAAGGTTATTTTGCTCAGTACCAGGCGGGTAACACTG	
TAATAGATTAGAGCCTCTGAATTTACCGTTCCAAGAAGGATT	
AGAAGTATTAGACTCACCGGAACCAGAGCCACCAAAGCCAGA	
ATCCTTTGCCCGAACCATTTGGGAATTAGAGCCTGCCATCTT	
ATCCTTTGCCCGAACCATTTGGGAATTAGAGCCTGCCATCTT	

ATTATCATTTTGCGACGTAGAAAATACATACATATTATCACC	
ATTATCATCATATTGAGAGATAACCCACAAGAACTTATTACG	
AATATAATCCTGATGCGTCTTTCCAGAGCCTAAAGGGTAATT	
AGGGTTAGAACCTACAAGCAAGCCGTTTTTATTCTGAATCTT	
AGAAATAAAGAAATAAGGTAAAGTAATTCTGTCCCAAGTACC	
TGAATATACAGTAAAATAAGGCGTTAAATAAGAAAGAGAATA	
AACGGATTCGCCTGGAGAAGAGTCAATAGTGAATTTGAAATA	
GCGCAGAGGCGAATAATTACCTGAGCAAAAGAAGCGATAGCT	
AGTCAGGACGTTGGAGATGGTTTAATTTCAAGACCAGGCttttttt	
AGCAGAAGATAAAAATAAATTGTGTGTGGAAATCCCAAATCAACtttttt	
ACATTAATTGGTTTGCGTATTCCTTTTTTAACCTAATATATTT	
CATACCGGGTAATCATGGTCAAAGCCTGTTTAGCGCCAACAT	
CTGCGGCTGGTTACCTGCAGCCTAATGCAGAACTAATCGGCT	
ATAACGGAAGCCATCCCACGCTAGCAAGCAAATAATCAAGAT	
AGAAACAGCCGCACAGGCGGCTATTTATCCCAAGCATTAGAC	
TTAAGTTGGATAACCTCACCGAACAATGAAATAAATAATAAC	
TAACCGTGCGGAAACCAGGCAAGACACCACGGAGGAGGGAAG	
TTTGTTAAAAGCCAGCTTTCATAGCAAGGCCGGCGTTTTCAT	
TGATAAATTGATGAACGGTAACCTCAGAACCGCCAGACGATT	
GCATAAAGCAGAACCCTCATACAGGAGTGTACTTATTCTGAA	
AACAGTTGAATTTGGGGCGCGTATAGCCCCGGAACCTCATTT	
CAAATATCGTTGATAAGAGGTCGTAACGATCTAGAGAATAGA	
GCCAGAGGGAAACAGTTCAGATTCGAGGTGAATGCTTGCAGG	
ATCTACGTTAGATACATAACGATGAGGAAGTTTTCTTTGACC	
CTCAGAACGAGTAGCGAGGCGCAGACCT	
CCCCAGCAGGTTCCAGTTTGGATTAATTACATTCGTCGCTAT	
AACGGAACAACAGCCCTGACGAGAAACACTGttttttt	
GAGTTAAAGAAAGACTTTTTCCCAAAAGGAATTAGAAGTTTT	
AAGGAACAATATCAGCTTGCTAAACGAGAATGAGAAAGACTT	
CAGGGATAGCCTCATAGTTAGCATTTTTGCGGAATTCCATAT	
ACATGAAAGGGTTGATATAAGAGCTGAAAAGGTAGCCTCAGA	
GGCCTTGATCTTTTGATGATATATTTTTAAATGCCGTTCTAGC	
CGGCATTTTCAGAGCCGCCACTCGTAAAACTAGCGTTAATAT	
GTAAATATTCACCATTACCATTCAACATTAAATGGCGCATCG	
GGAATACCCAAAGAAACGCAAAAGCGCCATTCGGCAAGGCGA	
GGGAGAATTATAAGAGCAAGAGAAAACAATCGGCAAGAGACGC	
TAGTTGCTAAAACAGCCATATCTTTAGTGATGACACATCCTC	
GTCTTTCCTTACCGCGCCCAAAACCAGCTTACGACTGTTGCC	
GTAATTTAGCAACATGTTCAGCAGCGGTGCCGGTTTCACGGT	
TAGTTAATTAATTACTAGAAATAGCTGTTTCCTAGCTAACTC	
TAATTAATTTCTGAGAGACTAGGGCGCCAGGGTGCTGGTTTG	
CCCAGCGATACTTAGCCGGAATAAATTGGGCTTGGAAGAAAA	
tttttttTCATTACCGCGACCTGCTCCATGTTTATACCAAGCGCG	
CTTGAAAACATAGATGATGAAACAAAAACAAAAACAAGAGTCCATCAAGTTTTTTGGCCGTAAAG	
tttttttACGGTCAATCATAAGGGAAGCAAAAGAATAC	

Table 2 Oligonucleotide staple strand sequences for the 12HB slat. The 158 universal core staple strands are unchanging across all the 12HB slats folded, versus the 16 top- and 16 bottom-staple strands which are modified on their 3' end to encode functionality in the slats. The latter top- and bottom-staple strands are arranged in the order in which they are displayed along the length of the slat, where the nodal position is indicated with the leading number. Given top- and bottom-staple strand pairs with the same number overlay one another. In general, we reserved the top-staple strands to append handle or complementary handle sequences to bind the slats to one another.

seed universal core staples	seed non-socketed staples
1; TACCGCCACCCTCAGAACCGCCGTCGAGAGGGTTGATATAAG 2; TCATTAAAGGTGAATTATCACTTCTGCAATGTGCGAGAAATG 3; TAGCAACGCAATCAGGGGTTACAACGGCCCAATAG 4; GCTCTGTAAATCGTCGCTATAAACATATAGATGATTAAACC 5; AGTCTGTAAATCGACCGCCTGCAACACAGCAGCCCTCATAGTTAG 4; GCTCCTGTAAATCGACCCCTCACATTTGTTTATGGCAGATGATA 7; CAAAGGGCGAAAACCCACAGCTGATTGCCCTGCGCCAGG 8; AGTCCACTATTAAAGAAGAGTTGCAGCAAGCAACGCGC 9; TAGGGTTGATGTGCCCCAGCGAGCGAAAACCTGTCG 10; TTTTTTTTTTGTGCCCCAGCGAGCGAAAACCTGTCG 10; GTGTTTTTTTTTTTGTGCACGGGGTCTCCAAATCGGCAATTTTTTTT	65c1; GGGAATTAGAGCCAGCAAAATGTTTATGTAGATGAAGGTATA 66c1; ATTCATATGGTTTACCAGCGCTATCACGAGTACGGTGGAAAC 67c1; CCTTGGAAACATTAGCGATTAGCGAGTACGGGGAGTACGGTGGAAAA 68c1; ATTAATTACATTTAGCGATAGCGGAGTCAGGTCTGAGCAAAAA 68c1; ATTAATTACATTTAGCGATAGCGGATCTGGTCTGAGCAAAAA 67c2; TAGCGAGGGGAAACGTCACCGACAAGCACCCGTTAGTTAT 69c1; TGACGAGGGGAAACGTCACCGACAAGCACCCGTTAGTTAC 71c2; AGCCACCGGAAACATTATCAGGAACGCACCGGTGGTGTAC 71c2; CAGCACACGGAAAGTGATGAGAAACGACACTCACATGCAAGG 71c2; CAGACAAGGAGATTATCAGGAAACGACACATACATTGCAAGG 71c2; CAGACAAAGGAGAGTGATGAGAAACGACATACATTGCAAGG 71c2; AAGCCGAAAAGGAGATGATGAGAAACGACATACATGCCAAGG 71c3; CCTGAGCAAAAGGAGAGTGGTGGGTATTACGGGGTTGTGGCGCTCT 75c3; CCCGTAATACGAGCGGCGCTTGTATTACGGGGTTGTGGCGCTCT 77c3; CCTTTTAACTACATAAAGGTGGCTAATTACGGGGTTGTGGCGTTAT 78c3; AGTTACAAAATGCCCCCAGGGAGACGAGGACGAGGTATTGC 80c4; CCAGCCTGGCGCTTAGCGAGGACGCGCTGCTGCC
16; FIGURAGE DEGAMAGE DEGES 1 17; GEGEGAAATCCEGETTGATEGEGAAAGAATAGCCCGAGA 18; TTTTTTTTTGTTGCGCCCACTGCCCAACTCACATTAATTGCTTTTTTT 19; GECATAGCCETTTGCCACACCGCETTTT 0; TETTATCCGCCCACAGCGETTTG 2; GCCTAATGGACEAGCTGCETTCCCA	SUG4; CARACIGIAGEGGTITICTIATACGNARGEGGICGICGI Slc4; TAAATGCTGATAGCACTCTIATACGNARGEGGAAGGAAGGA 2cd; TAAATGCTGATGCAAATCCAACGAATCAGCGAAAGCAACGA 3cd; GGGAGAACGAATACGGATCTGTTGAGCTGAAACGACAA 4cd; CCGCTACAGGGCGCGTACTATTTCCATGCAATCGATACACC 5c5; CCTTATTAGCGTTGCCACGCATGATAAAAATGC 5c5; CCTTATTAGCGTTGCCACGGTTCCCACGGACC

23; AAACATCGGGTTGAGTATTATGTGGCGAGAAAGGAAGGGAAG	87c5; AAAACTTTTTCAAATATATTTTCATGCGTATTAACCAACAGT
24; GCAATACATCAAACGCCGCGAACACCCGCCGCGCGCTTAATGCG	88c5; TTTAACGTCAGATGAATATACAGAGCAGGCAATGCATGACGA
25; GGGGGATGTGCTGCAAGGCGAATCAGAGCGGGAGCTAAACAG	89c5; TAACGTGCTTTCCTCGTTAGATTAAGTTGGGTAACGCCAGGG
26; TCGTAAAACTAGCATGTCAATATCAGTGAGGCCACCGAGTAA	90c6; AACCAGAGCCACCGGGAACACCGTAATGGGATAGGTCACG
27; CGAACGAGTAGATTTAGTTTGACTTGCCTGAGTAGAAGAACT	91c6; AGAAAAGTAAGCAGATAGCCGCAGACATCATTGATTCAGCAT
28; ACCCTCGTTTACCAGACGACGAACGCTCATGGAAATACCTAC	92c6; CTAAATTTAATGGTTTGAAATGCCTCAGGAAGATCGCACTCC
29; TGTGTCGAAATCCGCGACCTGAGTAATAAAAGGGACATTCTG	93c6; TGCACGTAAAACAGAAATAAAAAAACGACGGCCAGTGCCAAG
30; TTTCAGCGGAGTGAGAATAGATGAATGGCTATTAGTCTTTAA	94c6; GAGGCCGATTAAAGGGATTTTCTGCGCAACTGTTGGGAAGGG
	95c7; CCTCAGAACCGCCACCCTCAGCCTTCCTGTAGCCAGCTTTCA
31; AGAGTTTCTGCGGCAGTTAATCAATGAAACCATCGATAGCAG	
32; AGTGTGGCGATCCGATAGATGCGGCATTTTCGGTCATAGCCC	96c7; AACAATGAAATAGCAATAGCTTAACCGTGCATCTGCCAGTTT
33; GTGGGAACAAACGGCGGATTGCGCCTCCCTCAGAGCCGCCAC	97c7; GCGTTAAATAAGAATAAACACTTTGTTAAAATTCGCATTAAA
34; CTTTATTTCAACGCAAGGATACGCCGCCAGCATTGACAGGAG	98c7; CTGAATAATGGAAGGGTTAGATCTGGTGCCGGAAACCAGGCA
35; AAGAGGAAGCCCGAAAGACTTAATGGAAAGCGCAGTCTCTGA	99c7; ATCCTGAGAAGTGTTTTTATACATATGTACCCCGGTTGATAA
36; TAAATTGGGCTTGAGATGGTTTTTTAACGGGGTCAGTGCCTT	100c8; CACCAGAACCACCAGCAGAGCAAAATTTTTAGAACCCTCATA
37; GGATCGTCACCCTCAGCAGCGACATGAAAGTATTAAGAGGCT	101c8; TAACCCACAAGAATTGAGTTATTTTAACCAATAGGAACGCCA
38; TCTAATGAAGACAAATCCCCACGTCACCGACTTGAGCCATTT	102c8; AAGCCTGTTTAGTATCATATGGACAGTCAAATCACCATCAAT
39; GCACTTCCGAGTCACAGGAGAATGGATC	103c8; TGGCAATTCATCAATATAATCGAAGATTGTATAAGCAAATAT
40; ATAGAGTCGGCATACAAATATTCCATGAAGGTTTAT	104c8; AAGAGTCTGTCCATCACGCAATACAAAGGCTATCAGGTCATT
41; CGATGCCAGAGTCTGTAGTGTCAGATGATGACCGTA	105c9; GTTGAGGCAGGTCAGACGATTGCATAAAGCTAAATCGGTTGT
42; GAAGACTCCTGTTATCAAGCACTGCACTGGTGACCT	106c9; TGAACAAAGTCAGAGGGTAATGTAATGTGTAGGTAAAGATTC
43; GATTGTGCTGGAACTGCTGGATGAACGGGAAAGAA	107c9; TATAAAGCCAACGCTCAACAGTCTACTAATAGTAGTAGCATT
44; GCCTGAACCACGGCTATATCTGCCACTCATTGTT	108c9; AGAAGGAGCGGAATTATCATCTGATAAATTAATGCCGGAGAG
45; TCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCG	109c9; TCTTTGATTAGTAATAACATCACCATTAGATACATTTCGCAA
46; ACATTAAATGTGAGCGAGTAACAACCCGTCGGATTC	110c10; ATAAATCCTCATTAAAGCCAGCAAATATCGCGTTTTAATTCG
47; TGAGAGTCTGGAGCAAACAAGAGAATCGATGAACGG	111c10; AAACAGGGAAGCGCATTAGACGCAAGGCAAAGAATTAGCAAA
48; AAAAACATTATGACCCTGTAATACTTTTGCGGGAGA	112c10; CATATTTAACAACGCCAACATTTGCTCCTTTTGATAAGAGGT
49; GGAAGTTTCATTCCATATAACAGTTGATTCCCAATT	113c10; AGTTTGAGTAACATTATCATTTATATTTTCATTTGGGGCGCGCG
50; ATTATAGTCAGAAGCAAAGCGGATTGCATCAAAAAG	114c10; CAAACTATCGGCCTTGCTGGTATATGCAACTAAAGTACGGTG
51; AAAGGAATTACGAGGCATAGTAAGAGCAACACTATC	115c11; ATTTACCGTTCCAGTAAGCGTAAAAATCAGGTCTTTACCCTG
52; AATAAGGCTTGCCCTGACGAGAAACACCAGAACGAG	116c11; TCAAAAATGAAAATAGCAGCCGGAAGCAAACTCCAACAGGTC
53; ACAAAGTACAACGGAGATTTGTATCATCGCCTGATA	117c11; TCGAGCCAGTAATAAGAGAATCAATACTGCGGAATCGTCATA
54; GTCGCTGAGGCTTGCAGGGAGTTAAAGGCCGCTTTT	118c11; AACTCGTATTAAATCCTTTGCGCTTAATTGCTGAATATAATG
55; AATTTTCTGTATGGGATTTTGCTAAACAACTTTCAA	119c11; GCCAGCCATTGCAACAGGAAAATAAAAACCAAAATAGCGAGA
56; CACCGTACTCAGGAGGTT	120c12; CAGGAGTGTACTGGTAATAAGTAATTTCAACTTTAATCATTG
57; AGCCCGGAATAGGTGTAT	121c12; TATTTATCCCAATCCAAATAAAAATGCTTTAAACAGTTCAGA
58; CCGATTGAGGGAGGGAAGGTAAATATTGACGGAAAT	122c12; AAGTAATTCTGTCCAGACGACATCTACGTTAATAAAACGAAC
59; CGTTTTTATTTTCATCGTAGGAATCATTACCGCGCC	123c12; ATTTGAGGATTTAGAAGTATTGCCAGAGGGGGTAATAGTAAA
60; AAACAGTACATAAATCAATATATGTGAGTGAATAAC	124c12; ATTTTGACGCTCAATCGTCTGAACTAATGCAGATACATAACG
61; AATCAAGTTTTTTGGGGTCGAGGTGCCGT	125c13; GAGTAACAGTGCCCGTATAAACGTAACAAAGCTGCTCATTCA
62; CGAACCACCAGCAGAAGATAAAACAGAGGTGAGGCG	126c13; TTCCAGAGCCTAATTTGCCAGAAGAACTGGCTCATTATACCA
63; CGATGGCCCACTACGTGAACCATCACCCA	127c13; CTAATGCAGAACGCGCCTGTTCGGTGTACAGACCAGGCGCAT
64; CCCGGGTACCGAGCTCGAATTCGTAATC	128c13; AGCACTAACAACTAATAGATTGGTAGAAAGATTCATCAGTTG
145; ACTGATACCGTGCAAAATTATCAAAGACAAAAGGGCGACATT	129c13; AGATTCACCAGTCACACGACCCTCCATGTTACTTAGCCGGAA
146; CCATGCAGACATCACGAAGGTCACCAGTAGCACCATTACCAT	130c14; TTCGGAACCTATTATTCTGAAAAAGACAGCATCGGAACGAGG
147; TATCGACATCATTACGCATCGCAACATATAAAAGAAACGCAA	131c14; CTACAATTTTATCCTGAATCTGAGTAATCTTGACAAGAACCG
148; AGTCCGTGAAGACGGAAACCAAATCAAGTTTGCCTTTAGCGT	132c14; GAACAAGAAAAATAATATCCCGGGTAAAATACGTAATGCCAC
149; AGGGTTGTCGGACTTGTGCAAGGAATACCCAAAAGAACTGGC	133c14; AGTTGAAAGGAATTGAGGAAGTAAGGGAACCGAACTGACCAA
150; CAGAAATAGAAGAATTACAGCTTTCATAATCAAAATCACCGG	134c14; GCCAACAGAGATAGAACCCTTCCCAGCGATTATACCAAGCGC
151; TTGGTGTAGATGGGCGCATCGATCTTACCGAAGCCCTTTTTA	135c15; GAGACTCCTCAAGAGAAGGATGCCCACGCATAACCGATATAT
	136c15; TTTGAAGCCTTAAATCAAGATTTGAGGACTAAAGACTTTTTC
152; TCAAAAATAATTCGCGTCTGGAGCCACCACCCTCAGAGCCGC	1000107 11101100011111101101111101100110
	137c15; GAAACCAATCAATAATCGGCTGTATCGGTTTATCAGCTTGCT
152; TCAAAAATAATTCGCGTCTGGAGCCACCACCCTCAGAGCCGC	
152; TCAAAAATAATTGCGCTCTGGAGCCACCACCACCACCACGAGCCGC 153; TATTTAAATGCAATGCCTGATGAGCGCTAATATCAGAGAGA 154; ATTAAGCATZAAGCCTCGAGGGCCTTGATATTCACAAACAA	137c15; GAAACCAATCAATCAATCGGCTGTATCGGGTTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGAAAGAGGGCAAAAGAATACA
152; TCAAAAATAATTGCGCTCTGGAGCCACCACCACCACCACCACGAGCCGC 153; TATTTTAAATGCAATGCCTGATGGAGCGCTAATATCAGAGAGA 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTCACAAAACCAA 155; AGCTTCAAAGCCGAACCAGACCTTTACAGAGAGAATAACATAA	137c15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGAAAGGGCAAAAGAATACA 139c15; ACGTGGCACAGACAATATTTTTAAGGAACAACTAAAGGAATTG
152; TCAAAAATAATTCGCGTCTGGAGCCACCACCCTCAGAGCCGC 153; TATTTTAAATGCAATGCCTGATGAGCGCTAATATCAGAGAGA 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTCACAAACAA	137c15; GAAACCAATCAATAATCGGCTGTATCGGTTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGAAAGAGCCAAAACGATACA 139c15; ACGTGGCACACACATATTTTAAGGAACACCAAAGGAATTG 140c16; CAGTACCAGGCGGATAAGTGCCACCCTCAGAACCGCCACCT
152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCACGAGCCGC 153; TATTTAAATGCAATGCCTGATGGGCGCTAATATCAGAAGAG 154; ATTAAGCATTAAGCCTCAGAGGCCTTGATATTCACAAACAA	137c15; GAAACCAATCAATAATCGGCTGTATCGGTTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATCATGGAAGAGGCAAAAGAATACA 139c15; ACGTGGCACAGACAATAATTTTAAGGAACAACTAAAGGAATTG 140c16; CAGTACCAGGCGGATAAGTGCCCACCCTCAGAACCGCCACCCT 141c16; GAACGCGAGGCGTTTAAGCGAAGCTTGATACCGATAGTTGCG
152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCACGAGCCCC 153; TATTTAAATGCAATGCCTGATGAGCGCTAATATCAGAGAGA 154; ATTAAGCAATGACCTCAGAGGCCTTGATATTCACAAACAA	137c15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGAAAGGGCAAAGGAATACA 139c15; ACGTGGCACGACAATATTTTTAAGGAACAACTAAAGGAATAC 140c16; CAGTACCAGGGGGATAAGTGCCACCTCCAGAACGGCCCCCCT 141c16; GAACGGCGGCGTTTTAGCCAAGTACCGATACCGATAGTTGCG 142c16; AACGGGTATTAAACCAAGTACCAGTTTCGTCACCAGTACAAA
152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCACAAGAGCCGC 153; TATTTAAATGCAATGACGCTGATGAGCGCTAATATCAGAAGGA 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTCACAAACAA	137c15; GAAACCAATCAATAATCGGCTGTATCGGTTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGGAAGAGGCCAAAACAATACA 139c15; ACGTGGCACAGACAATTATTAAGGAACAACTAAAGGAATTG 140c16; CAGTACCAGGCGGATAAGTGCCACCCTCAGAACCGCACCCT 141c16; GAACCGGAGCGGTTTTAAGCGAAGCTTGATACCGGATAGTTGCG 142c16; AACGGGTATTAAACCAAGTACGAGCTTCGTCACCAGTACAAA 143c16; ACCGAATGAAAATCTAAAGCTGAAAATCTCCCAAAAAAAA
152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCACGAGCCGC 153; TATTTAAATGCAATGCCTGATGGAGCGCTAATATCAGAAGAG 154; ATTAAGCAATAAGCCTCAGAGGCCTTGATATTCACAAACAA	137c15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGAAAGGGCAAAGGAATACA 139c15; ACGTGGCACGACAATATTTTTAAGGAACAACTAAAGGAATAC 140c16; CAGTACCAGGGGGATAAGTGCCACCTCCAGAACGGCCCCCCT 141c16; GAACGGCGGCGTTTTAGCCAAGTACCGATACCGATAGTTGCG 142c16; AACGGGTATTAAACCAAGTACCAGTTTCGTCACCAGTACAAA
152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCACGAGCCCC 153; TATTTAAATGCAATGCCTGATGGGCGCTAATATCAGAGAGA 154; ATTAAGCAATGACCATGAGGCCTTGATATTCACAAACAA 155; AGCTTCAAAGCGGAACCAGACCTTTACAGAGAGAATAACATAA 156; AAACGACGAATGACCATAAATCCATACATGCCTTTTGATGATA 157; TCAATTACCTATAGCGATTTTTTACAAAATAAACAGCCATAT 158; GATATTCATTAGCGATTTTTTACAAATAAACAGCCCATAT 159; GTAGCAACGGCTACAGAGGCTTAGTTGCTATTTGCACCCAG 160; CCGCAATGACAACAACAACTACGGGGGTTATTGCT 161; CAGAGCCACCACCCCCATTTTAGAGATAACCGGGGTATTTCAC	137c15; GAAACCAATCAATAATCGGCTGTATCGGTTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGGAAGAGGCCAAAACAATACA 139c15; ACGTGGCACAGACAATTATTAAGGAACAACTAAAGGAATTG 140c16; CAGTACCAGGCGGATAAGTGCCACCCTCAGAACCGCACCCT 141c16; GAACCGGAGCGGTTTTAAGCGAAGCTTGATACCGGATAGTTGCG 142c16; AACGGGTATTAAACCAAGTACGAGCTTCGTCACCAGTACAAA 143c16; ACCGAATGAAAATCTAAAGCTGAAAATCTCCCAAAAAAAA
152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCACAAGAGCGC 153; TATTATAATGCAATGCCTGATGAGCGCTATATCAGAAGAG 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGATATCACAAACAA	137c15; GAAACCAATCAATAATCGGCTGTATCGGTTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGGAAGAGGCCAAAACAATACA 139c15; ACGTGGCACAGACAATTATTAAGGAACAACTAAAGGAATTG 140c16; CAGTACCAGGCGGATAAGTGCCACCCTCAGAACCGCACCCT 141c16; GAACCGGAGCGGTTTTAAGCGAAGCTTGATACCGGATAGTTGCG 142c16; AACGGGTATTAAACCAAGTACGAGCTTCGTCACCAGTACAAA 143c16; ACCGAATGAAAATCTAAAGCTGAAAATCTCCCAAAAAAAA
152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCACGAGCCCC 153; TATTTAAATGCAATGCCTGATGGGCGCTAATATCAGAGAGA 154; ATTAAGCAATGACCATGAGGCCTTGATATTCACAAACAA 155; AGCTTCAAAGCGGAACCAGACCTTTACAGAGAGAATAACATAA 156; AAACGACGAATGACCATAAATCCATACATGCCTTTTGATGATA 157; TCAATTACCTATAGCGATTTTTTACAAAATAAACAGCCATAT 158; GATATTCATTAGCGATTTTTTACAAATAAACAGCCCATAT 159; GTAGCAACGGCTACAGAGGCTTAGTTGCTATTTGCACCCAG 160; CCGCAATGACAACAACAACTACGGGGGTTATTGCT 161; CAGAGCCACCACCCCCATTTTAGAGATAACCGGGGTATTTCAC	137c15; GAAACCAATCAATAATCGGCTGTATCGGTTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGGAAGAGGCCAAAACAATACA 139c15; ACGTGGCACAGACAATTATTAAGGAACAACTAAAGGAATTG 140c16; CAGTACCAGGCGGATAAGTGCCACCCTCAGAACCGCACCCT 141c16; GAACCGGAGCGGTTTTAAGCGAAGCTTGATACCGGATAGTTGCG 142c16; AACGGGTATTAAACCAAGTACGAGCTTCGTCACCAGTACAAA 143c16; ACCGAATGAAAATCTAAAGCTGAAAATCTCCCAAAAAAAA
152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCACAAGAGCGC 153; TATTATAATGCAATGCCTGATGAGCGCTATATCAGAAGAG 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGATATCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGAAAGGGCAAAAGAATACA 139c15; ACGTGGCACAGACAATATTTTTAAGGAACAACTAAAGGAATAC 140c16; CAGTACCAGGCGGATAAGTGCCACCTTGGAAACGCACCCT 141c16; GAACCGAGGCGTTTAGTGCCAACCTTGGATACCGATAGTTGCG 142c16; AACGGGTATTAAACCAAGTACGAAGTTCGTCACCAGTACAAA 143c16; ACCGGAACTGAAAAATCTTAAACTGAAATCTCCAAAAAAAA
152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCACCACGAGCGC 153; TATTATAAATGCAATGCCTGATGAGCGCTAATATCAGAAGAG 154; ATTAAGCAATAAAGCCTGAGAGCCTTGATATTCACAAACAA	137c15; GAAACCAATCAATAATCGGCTGTATCGGTTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGGAAGAGGCCAAAACAATACA 139c15; ACGTGGCACAGACAATTATTAAGGAACAACTAAAGGAATTG 140c16; CAGTACCAGGCGGATAAGTGCCACCCTCAGAACCGCACCCT 141c16; GAACCGGAGCGGTTTTAAGCGAAGCTTGATACCGGATAGTTGCG 142c16; AACGGGTATTAAACCAAGTACGAGCTTCGTCACCAGTACAAA 143c16; ACCGAATGAAAATCTAAAGCTGAAAATCTCCCAAAAAAAA
152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCACAGAGCCGC 153; TATTAAAGCAATTGCGATCGGAGCGCCTGATATCAGAGAGA 154; ATTAAGCAATAAGCCTCAGAGGCCTGATATTCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGAAAGGGCAAAAGAATACA 139c15; ACGTGGCACAGACAATATTTTTAAGGAACAACTAAAGGAATAC 140c16; CAGTACCAGGCGGATAAGTGCCACCTTGGAAACGCACCCT 141c16; GAACCGAGGCGTTTAGTGCCAACCTTGGATACCGATAGTTGCG 142c16; AACGGGTATTAAACCAAGTACGAAGTTCGTCACCAGTACAAA 143c16; ACCGGAACTGAAAAATCTTAAACTGAAATCTCCAAAAAAAA
152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCACAGAGCCGC 153; TATTTAAATGCAATGCCTGATGGAGCGCTAATATCAGAAGAG 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGAAAGGGCAAAAGAATACA 139c15; ACGTGGCACAGACAATATTTTTAAGGAACAACTAAAGGAATAC 140c16; CAGTACCAGGCGGATAAGTGCCACCTTGGAAACGCACCCT 141c16; GAACCGAGGCGTTTAGTGCCAACCTTGGATACCGATAGTTGCG 142c16; AACGGGTATTAAACCAAGTACGAAGTTCGTCACCAGTACAAA 143c16; ACCGGAACTGAAAAATCTTAAACTGAAATCTCCAAAAAAAA
152; TCAAAARTAATGCGCTCTGGAGCCACCACCACCACCACAGAGCCGC 153; TATTTATAATGCGATCGAGGCGCTGGACATATGCGAGAGAGA	137c15; GAAACCAATCAATAATCGGCTGTATCGGCTTATCAGCTTGCT 138c15; ACGTGGCACAACCAATCAATACGAAAGAGGCAAAAGAATACA 139c15; ACGTGGCACAGACAATATTTTATAAGGAACCAACTAAAGGAATTG 140c16; CAGTACCAGGGGGATAAGTGCCACCTCAGAACCGCCACCCCT 141c16; GAACGGCGATTTAACCAAGTACGAAGCATCCACATACTGGCG 142c16; AACGGGTATTAAACCAAGTACCAAGTACCGAATAGTTGCG 142c16; AGCGAATGAAAAATCTAAAGTGCAAGTTTCGTCACCAGTACAGAA 143c16; AGCGAATGAAAAATCTAAAGCTGAAAATCTCCAAAAAAAGG 144c16; TGCGCGAACTGATAGCCCTAACGTCTTTCCCAGACGTTAGTAA seed socketed staples
152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCACAGAGCCGC 153; TATTATAATGCAATGCCGGAGCAGCGCTATATCAGAGAGA 154; ATTAAGCAATAAAGCCTCAGAGGCCTGGATATCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGCTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGAAAGAGGCAAAAGAATACA 139c15; ACGTGGCACAGACAATATTTTAAGGAACAACTAAAGGAATAC 140c16; CAACCGAGGCGATTAAGTGCCAACCTCAGAACGCACCCCT 141c16; GAACCGAGGCGTTTAGCCGAACCTTCGTCACCAGTACTGCA 142c16; AACGGGAATTAAACCAAGTACGAGCTTCGTCACCAGTACTGAA 143c16; AGCAAATGAAAATCTAAAGCTGAAAATCTCCCAAAAAAAA
 152, TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCACAGAGCCGC 153, TATTTAAATGCAATGCGCAGTGGAGCCCTGATATCAGAGAGA 154, ATTAAGCAATAAAGCCTCAGAGGCCTGATATTCACAAACAA	137:15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138:15; TATCAAACCCTCAATCAATATCGAAAGGGCAAAAGGAATACA 139:15; ACGTGGCACAGACAATATTTTAAGGAACAACTAAAAGGAATAC 140:16; CAGTACCAGGCGGATAAGTGCACCCTCCAGAACGAAACGAATACG 140:16; CAGTACCAGGCGGATAAGTGCCACCCTCAGAACGACCCCCT 141:16; GAACCGAGGCGTTTTAAGCCAACGTTGGTCACCAGTACAAA 143:16; ACGAGAATCAAAAATCTAAAGCTGAAAATCTCCCAAAAAAAA
 152; TCAAAARATAATTGGGCTGTGGGGGGGCCGGGCCCCCCCAGAGGGGGG 153; TATTATAATGCAATGGCCGGAGGGCCTGGACGCCCCCCCAGAGGG 154; ATTAAGCAATAAGCCCTGAGGGCCTGGATATTCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGCTTATCAGCTTGCT 138-15; TATCAAACCCTCAATCAATATCGAAAGGGCAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAGGGACGAACGAAAAGAATACA 140-16; CAGTACCAGGCGGATAAGTGCCACCTCAGAACGACCGCACCCT 141-16; GAACCGAGGGGTTTAACCAAGTACGAGCTTCGTCACCAGTACCGACGTCG 142-16; ACGGGAATGAAAATCTAAAGGCGAAAATCTCCAAAAAAAA
152, TCAAAARTAATCGCGCTCTGGAGCCACCACCACCACCACAGAGCCGC 153, TATTTAAATCGCGCTCTGGAGCACCACCACCAGAGCGC 154, ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTCCAGAGAGA 155, AACCGAATGCAAGCCATGACCCATCACTGGCTTTGATGACATAA 155, AACCGAATGCCATAATCCATACATGGCTTTGGTGATA 157, TGAATGACCTATAGCGATTTTTTACAGAATAATAACAGCCATAT 158; GATATTCATTACCCAATCACACGTTATGCCCCCTGCCCCTAT 159; GTAGCAACGGCTACGAGGCTTAGGTGCTATTTGCACCCAG 160; CCGACAATGACAACAACCATCATGCGGTTTTGCT 161; CCGACCAATGACAACAACCATCATGCGGTTATCCCGTATCTTAA 162; GATACTGCCCTCTCTGTACATAATTAATTTTCCCTTAGAAT 163; GATGCGCCCCCCCCTCTTGTTTTTAAGGCTTATCTCGGTATTCTCA 164; ATGGGTCTAGCAGGCGAGGTGATGCTAGGCTGAGAGACTA 165; CTCGGATGGGACGAGGGTGACGCTATGCTGGAGAGCTA 166; TTTCGGTGGGGTTACGAGGGTGTTCCCCAAGCAAAGAACGTAG 166; TTTCAGTAACAGAGAGGTTCCCCAAGAAGAACCGCGAG 167; TCAGGGGATGAAGCGACCAATGCACAAAGTACCCGAGAAA 169; TTTTGTTAAATCAAACGTCGCCGACGTGTGTATAATAATA 169; TTTTGTTAAATCAACGCCCAATGACTAACGAAGAACCGAG 170; AAAAGGGCGAGAAGCCCACTCACTGACGCACGAAGAACCACGA 170; AAAAGGGCGAGAAAGCCGACCTATACGCCAATCAATAAGGCAGA 170; AAAAGGCGAGAAAACGCCGACCTATACCTAACCACACCACCGACG 171; AACATCCAATAAATCAAACGGCGGACGATTAACTGAACCACCC	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138c15; TATCAAACCCTCAATCAATATCGAAAGAGGCAAAAGAATACA 139c15; ACGTGGCACAGACAATATTTTAAGGAACCAACTAAAGGAATAC 140c16; CACTAACCAGGCGATAAGTGCCAACCTCAGAACGACCCCCT 141c16; GAACCGAGCGGTTTAGACGCAACCTGAAACGAACGACCAAAA 143c16; ACGGGTATTAAACCAAGTACGAAGTTCGCCACAGTACAAA 143c16; ACGGGAATGAAAAATCTTAAACCTGAAAATCTCCAAAAAAAA
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACCAGAGCGCC 153; TATTTAAAGCAATGAAGCGCTGAGGGCCTGACACCCCCCAGAGGAG 154; ATTAAGCAATAAAGCCTCAGAGGCCTGATATTCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACGTGGCACAGACAATAATCGAATAGGGCAAAGGGCAAAGGAATACA 139-15; ACGTGGCACAGACAATATTTTAAGGAACCACAAAAGGAATAC 140-16; CAGTACCAGGCGGATAAGTGCCACCCTCAGAACGGCACCCCT 141-16; GAACGGCGATTTAACCAAGTACCGAATGTTGCGCACCCCACTACCAA 143-16; ACGGGTATTAAACCAAGTACCAAGTTCGTCACCACATACAAA 143-16; AGCAAATGAAAAATCTTAAGCTGAAAATCTCCAAAAAAAA
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACAGAGCCGC 153; TATTTAAATGCAATGCCGGAGGCCTGGACCCCCCCAGAGGAG 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ATCCAAACCCTCAATCAATATCGAAAGAGGCAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAAGGAACAACTAAAGGAATAC 140-16; CACTAACCAGGCGATAAGTGCCAACCTCAGAACGCACCCCT 141-16; GAACCGGAGGGGTATTAAGCCAAGTTCGTCACACAGTACCGATAGTGCG 142-16; AGCGAATGAAAAATCTAAAGCTGAAAATCTCCAAAAAAAGG 144-16; TGCGGGAACTGATAGCCCAACGGTGTCGTCCAGACGTTAGTAA 65c1; GCCAGCAAAATGTTTATGTAGATGAAGGTATA 66c1; TTTACCAACCGATTAAGGTGGAAGGTATA 66c1; TTTACCAACCGGATTATGTAGATGAAGGTGAAA 68c1; TTTAACAATTGCCACCGGTGGAAAC 69c1; AGCCGGAACTGATGCCCGGGGGGATTATTTT 69c1; AGCCGGCACCTACCGTCGCGGGGGATTATTTT 69c1; AGCCGCGACCTACCGTCTGCCGTGAAA
 152, TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACAGAGCGC 153, TATTTAAATGCAATGCCGAGTGGAGCCTGATATTCAGAGAGA 154, ATTAAGCAATAAAGCCTCAGAGGCCTGATATTCAGAAACAA 155, AACCCGAATGCCAGACCTTTACAGAGAGCATTAACATAA 156, AAACCGAATGCAGACCATCAATCCATACATGGATT 158, GATATTACCTATGCGATTTTTTACAGAAAGCCCTTAG 159, GTACCAACATCACCCATAATCGACGCCTGGCTATG 159, GTACCACATGACCAATAATCAACAGTTAATGCCCCCTGCCTAT 159, GTACCACACAGCCCTTTAGGCTATATTGCCACCAG 160, CCGACAATGACAACCAACCATCATGAGTTAGCCGGGTTTTGCT 161, CCGACCAATGACCAACAACCATCTAGGGTTAGCCGGTTTTGCT 162, GATGCTGCCCCTCGTGTGCAGATTATGTCCCGGTATTGCTAA 162, GATGCTGCCCCTCGTGTGCAATATTAATTTTCCCGTAATGAAA 163, TGGGGTCAAGGCAGCAGCATATGCACAATGAAACAATGAAAGA 164, ATGGGTCAAGGAGCAGTAGCGTATGCACTAATGAAAGCGGAG 167, TCAGGAGTAAAGATGGACCAAAGTACCCGGGAGAATCCACGAGGAAA 168, GAGGGGACGACAGTATGCGACGATAATCAAAGGCGAGAAA 169, TTTTGTTAAATCAACGCTCATAGCCCAATATTAACGCAGAGAA 167, AAAAGGGGGAGAAATCATAAGGACGAAAAAAAGA 171, AAACTCCAATAATCAATACGTTGCCAAAGATCAATAGCAAGAGA 172, AGGATGAAGAACGTATCTAACGGACAATTAATAACGACCCC 172, AGGATGAAGAACCCCCTTTAAGGAACATTAATAACGACACCC 174, GTCAGGAAGATACCCCCTTTAAGAAAGATGGACAAAACAACCACCC 174, GTCAGGACGATTGGGAGAAATTATAAGGACGAATTACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138c15; ACGTGGCACAGACCATATCGAATGAGGCAAAAGAATACA 139c15; ACGTGGCACAGACAATATTTTAAGGAACCAACAAAAGGAATAC 140c16; CAGTACCAGGCGATAAGTGCCACCTCGAAACGCACCCCT 141c16; GAACCGAGGCGTTTAGACGCAACTGCAACCGACCACCAGTACAAA 143c16; ACCGGGTATTAAACCAAGTACGAAGTTCGCACACTGCACAGTACAAA 143c16; ACCGGAACTGATAGCCAGCTGCAACACCACAGAAAAAAAGG 144c16; TGCGCGAACTGATAGCCCTAACGTCTTCCCAGACGTTAGTAA 65c1; GCCACCAAAATGTTTATGTAGACGAAGTATA 66c1; TTTACCAGCGCTTACGAGGTACAGGGAACA 67c1; ATACCAGCGCTTACGAGGTACAGGGGAACA 67c1; ATACCAGCGCTACCACGGGGATTATTTT 69c1; ACCGGCGAACCTGATCGCGGGATTATATTT 69c1; ACCCGGCGAACCTGACGAGGACCGGTGGGAAC 71c2; GAATGACTCACGAGCCCGTACCACAGACCCGTTGCTAC
 152, TCAAAARATAATTCGCGTCTGGAGCCACCACCACCACAGAGCGCC 153, TATTATAATGCAATGCCGTGAGGCGCTAAATCAGAGAGA 154, ATTAAGCAATAAAGCCTCAGAGGCCTGAATATCAGAAACAA 155, AGCTTCAAAGCGAACAGACCTTTACCAGAGGCATTGATATCACAAACAA	137-15; GAAACCATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ATCCAAACCCTCAATCAATATCGAAAGAGGCAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAAGGAACAACTAAAGGAATACA 140-16; CAGTACCAGGCGATTAATGTCAACCAACGAACGAACGAAC
 152, TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACAGAGCGC 153, TATTTAAATGCAATGCGAGCCTGGAGCACCCCCAGAGCGC 154, ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTCCAGAGAGAA 155, AACCGAAATGCAGACCAGACCTTTACAGAGAGAGATAACATAA 156, AAACCGAACAGCCATAATCCTAACAGGCTTTGGTGATA 157, TGAATACCTATAGCGATTTTTTACAGATAATGCCCCTGGCCTAT 158, GATATCCATTACCCAATCACAGCATATGCCCCTGCCCCTAT 159, GTAGCAACAACCAACCATCATGCGGTTTGGCTATTTGCACCCAG 160, CCGACAATGACAACAACCATCATAGGGTTAGCGGGTTTGCGT 161, CCGACCAATGACAACAACCATCATGCGGTATTCCCGGTATTCTCAA 162, GATACTGCCCTCTCTGTACATAATTAATTTTCCCTTAGAAAT 163, GATTGGCCTTATCAGGGTAATCATAGGCTGAAGAAAA 164, ATGGGTCAGAGAGCAGCAGTAGCGACAAAGTACAATAGAAA 165, CTCGGATGGAGTGAGCGAAGATCATAGGTCTGAGAGAACAA 166, TTTCAGTAAACAACAGCGATATGCCGATATGTAGCAGAAGAACGACGA 167, TCAGGGATGAAGCGACGAAGCAACGACCAAGCAAGCAAGAAGCAAGAA 168, GAGGGACGACGAACGATCGCCGACGTTATCCAAGAGGAAA 169, TTTTGTTAAATCAACGCTCATTAGCCCAATAATAAGGACAGA 171, AAAAGGGGAGAAAAGACCACTTAATTAGCCAACAACGCC 172, AAGGTGGAGAAAAGTACCATAATTAGCCAACACCC 174, GTCAGGAAGAGCCCCTTTAAGGAATAATTAGCCAGAGGCATT 175, AGGCTGGCGTGGAGAAAAGACCAATTAACCAACACGTCAG 174, GTCAGGAACGATCCCTTTAATTATGCCAAGAGGCTT 175, AGGCTGGCGTGGAGAAAAGACCAATTAACAACACAGGTCA 176, AGGCGGCGCACCTTTCAATACCAAACCACGTTCAGGAGAATTAACAACACGAGGT 176, AGGCTGGCGAACAATACACCCCTAATTAACGAACACAGTTCAG 176, AGGCTGGCTGGCCGAACCAATCAACCTCAATTACGAACACGTGTAGAAGAGGAGATTA 	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138c15; ACGTGGCACAGACCATATCGAATGAGGCAAAAGAATACA 139c15; ACGTGGCACAGACAATATTTTAAGGAACCAACAAAAGGAATAC 140c16; CAGTACCAGGCGATAAGTGCCACCTCGAAACGCACCCCT 141c16; GAACCGAGGCGTTTAGACGCAACTGCAACCGACCACCAGTACAAA 143c16; ACCGGGTATTAAACCAAGTACGAAGTTCGCACACTGCACAGTACAAA 143c16; ACCGGAACTGATAGCCAGCTGCAACACCACAGAAAAAAAGG 144c16; TGCGCGAACTGATAGCCCTAACGTCTTCCCAGACGTTAGTAA 65c1; GCCACCAAAATGTTTATGTAGACGAAGTATA 66c1; TTTACCAGCGCTTACGAGGTACAGGGAACA 67c1; ATACCAGCGCTTACGAGGTACAGGGGAACA 67c1; ATACCAGCGCTACCACGGGGATTATTTT 69c1; ACCGGCGAACCTGATCGCGGGATTATATTT 69c1; ACCCGGCGAACCTGACGAGGACCGGTGGGAAC 71c2; GAATGACTCACGAGCCCGTACCACAGACCCGTTGCTAC
 152, TCAAAARATAATTCGCGTCTGGAGCCACCACCACCACAGAGCGC 153, TATTAAAGCAATTGGCGTGAGGGCCTGACACCCCCCAGAGGCA 154, ATTAAGCAATAAAGCCTGAGGCCTGAATATCAGAAACAA 155, AACCGAACAGCCATAACCCATCACCAGGCCTTTGATATCACAAACAA	137-15; GAAACCATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ATCCAAACCCTCAATCAATATCGAAAGAGGCAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAAGGAACAACTAAAGGAATACA 140-16; CAGTACCAGGCGATTAATGTCAACCAACGAACGAACGAAC
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCCTCAGAGCCGC 153; TATTATAATGCAATGCCCGAGGCCTGACCCCCCCAGAGGAGA 154; ATTAAGCAATAAAGCCTCAGAGGCCTGATATTCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; TATCAAACCCTCAATCAATATCGAAAGGGCAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAGGGACAACTAAAGGAATACA 140-16; CAGTACCAGGCGGATAAGTGCACCCTCAGAACGAACGAAAGGAATAC 140-16; CAGTACCAGGCGGATAAGTGCCACCCTCAGAACCGACCCCCC 142-16; AACGGGTATTAAACCAAGTACGAAGTTCGCACCAGTACAAA 143-16; ACGCGGAACTGAAAGCCCACCTAAGGCGTTAGAAGG 144-16; TGCGCGAACTGATAGCCCTAACGTCTTCCCAGACGTTAGAAA 65c1; GCCAGCAAAATGTTTATGTAGATGAAGGTGAA 65c1; GCCAGCAAAATGTTTATGTAGATGAAGGTGAA 66c1; TTTACCAACCCTTACAGGTGGAAAC 67c1; ATAGCGATAGCGAGTTAGAGTCTGAGCGAAAA 68c1; TTTAACCAATTGCACTCCGCGGGGATTATTT 69c1; AGCCGGCGAACCTTACGGTTGTAGCAAAAA 68c1; TTTAACCAATTGGATCGCGGGTTAGGATCTAGAGCCGAAAA 68c1; TTTAACCAATTGCATCGCGGGGATTATTT 69c1; AGCCGCGGAACCTTACCGGGGGATTAATTT 69c1; GCCAGCGCGACCTTACCGGGGGATTAGTTATTT 69c1; GAACCTCCACCAACAAGCCCGTTAGGATCGATACCATAGCATACCGTACCCCT 70c2; GAAACTCACCGACACAACACCCGTTAGTACCATAGCATACC 72c2; GAAACTACGAATCGAATCGACGTCTCTGCT 72c2; GAACATCACTACAGAAACGACATACAATGCA
 152, TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACAGAGCCCC 153, TATTTAAATGCAATGACGCCTGGAGGCCTGATATTCAGAGACAA 154, ATTAAGCAATTAAGCCTCAGAGCCTTGATATTCAGAGACAA 155, AACCCGAATGCCAGACCTTTACCAGAGCCTTGATATCCAGAGACAA 156, AAACCCGAATGCCAGACCTTTTTTTCACAAAATAACAACCATAA 157, TCAATTACCTATGCGAATTTTTTACAAAATAAACACCCCCTGCCTAT 158, GATATTCATTACCCAAATCAACAGTTAATGCCCCCGCCCCTAC 159, GTACCAACAACCACCATCATGCGGTTATGCGGCTTTGCT 161, CCGACCAACAACCACCCTCATTTTAGGCTTATGCCCGGTTTTCCTA 162, GATGCTGCCCCTCCTGTGTACATAATTAATTTCCCCTTAGAAT 163, GATGGGCGTAACCACCATCATTTGCACAATCATAGAAA 164, ATGGGTCAAGAGCCATCAGCGTATGTTGCCAAAATCAATAGAAA 165, TTCGGATGACACAACGATCGTGTTTTGCCAAAATCAATAGAAAA 166, TTTCAGTAAACAGACGATCGACGACGAAAGTTACCAGAGGAAA 167, TCAGGAGTGAAGCGTATGCGCGAAATCATAGGCTGAAAGACCAA 168, GAGGGGCGACGACGTATGCGCGAAATACCAAAGAAGCAAGAAAGA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACGTGGCACAGACAATCAATACGAAAGGGCAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAAGGAACCACAAAAGGAATACA 140-16; CAGCGGCACAGGCGATAAGTGCCACCCTCAGAACGCACCCCT 141-16; GAACGGGGGTATTAAACCAAGTACGAAGTTCGTCACCAGTACAAA 143-16; ACGGGTATTAAACCAAGTACGAAGTTCGCAACAGAAAAAAAGG 144-16; TGCGCGAACTGATAAGCCTGAAAATCTCCCAAAAAAAAGG 144-16; TGCGCGAACTGATAGCCCTAACGTCTTCCCAGACGTTAGTAA 65c1; GCCAGCAAAATGTTTATGTAGATGAAGGTATA 66c1; TTTACCAGCCCTATCACGGTGGAAC 67-1; ATACCGATACCGAGTTAGGTCGTGGGAAC 67-1; ATACCGATACCGAGTTAGAGTCTGAGCAAAA 68c1; TTTACCAGCCCTTACCACGGTGGGAAC 67-1; ACGCGGCAACCTACTGTTCTTTACATAAA 70-2; GGAAACGTACCGGGGATTATTTT 69-1; AGCCGGCGAACCTACTGTTCTTTACATAAA 70-2; GAAATGTTATCGACTCGGGTTGGAAC 73-2; GAAGATGAAAAGGACACCTTACTGATGCTGCA 73-2; GAAGATGAGAAACGACATACCATGCTTCCTACAGG 74-2; GAGCGCCTCTGAATTCTCCGTCCTTCCA
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCCTCAGAGCCGC 153; TATTATAATGCAATGCCCGAGGCCTGACCCCCCCAGAGGAGA 154; ATTAAGCAATAAAGCCTCAGAGGCCTGATATTCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACGTGGCACAGACAATAATCGAATAGCGAAAGGGCAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAAGGAACCAACTAAAGGAATAC 140-16; CACGCGGCACAGACAATATTTTAGGCAACCTGAAACGAACCGCCCCCT 141-16; GAACCGAGGCGTTTAAACCAAGTACGCAACTGAAACGAACG
 152, TCAAAARTAATGCGCTCTGGAGCCACCACCACCACAGAGCGC 153, TATTTAAATGCAATGCAGCCTCTGGAGCACCCCCAGAGCGC 154, ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTCCAGAGAGAA 155, AGCCTCAAAGCGAACCAGCCTTTGATCAGAGAGCATAACATAA 156, AAACCGAATGCAGACCATCAATCCATACATGGCTTTTGATGGATA 157, TCAATTACCTTATGCGATTTTTTACAGATAATGCCCCCTGCCCTAT 158, GATACTCATTACCCAATCACAGCATATGCCCCCTGCCCCTAT 159, GTAGCAACAACCACCATCATGCGGTTTGCCT 161, CGAGCCACCACCCCCTATTTAAGGCTTATGCCGGTATTCCCAGAGGCTTAGCGCCCTGCCCCTGCTGTGACAACAACACCCCCCTATTTTAAGGCTTAAGGCTTAGAGAAT 162, GATACTTGCCCCTCTCTGTACATAATTAATTTTCCCCTAGAAA 163, GATTGGGCCTAACGATGACGACAACAACAACAACAACAACAACAACAACAACAACA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ATCCAAACCCTCAATCAATATCGAAAGGGCAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAAGGAACAACTAAAGGAATACA 140-16; CAGTACCAGGCGATTAAGTGCCAACCTGAAACGCACCCCT 141-16; GAACCGCAGGCGTTTATGCGCAACCTGCAATCACGAACGA
 152, TCAAAARATAATTCGCGTCTGGAGCCACCACCACCACAGAGCCCC 153, TATTAAGCAATAAGCCTGAGGGCTGAGCGCTACAAAGAAGAA 154, ATTAAGCAATAAAGCCTGAGGCCTGAATATCAGAAACAA 155, AGCTTCAAAGCGAACAGACCTTTACAGAGGCATTAGATAACATAA 156, AAACCAGAATGACCATAAATCCATCAAGGCCTTGGATATTCACAAAACAA 157, TGAATTACCTATGCGCAATTTTTTACAGAAAAGCCATAT 158, GATATCACTATGCGCAATATTTTTACAAAATAAACAGCCATAT 159, GTAGCAACCACCCCAATCTTAGGGTATATTCCCCCGG 161, CCGACCAATGACAACAACCATCTAGGGTATATTCCCGGGTTTTGGT 161, CAGACCACCCCCCTCTTTTAAGGCTATACCGGGTTTTGCT 162, GATACTGCCCCCTCTGTACAATTAAATTTTCCCCTTAGAAT 163, GATTGGGCTCATGCAGTGCGTTATCAATTCAACGCTAATTGAAT 164, ATGGGTTCAGGAGCGACAGTGAACCATAGCAAACAATAGAAA 165, TTCCGGATGGAGGCGAGGCGAAGCAAAGCACAAGGCAGGGAG 167, TCAGGGACACCAGCAGTATCGACGACGCTGTGCAGAAGGAAA 168, GAGGGGACGACGGCGACGTATCCACCACCGCGTGTGAAAAAAA 169, GTTTGTGTAAATCCAACGATATTAACGCCAATTATAAAGGCAAAAGAAGAA 170, AAAAGGGGGAGAAGGCCGGACCGTATACAAATTCTTACCAG 171, AACATCCAATAACAAGCCCCCCCCAAATCTTTTGTTAAACGACACCC 172, AGGTGGGAGAAAGCCCCGAAGCAAAGCAATAACAACACCTTCTA 173, AATATTCCATGAACATTCAACGCAATATTACGACGAGCGCGT 174, GCCGACGTCTCAAACAACCCCCCCAAACCAACGCATT 173, AATATTCCATGAACAACCCCCCCGAAACCAACGCTATCCAGAACAACACCC 174, GCCGACGTAATTCTAAACACCCTCAACAACACCATTCACGACACCC 175, AGGCGGACGAACTTCCAATAACACCCTTCAGGCAAATCACGACATTAAA 177, TTCGAGGAATTTTTAAACACCCTCACGACTTGCGGAGGT 178, GAACCACTGCACACCTCCACCACCTTGCGGAGAAAA 180, ACTTTAAAAACACCTCACATTGCACACCTTCGCAGACAACGCT 176, GACCACGTCATCACAACCCCCCGCACCTTGCGGAGGAT 177, TTCGAGGAGATTTTCTAAACACCCTCACGCACCTGCGGAGGT 178, GACCAGGTACCTTCAATTTAGAACACCATTGCGGAGAACAACGC 179, CAATATACAACACCTCCACTTGGAACAACGCTACGTACGAACAACGC 179, CAATATACAACACCTCCACATTGGAATAACCCTTTTTAAAGGCCTTAAACAACACCTTTTTAAAGCGCTAGGAAGA 180, ACTTTAAAACAACCTCACATTGGAATTAACCATCTTTTAAGGCCATAGGAACAACGC 	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACGTGGCACAGACAATAATCGAATAGGGCAAAGGAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAGGGAACCACAAAGGAATACA 140-16; CACTAACCAGGCGGATAAGTGCCACCCTCAGAACCGCACCCCT 142-16; AACGGGTATTAAACCAAGTACGAACTTCGTCACCAGTACAAA 143-16; ACGGGTATTAAACCAAGTACGAAGTTCGCACACGACACAAA 143-16; ACGAGACAGAATCTAAAGCTGGAAATCTCCAGACGTACAAA 144-16; TGCGCGAACTGATAGCCCACCTAACGTCTTCCCAGACGTTAGTAA 65c1; GCCAGCAAAATGTTTATGTAGATGAAGGTATA 66c1; TTTACCAATCGCATCACGGTGGAAAC 67c1; ATACGATACCGAGTTAGGTCTGAGCGTGAAAA 68c1; TTTAACCAATTGCACTGCGGGGGATTATTT 69c1; AGCCGGGAACCTACGGTTGTCTTTACATAAA 70c2; GGAAACGTCACCGATAGCCCGTAGTAGCCCATAA 71c2; GAATTTACCACCCGATGACGCCGTTGATAC 71c2; GAATTTATCACGATCGCGTGCTCTGCT 72c2; GAACTTACCGCAACAATGGTTCTTCTTACATAAA 73c3; GACGCTGACGAACTTACGCTTGCTTCCA 75c3; ACTACGACACGATTTACGCATCGAGGTCA 77c3; CTCCGGCTAGGGTGATTTGCGTGGAGCTCA 77c3; CTCCGCCTAGAGACTGTAGGTGTGAAGCTCTA 77c3; CTCCGCCTAGGAGATTAGGACGGTTATTT 78c3; TCCGCCCAACGAGATATGAGATGGAGTTTATT
 152, TCAAAARTAATGCGCTCTGGAGCCACCACCACCACAGAGCGC 153, TATTTAAATGCAATGCAGCCTCTGGAGCACCCCCAGAGCGC 154, ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTCCAGAGAGAA 155, AGCCTCAAAGCGAACCAGCCTTTGATCAGAGAGCATAACATAA 156, AAACCGAATGCAGACCATCAATCCATACATGGCTTTTGATGGATA 157, TCAATTACCTTATGCGATTTTTTACAGATAATGCCCCCTGCCCTAT 158, GATACTCATTACCCAATCACAGCATATGCCCCCTGCCCCTAT 159, GTAGCAACAACCACCATCATGCGGTTTGCCT 161, CGAGCCACCACCCCCTATTTAAGGCTTATGCCGGTATTCCCAGAGGCTTAGCGCCCTGCCCCTGCTGTGACAACAACACCCCCCTATTTTAAGGCTTAAGGCTTAGAGAAT 162, GATACTTGCCCCTCTCTGTACATAATTAATTTTCCCCTAGAAA 163, GATTGGGCCTAACGATGACGACAACAACAACAACAACAACAACAACAACAACAACA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACGTGGCACAGACAATAATCGAATAGCGAAAGGGCAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAAGGAACCAACAAAAGGAATAC 140-16; CAGTACCAGGCGGATAAGTGCCACCCTCAGAACGCACCCCT 141-16; GAACCGAGGCGTTTAGACGCAACTGAAACGAACGAAAAAAAGG 142-16; ACGGGTATTAAACCAAGTACGAAGTTCGCACCAGTACAAA 143-16; ACCGGAATGAAAATCTTAAGCTGAAATCTCCCAAAAAAAA
 152; TCAAAARTAATTCGCGTCTGGAGCCACCACCCTCAGAGCCGC 153; TATTATAATCGAATGCCGGAGCGCTGACCCCCCCAGAGGCGC 154; ATTAAGCAATAAAGCCTCAGAGGCCTGATATTCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACGTGGCACAGACAATAATCGAATAGGGCAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAAGGAGCAACAAAAGGAATACA 140-16; CAGTACCAGGCGGATAAGTGCAACCTCAAAGCGCCCCCT 141-16; GAACCGGAGGGGGTATTAAGCGAAGCTTGGTACCGATAGTTGCG 142-16; AGCGAATGAAAAATCTAAAGCTGAAAATCTCCAAAAAAAGG 144-16; TGCGCGAACTGATAGCCTAACGTCTTCCAGACGTTAGTAA 65c1; GCCAGCAAAAGTGTTATGTAGGAGGATAT 66c1; TTTACCAGCCCTAACGTCTACGGTGAAAC 65c1; GCCAGCAAAAATGTTTATGTAGATGAAGGTATA 66c1; TTTACCCAGCCGATTACGGTGGAAC 65c1; GCCAGCAAAATGTTTATGTAGATGAAGGTATA 66c1; TTTACCCAGCCGTATCACGGTGGAACA 67c1; ATAGCGATACGGGTGATCA 69c1; AGCCGGCGACTCACGGTGGAGGTTAT 69c1; AGCCGGCGACTCACGGTGGAGGTGTAT 69c1; AGCCGGCGACTCACGGTGCTTTCTTACATAAA 70c2; GGAAACGTCACCGAGTAGAGGTCGAGCCAAAA 71c2; GAATATATCAGATCGGGTGCTGTGTGT 72c2; GAATTATACGAGATCGGGTGCTTGTCTA 73c3; AGTAGCGAACGACATTACATGCCAAGG 74c2; GAAGCGGCGCTTGATTACGGGTGCTGTCGA 73c3; CTAAAGGTATGGGGTGTTGGGGGTTA 73c3; AGTAGCGACGAGGTATTACCGAGGTGCAAC 73c3; CTAAAGGTATCGGGGTGTTGGAGGTAA 73c3; TCCCGGCTTAGTATACCGAGGGTGTTG 73c3; CCCAGCAGGGGGTTTATCCTGGGGTGTTGTGT 73c3; CTCCGGGTAGTTACGGGGTGTTGGAGGTAA 73c3; TCCCGCAGGGGGGTTTACCGAGGTGATTGCAGCCACCCC 73c3; CCTAACGGGGGGCATTACCGGGGTGTTGTGAGGTAA 73c3; TCCCGCGTAGGGGGATGTACGGGTGTTGTGAGGTAA 73c3; TCCCGCGTAGGAGAGTGGACACGCGTTGGTAGTTAG 73c3; CCCGGGTACGCCGAGGGAGATGGAGATCGGGTGTTGTGAG 73c3; CCCGGGTACCCCAGGGGGAACGGGTATTGCGGGTGTTGTGAGGTAA 73c3; TCCCGCAGGGGGGGGCGTGGGGGTTGGGGGTATTGGAGGTAA 73c3; CCCGGGTACCCCAGGGAGATGGACGTGGTTGTGGAGGTAA 73c3; CCCGGCGACGCCCGAGGGGGTGGAGTGGAGGTAA 73c3; CCCGGCGACGCGGGGGGGGGGGGGGGGTGGGGGTTGGGGGTATTGCGGGGTGTTGTGAGGGGGGCGTTGGGGGTATTGCGGGGTATTGCGGGGTGTTGGAGGTAA 73c3; CCCGGCGACGGGGGGGGGGGGGGGGGGTGGGGGTTGGGGGTATTGC 73c3; CCCGGGTACCCCCGGGGGGGGGGGTGTTGGAGGTAA 73c3; CCCGGCGACGGGGGGGGGGGGGGGGGTTGGGGGTTGGGGGTATTGC 73c3; CCCGGGTACCCCCGGGGAGGGGGGGGGTGCGGGGTTGCGGGGTATTGC 73c3; CCCGGTACCACCCGGGGGAGGGGGGGGGGGTGCGGCGTGCGT
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACAGAGCCCC 153; TATTTAAATGCAATGACGCCTGGAGCCCTGATATTCCAGAGCACA 154; ATTAAGCAATAAGCCAACCAGCCTTGATATCCAGAGCACAACAA 155; AACCCGAATGCCAGACCTTATCCAGAGCCTTGATATCCACAACAA 156; AAACCCGAATGCCAGACCTTTTTTTCCACAACGCTTTGCTGATA 157; TCAATTACCTATGCGAATTTTTACACAAATAAACACCCCCTGCCTAT 158; GATATCATTACCCAAATCCACAGGTATAGTCGCCCTGCCCCAG 161; CCGACCAATGACCAACAACCATCATGCGGTATGCCGGGTTTGCT 162; GATGCTGCCCTCCTGTGTACATAATTTACGCTTATGCCGGTATTCCTA 162; GATGCTGCCCCTCCTGTGTACATAATTAATTTTCCCCTAGAAA 163; GATGGGGCGTAACCATCATGCGGTATGCCGGGTTTGCT 164; ATGGGTCAGGATGAGCGTAGTGTTTTGCCACAATGCAAAGAAA 165; TTCGGAGTGGAGATAGCGGACATAGGCCGAAGCTAA 166; TTTCGGAGTGGAGATCGACGCGACGTATGCAGAAGCAAAGAAGAAA 166; TTTCGGAGATGAGCGACGTAGCGACCGACGTATCCAGAAGGAAA 166; TTTCGGAGATGAAGATCGACGCGACGTATCCCAGAGGAAA 166; TTTCGGAGGACGAAGCTACGCGACGTATACCAAAGAAGAAAAAAAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACGTGGCACAGACAATAATCGAATAGGGCAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAGGGAAGCAACTAAAGGAATACA 140-16; CAGTACCAGGCGGATAAGTGCCACCCTCAGAACGGCCCCCT 142-16; AACGGGTATTAAACCAAGTACGAAGTTCGTCACCAGTACAAA 143-16; ACCGGGTATTAAACCAAGTACGAAGTTCGTCACCAGTACAAA 143-16; AGCGGGAATGAAAAATCTCAAAGTCGAAATCTCCCAAAAAAAA
 152; TCAAAARTAATTCGCGTCTGGAGCCACCACCCTCAGAGCCGC 153; TATTATAATCGAATGCCGGAGCGCTGACCCCCCCAGAGGCA 154; ATTAAGCAATAAGCCTCAGAGGCCTGACTATACAGAGAGA 155; AACCGACATGACCAGACCTTATCAGAGAGCATTACCATAA 156; AAACGACATGACCATAATCCACAGCTTTGTTTGCAGCCCTGGATA 157; TCAATTACCCTATGCGCATTTTTTACAAAATAAACAGCCATAT 158; GATATTCATTACCCAAATCAACAGTTAATGCCCCCTGCCTAT 159; GTAGCAACGACCCCCTATGTAGTGCTATTTTCCCCCAG 160; CCGACAATGACAACAACCATCTAGGATTATCCCGGGTTTTGCT 161; CAGACCACCACCCTCTTTTAAGGCTATACCGGGTTTTGCT 162; GATACTGCCCCTCTGTACAATGTTGTTTTCCCCGATATTTACA 163; GATGGGCCTCACCCCCTGTTTCAAGGCTTACCGGTTTTGCT 164; ATGGGTTCAGGAGCAGCAGACAAATCAACGACTGCAGAGAAACCATAGAAACATAGAAA 165; TTACGAGAGCAGCCGAGGTCGAGGGAGGCTTAGCAGTAAGAAAGA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACGTGGCACAGACAATAATCGAAAGAGGCAAAAGAATAAC 139-15; ACGTGGCACAGACAATATTTTAAGGAGCAACTAAAGGAATAC 140-16; CAACCGAGGCGATTAAGTGCCAACCTGAAACGCACCCCT 141-16; GAACCGAGGGGCATTAAGCCAAGTACGAACGAACAAAAAAAGG 142-16; ACGGGAATTAAACCAAGTACGAGATTCGTCACACAGTACCGACAAA 143-16; AGCAAAAAATCTAAAGCTGAAAATCTCCAAAAAAAAGG 144-16; TGCGCGAACTGATAGCCTAACGTCTCCAGACGTTAGTAA 65c1; GCCAGCAAAATGTTATGTAGATGAAGGTATA 66c1; TTTACCAACCGCTATCGCAGCTTCGTCCAGAAATGGTA 66c1; TTTACCAACCGCTACGGTCTACGGTGGAAAC 67c1; ATAGCGATAGCCTCACGGTGGAAGCGAAAA 66c1; TTTAACCGATCACGGTGCAACGGTGAAA 66c1; TTTAACCGATCACGGTGGAGGTCTAGTGCACAAAA 66c1; TTTAACCGATCACGGGGGATTTGTTCTTACGATAA 70c2; GGAAACGTCACCGGGGGATTGATGTG 71c2; GAATTATGCAACTCCGGGGGATTGATGT 71c2; GAATTATGCAACGACTCGCGTGCTTCTTCT 72c3; GAAGCGTCACGGCAGATTGCATGCAAG 71c2; GAATTATGCAACGACTTAGGTCTGTCTGC 73c3; GAAGGGCACGCTTGGGTGTGTGTGTG 73c3; GAAGGGCACGGCTTATAGCGGTGGATTA 73c3; TGCGGCACGAGGGTATTACGCGTGGTGGAGTA 73c3; CCGAGCGACGCTCTGGGTGGAGTCA 73c3; CCCAGCGAGGGCTTTATCGCGGTGGTTGGAGTCA 73c3; CCCGGGTTAGGAGAAGGACATTACATGCAAGG 73c4; CCCGGGTTATCAGGGGGATTATCGCGGTGTTGGAGTAA 73c3; TCCCGCGTTGGGGGTATTACGGGGTGTTGGAGTCA 73c3; CCCGGGTTGCTGGGGGATTATCGCGGTGGTTGGAGTAA 73c3; TCCCCCCCGAGAGAGGGAATTACGGAAGGCCAGGTTA 73c3; TCCCCCCCCGAGAGAGGGGAATTACGGAGGTCGATTGC 74c3; CCCGGTTTCATAACGGAAGACCGGGTTGGAGTCA 74c3; CCCGGTTTCATACGGAGGGAATTACGGAGGGCAGGTTATTGC 74c3; CCCGGTTTCATACGGAGGGGAATTACGGAGGGAATTGC 74c4; CCCCGTTGCATTACGGAGGGGATTGGGGTATTGC 74c5; CCCGGTTTCATACGGAGGGGAATTGCGGCTGGTTGTGGAGTAA 74c5; TCCCGCGTTGCAGGGGAATTACCGGGGTTGGGGGTATTGC 74c5; CCCGGTTTCATACGGAGGGGAATTGCGGGGTTGGGGGAATTGC 74c4; CCCCGTTGCAATTACGGAAGCGCGGGTTTGGAGGCAA 74c5; CCCGGTTCCAACGGGGAATTACCGGGGAATTGC 74c5; CCCAATCAACGACGGGAATTACCGCGGGATTGCGCGGAA 74c5; CCCGTTCCAACGAGGGGAATTACCGCGGGATTGCGCGGAACGGGAATTGC 74c5; CCCAATCAACGACGGGGAATTACCCC
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACAGAGCCC 153; TATTTAAATGCAATGCAGCCTCTGGAGCCCCCCACAGAGCC 154; ATTAAGCAATAAAGCCTCAGAGCCTTGATATTCCAGAGAGAA 155; AACCGAACAGCCATACCCATACCCATCACAGCCTTTGCTGATA 157; TCAATTACCTTATGCGATTTTTTACAGATATAACAGCCATAT 158; GATATCCATTACCCAATCACACGTTATGCCCCCTGCCCCTAT 159; GTAGCAACAGCCATCAATCACGATTATTGCCCCCTGCCCTAT 159; GTAGCAACGACCCCCCATTTTAGGCTATTTGCACCCAG 160; CCGACAATGACAACAACCATCATGCGGTTATCCCGGTATTCTCAA 162; GATACTGCCCCTCTCTGTACATAATTAATTTTCCCTTAGAAT 163; GATGCGCCCCCCCCTTTTTGCAGAGCATAAGAAAAA 164; ATGGGTCAGGATGACGAGGCTAGCTGTATGCTGGAGAGCTA 165; TCTCGGATGGAGCAGAGCGAGCGATAGCCGGACGAAGCAACGAACG	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACGTGGCACAGACAATAATCGAAAGAGGCAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAAGGAGCAACAAAAGAATACA 140-16; CACTAACCAGGGGATAAGTGCCACCCTCAGAACGGCACCCCT 142-16; AACGGGTATTAAACCAAGTACGAAGTTCGTCACCAGTACTGATACGAAGAGTGTGG 142-16; ACGGGAATGAAAATCTTAAGCGAAGTTCGTCACCAGTACAAA 143-16; AGCCGGAACGAATGATAAACCAAGGACGAAGTTCGCACAGTAAGGA 144-16; TGCGCGAACTGATAGCCCTAACGTCTTCCAGACGTTAGTAA 65-1; GCCAGCAAAATGTTTATGTAGATGAAGGTATA 66-1; TTTACCAACGCGTATCACGGTGGAAAC 67-1; ATACGGATCGCGGTGGAAGC 67-1; ATACGGATCGCGGTGGAGTCTGAGCGAAAA 68-1; TTTAACAATTGCACTGCGGGGGGATTATTT 69-1; ACCGGCGAACCTACGGTGGCGGCAAAA 68-1; TTTAACCAATGCCCGCGGGGGATTATTT 69-1; ACCGGCGAACCTACGGTGCTCTGCT 72-2; GAATCTACCGACTAGAGCTCGAGCCGATAA 71-2; GAATTATCACGACTCGCGGGGGCTCTTGTC 72-2; GAATCTACGCGAACGCGTTGAGTCTGAG 73-2; GAACGTCCGCGGAATGAGTCTGGCCATC 73-2; GAACGTACGAGATAGACCCGTTGGTGC 74-2; GAACTTATCACGACTCGGGGGCTCTTGCA 73-2; GAACGTACGAACAGCACTACATGCATGCAAG 74-2; GAACGTACGAACAGCACTACATGCTGCGCATCG 74-2; GAACGTACGAACAGCACTTGCCGTCCTCA 75-3; ACTACGCAACGGGCTTTTATCCCGGGGTGGAACC 76-3; CCCGGCTCTGAATTGCGGGTGGAACGCATTA 77-3; TCCCGCCTAAGGAACGGATTTATCCGGGTTGGAGCTCA 77-3; TCCCGCCTAAGGAACGACGCCTGTGCGTCT 76-3; CGCCTAACGAACGCCCGTGGACTATG 77-3; TCCCGCCTAAGGAACGGAACGAGGCCTTTGCTGCC 76-3; CGCCAAGGAACGTAGAACGGCCGTTGGAGCTCT 77-3; TCCCGCCTAAGGAACGACGCCGTTGGAGCTCT 77-3; TCCCGCCTAAGGAAGCACGCCGTGTCGTCC 76-3; CGCTAACCACCCCCCGGGGAACGAGGCAATTGC 80-4; TCCCGCATAAGGAAGCGCCGGCTGCTC 80-4; TCCCGCATAACGAAGGAACGAGGAATTACC 80-4; TCCCAATCAACGAAGTGGGCAATTGC 80-4; TCCCCAATCAACGAAGGAGGGAATTACC 80-4; TCCCAATCAACGAAGGAGGGAATTACCC 80-4; TCCCAATCAACGAAGGAGGGAATTACCC 80-4; TCACAGCATCCTGTGAACGCGGAATTACC
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACAGAGCCCC 153; TATTTAAAGCAATGAAGCGCTGGAGGCCTGGATATTCAGAAGGA 154; ATTAAGCAATAAGCCTCAGAGGCCTTGATATTCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACGTGGCACAGACAATATATCGAAAGGGCAAAAGAATACA 139-15; ACGTGGCACAGACAATATTTTAAGGACAACTAAAGGAATACA 140-16; CAGTACCAGGGGGATAAGTGCCACCCTCAGAACGGCCCCCCT 141-16; GAACCGAGGCGTTTAAACCAAGTACGAAATCTCACAAAAGGACTAC 142-16; AACGGGTATTAAACCAAGTACGAAGTTCGCAACCAGACGACGACAAA 143-16; AGCGGAAATGAAAATCTTAAAGCTGGAAATCTCCCAAAAAAAA
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCCCCCAGAGGCCGC 153; TATTATAATGCAATGCCGGAGGCGCTGACCCCCCCCAGAGGCGCGCGAAAACAA 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGAATTCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACCTGGCACAGACAATAATCGAAAGAGGCAAAAGAATACA 139-15; ACCTGGCACAGACAATATTTTAAGGAGCAACTAAAGGAATACA 140-16; CACCCGGGCGCTATGACGCAACCTAAAGGCAATGG 140-16; CACCCGGAGGGCGTTTAGGCCAACCTGAAACGCACCAAAA 143-16; AGCGAATGAAAAATCTAAAGCTGAAAGTCTCCAAAAAAAA
 152; TCAAAARTAATTGCGCTCTGGAGCACCACCACCACCACAGAGCCGC 153; TATTTAAATGCAATGACGCCTGGAGGCCTGATATTCAGAGACAA 154; ATTAAGCAATTAAGCCAACACCATGACCGTATATCCAGAGACAACAA 155; AACCCGAACCAGACCTTATCCAGAGCCTTGATATCCACAACAA 156; AAACCGAACTAGCCATAATCCACACGCTTTTTTACAGAAGCCATAA 157; TCAATTACCTATGCGAATTTTTACAGATAATGACCCCCTGCCTAT 158; GATATCATTACCCAAATCAACAGTTAATGCCCCCGCCCCTAT 159; GTACCAACGCCCCACATTTTAGCGCTATTTGCACCCAG 160; CCGACAATGACAACAACCATCATGATGCTCCGTATTTGCCCCAG 161; CCGACCAACGACCCCCTCATTTTAAGGCTTATCCGCGTATTCCTA 162; GATACTGCCCTCCTGTGTACATAATTAATTTTCCCCTTAGAAT 163; GATGGGCGTCAACGACGTGTGTTTTGCCACAATGAAAAGAA 164; ATGGGTCAGGATGAGCGTAGTGCTTTGCCAGAAGCAACGAACG	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138c15; ACGTGGCACAGACAATAATCAATACGAAAGGGCAAAAGAATACA 139c15; ACGTGGCACAGACAATATTTTAGGGAACCAACTAAAGGAATACA 139c15; ACGTGGCACAGACAATATTTTAGGGAACCACACAAAGGAATACA 140c16; CAACGGGCACTAAGGCCACCCTCAGAACCGCCCCCCT 142c16; AACGGGTATTAAACCAAGTACGAAGTTCGCTACCAGTACGAA 143c16; ACCGGGAATAGAAAATCTCAAAGCTGGAAATCTCCCAGAACGACCACAAA 144c16; TGCGCGAACTGATAGCCCTAACGTCTTCCCAGACGTTAGTAA 55c1; GCCAGCAAAATGTTTATGTAGATGAAGGTATA 66c1; TTTACCAGCCCTACCGCTCTGCGGGGAACC 67c1; ATAGCGATAGCGCCTAACGTCTGAGCGAAAA 68c1; TTTACCAATTGCACTGCGGGGGATTATTTT 69c1; ACCGCGCAACCTACGGTGGAGCCCGTAGCTAAA 70c2; GGAAACGTCACCGACTAGCCGGTGGTGTGAA 71c2; GAATAAGTTATGCGACTCGGGGGTCTTGTGT 72c2; GAATAAGTTATGCGAGTCGAGCCGTTAGTA 71c2; GAATAAGTTATGCGACTCGGGTGCTTGCA 72c2; GAATAAGGTATCAGCATACATTCCGATGCGATACATTCGA 73c3; CTCCGGCTAGAACGGTCTTTCTTTGCAAGG 74c2; GAACGTCATGACATACCTTGCTTGCA 73c3; CTCCGCCTAGAAGGTTATTTT 73c3; CTCCGCCTAGAAGGTTATTTGTGTGGCCATAC 77c3; CTCCGCCTAGGAGTATACGTAGCAAGC 77c3; CTCCGCCTAGGAGAATGAATCGCTGTCTGA 77c3; CTCCGCCTAGGAGAGTTAGCTGGTGTAT 77c3; CTCCGCCTAGGAGAGTTGGATTGTGTAA 79c3; GCGTAACCACCCCCCCCAGGAGACTGGATTGTGA 77c3; CTCCGCCTAGGAGAGTGGATTATCGAAGGGTCA 77c3; CTCCGCCTAGGAGAGTGGATTATCGAAGGTGCTTAT 79c3; CCCCCACCCCCCCGGGAACCGGTGGTGTAT 79c3; CCCCCCACCCCCCCGGGAACCGAGTCGTTGT 79c3; CCCCCCACGAGAGAGTGGATTATCGAAGGTGGTATTGC 80c4; CCCGTTTCATAACGAAGGAGCCGTGGTGTTGT 80c4; CCCGTTTCATAACGAAGGAGCCGTGGTCTTGTA 80c4; CCCGTTTCATAACGAAGGAGCCGGTGGAGCGAGAGTGGAACGAGGA 82c4; TCCAATAACGTCGTTCAGAACGACCGAATTAACC 83c4; TAACGGGATCTGTTTCCGTTGAACGACAAGA 84c4; GCGCGTACTATTTCTGCAACGACGAATTAACCC 83c5; GTTTCCATACGAACGACGACGAAATTAACCC 83c5; GTTTCCATACGAACGACGACGAAATTAACCC 83c6; TTAACGAACTGCACCGCCGGTCGAATTACCC 83c6; TATAACGACTGCTTGCTACACCGAAATAAATGC 83c6; TATAACGAACTGCACGACGAAATTAACCC 83c6; TATAACGAACTGCACGACGAAATTAACCC 83c6; TATAACGAACTGCACGCCGGGAATTACC 83c6; TATAACGAACTGCAACGACGAAATTAACCC 83c6; TATAACGAACTGCAACAACGAACGAACGAACGAACGAACG
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCCTCAGAGCGC 153; TATTTAAATGCAATGCCGGAGCGCTGAGCGCCTCGACGAGGAG 154; ATTAAGCAATAAAGCCTCAGAGGCCTGATATCAGAAACAA 155; AACCGACATGACCAGACCTTTTCACGAGGCCTTGGATATCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACCTGGCACAGACAATAATCGAAAGAGGCAAAAGAATACA 139-15; ACCTGGCACAGACAATATTTTAAGGAGCAACTAAAGGAATACA 140-16; CACCCGGGCGCTATGACGCAACCTAAAGGCAATGG 140-16; CACCCGGAGGGCGTTTAGGCCAACCTGAAACGCACCAAAA 143-16; AGCGAATGAAAAATCTAAAGCTGAAAGTCTCCAAAAAAAA
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACAGAGCGC 153; TATTTAAATGCAATGCGACCCTGGAGGCCTTGATATTCCAGAGCAGA 154; ATTAAGCAATAAAGCCTCAGAGCCTTGATATTCCAGAGCAGA 155; AACCGAACAGCCATCAGCCTTTACCAGAGCGTTTGGTAGAGCATAA 156; AAACCGAACAGCCATAATCCATACATGGCTTTGGTGATA 157; TGAATGACCTAACAGCATATTTTTACAGATAATGCCCCCTGCCCTAT 158; GATATCCATTACCCAATCACACGATTATGCGGTTTTGCT 159; GTAGCAACGACCCCTCATTTAAGGCTATATTGCGGTTTTGCT 161; CGAGCCACCACCCCTCATTTTAAGGCTTATATTTCCCCTAGAGACTA 162; GATACTGCCCTCTCTGTACATAATTAATTTTCCCTTAGAAAT 163; GATGCGGCCCACCCTCATTTTCCCAATCAATGAATAATAGAGAA 164; ATGGGTCAGGATGACGAGGTAAGCTATGGGCTGAGAGACTA 165; TATCCATGAACAACAGCCATATGCAGTATGCTGGAGAGCTA 166; TTTCCGGATGACGAGGGAGAATCATAGGTCTGAGAGAAAGACCGGG 167; TCAGGGATTAACGCCAATGCAGTAGCTGAAGAAGCCGGGG 166; TTTTGTAAATCAACGACGATTGCCAGAAGAAGCACCGAG 167; AAGGGGGCGAGACGACATCCGACGCGACGTTACCAAGAGGAGAA 168; GAGGGAGCAGACGATCGCGCGACGTTATCCAAGAGCAGAA 169; TTTTGTTAAATCAACGCCCAATGACGCGACGATTCCTACAAGGGGAGAATAACCACCC 172; AAGGCTGGGGAGAAAGCCCCACTTAACCAAACGACGCC 174; GTCAGGACGTAGCCCTTTAACGCAAACAACGTATATTAGGCCGAGGCTT 175; AGGCTGGCTGGCGAAGAATACACCCCAATTAAACAACCCC 176; AGGCTGGCTGGGAAAATAACACCCCAATTAACGAACCACTGA 177; TCCGGGCGGCGAAGAATCACACCCAATTAACCAACGCTAATTACGGGGGAGAT 178; GAACCAATGACAATCCAATTTATAGCCAGACGCTGC 179; CAATATACATAACAATCCCCAATTAACAACCCTACTTAAAGGCGAGGT 179; CAATATACATAACAATCCCCCAATTAACAACCCTTATTACGGCGGGGGGGG	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138c15; ACGTGGCACAGACAATAATCAATACGAAAGGGCAAAAGAATACA 139c15; ACGTGGCACAGACAATATTTTAGGGAACCAACTAAAGGAATACA 139c15; ACGTGGCACAGACAATATTTTAGGGAACCACACAAAGGAATACA 140c16; CAACGGGCACTAAGGCCACCCTCAGAACCGCCCCCCT 142c16; AACGGGTATTAAACCAAGTACGAAGTTCGCTACCAGTACGAA 143c16; ACCGGGAATAGAAAATCTCAAAGCTGGAAATCTCCCAGAACGACCACAAA 144c16; TGCGCGAACTGATAGCCCTAACGTCTTCCCAGACGTTAGTAA 55c1; GCCAGCAAAATGTTTATGTAGATGAAGGTATA 66c1; TTTACCAGCCCTACCGCTCTGCGGGGAACC 67c1; ATAGCGATAGCGCCTAACGTCTGAGCGAAAA 68c1; TTTACCAATTGCACTGCGGGGGATTATTTT 69c1; ACCGCGCAACCTACGGTGGAGCCCGTAGCTAAA 70c2; GGAAACGTCACCGACTAGCCGGTGGTGTGAA 71c2; GAATAAGTTATGCGACTCGGGGGTCTTGTGT 72c2; GAATAAGTTATGCGAGTCGAGCCGTTAGTA 71c2; GAATAAGTTATGCGACTCGGGTGCTTGCA 72c2; GAATAAGGTATCAGCATACATTCCGATGCGATACATTCGA 73c3; CTCCGGCTAGAACGGTCTTTCTTTGCAAGG 74c2; GAACGTCATGACATACCTTGCTTGCA 73c3; CTCCGCCTAGAAGGTTATTTT 73c3; CTCCGCCTAGAAGGTTATTTGTGTGGCCATAC 77c3; CTCCGCCTAGGAGTATACGTAGCAAGC 77c3; CTCCGCCTAGGAGAATGAATCGCTGTCTGA 77c3; CTCCGCCTAGGAGAGTTAGCTGGTGTAT 77c3; CTCCGCCTAGGAGAGTTGGATTGTGTAA 79c3; GCGTAACCACCCCCCCCAGGAGACTGGATTGTGA 77c3; CTCCGCCTAGGAGAGTGGATTATCGAAGGGTCA 77c3; CTCCGCCTAGGAGAGTGGATTATCGAAGGTGCTTAT 79c3; CCCCCACCCCCCCGGGAACCGGTGGTGTAT 79c3; CCCCCCACCCCCCCGGGAACCGAGTCGTTGT 79c3; CCCCCCACGAGAGAGTGGATTATCGAAGGTGGTATTGC 80c4; CCCGTTTCATAACGAAGGAGCCGTGGTGTTGT 80c4; CCCGTTTCATAACGAAGGAGCCGTGGTCTTGTA 80c4; CCCGTTTCATAACGAAGGAGCCGGTGGAGCGAGAGTGGAACGAGGA 82c4; TCCAATAACGTCGTTCAGAACGACCGAATTAACC 83c4; TAACGGGATCTGTTTCCGTTGAACGACAAGA 84c4; GCGCGTACTATTTCTGCAACGACGAATTAACCC 83c5; GTTTCCATACGAACGACGACGAAATTAACCC 83c5; GTTTCCATACGAACGACGACGAAATTAACCC 83c6; TTAACGAACTGCACCGCCGGTCGAATTACCC 83c6; TATAACGACTGCTTGCTACACCGAAATAAATGC 83c6; TATAACGAACTGCACGACGAAATTAACCC 83c6; TATAACGAACTGCACGACGAAATTAACCC 83c6; TATAACGAACTGCACGCCGGGAATTACC 83c6; TATAACGAACTGCAACGACGAAATTAACCC 83c6; TATAACGAACTGCAACAACGAACGAACGAACGAACGAACG
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCCCCCAGAGCGCC 153; TATTTAAAGCAATGACGCGAATGGAGCCTGGATATTCAGAAGGA 154; ATTAAGCAATAAGCCTCAGAGCCTTGATATCAGAAGGA 155; AACCCGAACGCACCACCCATCCATCAGGGCCTTGGATATCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACCTGGCACAGACAATAATATTATAGGAGGAAAAGAATAAA 139-15; ACCTGGCACAGACAATATTTTAAGGAAGAACTAAAAGGAATAC 140-16; CAACCGAGGCGATTAATGCCAACCTGAAACGCACCCCT 141-16; GAACCGAGGGGTATTAATGCAAGTTCGTACACGATAGTTGCG 142-16; ACCGGGACTGAATACCAAGTACGAGATTCGTCACCAGTACCGACAAA 143-16; AGCAAAAAATCTAAAGCTGAAAATCTCCAAAAAAAAGG 144-16; TGCGCGAACTGATAGCCTAACGTCTTCCAGACGTTAGTAA 65c1; GCCAGCAAAATGTTTATGTAGATGAAGGTATA 66c1; TTTACCAACCGCTTACCAGTTCGTCGAAAAT 66c1; TTTACCCAACCGCTTACGGTGGAAAC 67c1; ATAGCGATAGCCGAGTTAGGTGCAGCGAAAA 66c1; TTTAACCGATCGCGGGGGATTTATTTT 69c1; ACCCGGCGACCTACCGTTGCTTCTTACCATAAA 70c2; GGAAACGTCACCGGCGGAGTTGATCG 71c2; GAATTATCAACTTCGCATTGCTGTCTTGCA 71c2; GAATTATAGGATAGGACTCGGCGGTGCTTCTTG 72c2; GAAGCGTCACCGAGTAGGACCGGTGCTGTCGA 73c3; GAAGCGTCACCGCGGGGGTTGTATGTG 73c3; AGTAGCGATAGGACTGGCGTGCTTGCTG 73c3; AGTAGCGACGAGGTGGCATTACATGCTGGAG 74c2; GAAGCGCCCCCGAGGGGTTATACTGCGGTGGTTGTGTG 74c3; CCCGGGTAGAGAAGGACTTACATTGCAGG 74c3; CAAAAGTGTGCTGGAGTATACGGCTGCTTCTA 75c3; AGTAGCGACAGGGGTATTACGGGTGGTTGTGGAGTAA 74c3; TCCCGCGTTGAGGAAAGGACCGTGGTGGTTGTAA 74c3; TCCCGCGTGGGGTATTACGGGGGTTGGAGGTAA 74c3; CCCGGTTTCCTGGTGGGGGTATTACGGGGGTTGTTGTTA 74c3; TCCCGCGTGGCATTACCGGGGTGTTGGGGTATT 74c3; TCCCGCACGAGGAGAGGGGAATTACGCGGGGTTGGAGGTAA 74c4; CGCGTTTCCATAACGAAGACCGGGATTACATGC 74c4; CCCCTTAATTACCGGAGGGGAATTACGC 75c3; ATTAACGGAAGGGGAATTACGGAAGGCGGGTTTGGTAG 74c4; CCCGTTTCCAACGAAGGAGAGGGGAATTACGC 80c4; CCCGTTTCCAACGAAGGAGGGGAATTACGC 80c4; CCCGTTTCCAACGAAGGGGGAATTACGC 80c4; CCCGTTTCCAACGGGGAATTACGC 80c4; CCCGTTTCCAACGAAGGGGGAATTACCC 80c4; CCCGTTTCCAACGCAAGGGGAATTACCC 80c4; CCCGTTTCCAACGCAAGGGGAATTACCC 80c4; CCCAATTCCACGAAGGGGGAATTACCC 80c4; CCCAATTCCATTCCCACGAAGGGGAATTACCC 80c4; CCCAATTCCACGAACGACGGGAATTACCC 80c5; CTAATTACCGCAACGCAGGGGAATTACCC 80c5; CCAATTACTGCAACGCAAGCACAACAACACCGGGAATACACCC 80c5; CCAATATAATTTCCACGCAAGCAAGACAACAACACGGGAATTACCC 80c5; CCAATATACTGCAACGAACAACAACAACACGGGAATTACCC 80c5; CCAATATACTGCAACCACGAAGCAACAACACACGGAATTACCC
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACAGAGCGC 153; TATTTAAATGCAATGCGACCCTGGAGGCCTTGATATTCCAGAGCAGA 154; ATTAAGCAATAAAGCCTCAGAGCCTTGATATTCCAGAGCAGA 155; AACCGAACAGCCATCAGCCTTTACCAGAGCGTTTGGTAGAGCATAA 156; AAACCGAACAGCCATAATCCATACATGGCTTTGGTGATA 157; TGAATGACCTAACAGCATATTTTTACAGATAATGCCCCCTGCCCTAT 158; GATATCCATTACCCAATCACACGATTATGCGGTTTTGCT 159; GTAGCAACGACCCCTCATTTAAGGCTATATTGCGGTTTTGCT 161; CGAGCCACCACCCCTCATTTTAAGGCTTATATTTCCCCTAGAGACTA 162; GATACTGCCCTCTCTGTACATAATTAATTTTCCCTTAGAAAT 163; GATGCGGCCCACCCTCATTTTCCCAATCAATGAATAATAGAGAA 164; ATGGGTCAGGATGACGAGGTAAGCTATGGGCTGAGAGACTA 165; TATCCATGAACAACAGCCATATGCAGTATGCTGGAGAGCTA 166; TTTCCGGATGACGAGGGAGAATCATAGGTCTGAGAGAAAGACCGGG 167; TCAGGGATTAACGCCAATGCAGTAGCTGAAGAAGCCGGGG 166; TTTTGTAAATCAACGACGATTGCCAGAAGAAGCACCGAG 167; AAGGGGGCGAGACGACATCCGACGCGACGTTACCAAGAGGAGAA 168; GAGGGAGCAGACGATCGCGCGACGTTATCCAAGAGCAGAA 169; TTTTGTTAAATCAACGCCCAATGACGCGACGATTCCTACAAGGGGAGAATAACCACCC 172; AAGGCTGGGGAGAAAGCCCCACTTAACCAAACGACGCC 174; GTCAGGACGTAGCCCTTTAACGCAAACAACGTATATTAGGCCGAGGCTT 175; AGGCTGGCTGGCGAAGAATACACCCCAATTAAACAACCCC 176; AGGCTGGCTGGGAAAATAACACCCCAATTAACGAACCACTGA 177; TCCGGGCGGCGAAGAATCACACCCAATTAACCAACGCTAATTACGGGGGAGAT 178; GAACCAATGACAATCCAATTTATAGCCAGACGCTGC 179; CAATATACATAACAATCCCCAATTAACAACCCTACTTAAAGGCGAGGT 179; CAATATACATAACAATCCCCCAATTAACAACCCTTATTACGGCGGGGGGGG	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACGTGGCACAGACAATATTTTAAGGAGCAAAAGGAATACA 139-15; ACGTGGCACAGACAATATTTTAAGGAACCAACAAAAGGAATACA 140-16; CACTAACCAGGGGGATAAGTGCCAACCTGAAACGAACGAA
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCCCCCAGAGCGCC 153; TATTTAAAGCAATGACGCGAATGGAGCCTGGATATTCAGAAGGA 154; ATTAAGCAATAAGCCTCAGAGCCTTGATATCAGAAGGA 155; AACCCGAACGCACCACCCATCCATCAGGGCCTTGGATATCACAAACAA	137-15; GAAACCAATCAATAATGGGCTGATCGGTTATCAGCTTGCT 138-15; ACCTGGCACAGACAATATTTTAGGGGGAAAGGGAAAAGAATACA 139-15; ACCTGGCACAGACAATATTTTAGGGAGCAACTAAAGGAATACA 140-16; CACTACCAGGGGGATAAGTGCCACCCTCAGAACGGCACCCT 141-16; GAACCGGAGGGGTTTAGCGCAACGTGGATACCGCAAGATGG 142-16; AGCGGAATGAAAAATCTAAAGCGAGATTCGTCACACAGTACGGACATAGAA 143-16; AGCAAAGAAAATCTAAAGCTGAAAGTCCCAAAAAAAGG 144-16; TGCGCGAACTGATAGCCCAACGTCTTCCAGACGTTAGTAA 65c1; GCCAGCAAAATGTTTATGTAGATGAAGGTATA 66c1; TTTACCAGCCCTAACGTCTACCGGTGGAAC 67c1; ATACGATACCGGGTGATCA 66c1; TTTACCCAGCCCTACCGGTGGAGACA 66c1; TTTACCCAGCCCGATTAGGATGAGGGTGAA 66c1; TTTACCCAGCCGATTAGGATGCAGCGAAAA 66c1; TTTAACGATACGGGTGCAGCGAAAA 66c1; TTTAACGATACGGGTGCTGCGGGGAACA 71c2; GGAAACGTCACCGAGTAGAGGTCGAGCCAAAA 70c2; GGAACCTCACCGAGTAGAGGTCGAGCCGAAAA 71c2; GAATTATCAGATCGGGGGGCGTCTTGTCT 72c2; GAATTATCAGGATCGGGTGCTTGTGTC 72c2; GAAGCGGCACCCTAAGGACCCGTTAGTAAC 71c2; GAATAAGTTATGCGAGCTGTATGCGAGG 74c2; GAAGCGGCGCACCGATAAGGCCCTTAGTAC 71c3; CCCGGCTAGGAAACGACATACATGCCAAGG 74c2; GAAGCGGCGCTCTGATTGCGGGTGCTTGTG 74c3; CCCAGCAGGGGGATTTACCGGGGTGTTGGAGGTA 74c3; TCCGGCCTAGGAAACGACATACATGCCAAGG 74c4; GACGGGGCGCTCTGATTGCGGGCGTTTG 74c3; CCCAGTTAGTGAGAAACGACATACATGCAAGG 74c4; CCCGGTTAGTGAGATTACGGGGTTGGAGGTAA 75c3; CCTAATCAGGAGGGGATTACCGGGGTTTGGAGGTAA 75c3; CCCAGCGAGGGGGGTGGGGGTTGGGGGTAT 76c3; CCCAGCGAGGAGAGGGGATTACCGGGGTTGTGGAGGTAA 75c3; CCCCAGGGGAGAGGGGATGGGGCTTGGAGGTAA 75c3; CCCCAGGGGAGGGGGGGGAATTGC 75c4; CCCCCCGGGGAGAGGGGGATGGGGCTATTGC 75c5; GTTTCCCACCCAGGGAGAAGGCGCAATTAACTC 75c5; GTTTCCCACCCAGGGAGAACGGCAATTAACTG 75c5; GTTTCCCACCCAGGGAGAGGCGAATTGGAGCACGA 84c4; CCCCGTTTTTCCATGAACGCGAAGTATACCC 85c5; GTTTCCCACTGCACGCGAATTATCGCGGGGAACGACGA 84c4; GCGGGACACCCTAAACAGCGGAATTAACCC 85c5; GTAGATATAACGACGCGAATTATACGCAGGG 85c5; GCAATAATAACGTTGCCAGGGGAATCGGGAACGCAACACGA 84c5; GCAATATAACGACCGCTAATTACGCAGGGGAACCGGGAACGCACGGG 85c5; CCAATATAACGACCGTAATTACGCAGGGG 85c5; CCAATATAACGACCGTAATTAGCGCAGGG 85c5; CCAATATAACGACCGTAATTAGCGCAGGG 85c5; CCAACCGGAACCCTAATGGGAACCGCGAACGCACGGCAACGCG
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCACCACAGAGCGC 153; TATTTTAAATGCAATGCAGCGCTGGAGCCCTGATATTCCAGAGCAG 154; ATTAAGCAATAAAGCCTCAGAGCCTTGATATTCCAGAGCAGA 155; AACCGAACTGCCAGACCTTTATCCAGAGCGTTTGGTGATA 156; AAACGCAATGCCCAGACCTTTTTTCACAAAATAACAGCCATAT 158; GATATCCATTACCCAATCACACGTTATGCCCCTGCCCCTAT 159; GTAGCAACGACCCCTATTTTACAGCTTATGCGGTTTTGCT 161; CAGACCACCCCCCCTTTTTAAGGCTTATACGGGTTTTGCT 162; GATACTGCCCCTCTCTGTACATAATTATTTCCCCTAGGAGACTA 163; GATCGCCCTCCTCTGTGACATAATTATTTTCCCTAGAGACATA 164; ATGGGTCCAGAGGCGAGCGAGCGAGCGAGCAGCAGAGCAGAGCGAGAGCGAGCAGC	137-15; GAAACCATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACGTGGCACAGACATTATTTAGGAGGCAAAGGAATACA 139-15; ACGTGGCACAGACATTATTTTAGGGAACCACAAAAGGAATACA 140-16; CACTAACGAGGCGTTATAGTGCCACCCTCAGAACGGCACCCCT 141-16; GAACCGAGGCGTTTAGGCCAACCTGAAACGAACGAAAGGA 143-16; ACGGGTATTAAACCAAGTACGAAGTTCGTCACCAGTACAAA 143-16; ACCGGGAATGAAAATCTCAAAGCTGCAACGTCCCACAGTACAAA 144-16; TGCGCGAACTGATAGCCCTAACGTCTTCCAGACGTTAGTAA 65c1; GCCAGCAAAATGTTTATGTAGATGAAGGTATA 66c1; TTTACCAACGCTATCACGGGTGGAACC 67c1; ATACGATACGGAGTTAGGGTCGAGGGGGAAC 67c1; ATACGATACGGAGTTAGGGTCGAGCGAAAA 68c1; TTTACCAATTGCACTCGCGGGGATTATTTT 69c1; ACCCGGCGAACTTACGTTTCTTTACATAAA 70c2; GGATACGCACACGACTACGGTGGCTCTGGTC 72c2; GAATAGCTATCGCATCGCGGGGGTCTTGCT 72c2; GAATAGCTATCGCATCGCGGGGTCTTGCA 73c3; GACGTGTCAGAACGCATTACGTTGCTTCC 74c3; CATAAGGGTATGAGGTCGATGCATACATTGCA 73c3; GCCCAGCAAATGTTATCGGGTGGAGCCA 77c3; CTCCGGCTAGGAACGTATCATTGCTTGCA 73c4; GAGGGGGCTCTTAACGTATCGTTGTTGCCATCC 74c3; CATAAGGGAGTATACGTTGCTTGCA 73c5; AATAGCGACAGGAGTTAGGTGGAGCCA 77c3; CTCCGGCTAGGAGGTATTACGGAGGTCGA 77c3; CTCCGCCTAGGAGGTATTACGGAGGTCGATTGC 80c4; CGCGTTTCATAACGAAGCGGCTGGTCTTGA 79c3; GCGTAACCACCCCCCCAGGAGACGGGGTCA 77c3; CTCCGCCTAGGAGGTAGTTATCGGAGGTCGATTGC 80c4; CGCGTTTCATAACGAAGGGCCTGGTCTTG 80c4; CGCGTTTCATAACGAAGGAGCGCGGGTGGAG 80c4; CGCGTTTCATAACGAAGGGACGAGGAGCGGGAACGAGGA 82c4; TCCAATATCTTCTGCTGAACGGACGTGGTTGTGA 79c3; GCGTAACCACCCCCAGAGGAGTCGGATTAGC 80c4; CCCCTTTCTTTAACGAAGTGGGTTGGAACCACGA 82c4; TCCAATTTTCTGCTGAACGACGAGAGGAAGGAAGGAAGGA
 152; TCAAAARTAATTGCGTCTGGAGCACCACCACCACAGAGCGC 153; TATTTAAATGCAATGACGCGAGCGTGAGAGCCTGATATTCAGAGAGA 154; ATTAAGCAATTAAGCCTCAGAGCCTTGATATTCACAAACAA	137-15; GAAACCATCAATCATATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACCTGGCACAGACATTATTTAAGGAGGAAAAGAATAAC 139-15; ACCTGGCACAGACAATATTTTAAGGAGGAACAGAAAGAATAA 140-16; CAACCGAGGGGATTAAGTGCCACCTCAGAACCGCACCCT 141-16; GAACCGAGGGGTTTAACCAAGTACGAGATTGCTCACACAGTACCGACATAA 143-16; AGCGAATGAAAAATCTAAAGCTGAAAATCTCCAAAAAAAA
 152; TCAAAARTAATTGCGCTCTGGAGCCACCACCCTCACAGAGCGC 153; TATTTAAATGCAATGCAGCCTCGAGGCCTTGATATTCAGAGAGAA 154; ATTAAGCAATAAAGCCTCAGAGCCTTGATATTCACAGAGACAA 155; AACCGAATGCAGACCATGAATCCATACATGGCTTTGATAACAAA 156; AAACCGAACAGCCATAATCCATACATGGCTTTGGTGATA 157; TGAATGACCTAACAGCATTATTCACAAAATAAACAGCCATAT 158; GATATCCATTACCCAATCACACGATTATTGCCCCTGCCCTAT 159; GTAGCAACGACCACAACACCATCATGCGGTTTGCCT 161; CGAGCCACCACCCCTCATTTAAGGCTTATATTTCCCCTTAGAAAT 162; GATACTTGCCCTCTCGTGACATAATTAATTTTCCCCTTAGAAAT 163; GATGCGCCCCCCCCTTTTGTTGCCAAACAAACAAAAAAAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ATCCAAACCCTCAATCATATCGAAAGGGCAAAAGAATACA 139-15; ACCTGGCACAGACAATATTTTAGGGAACCAACTAAAGGAATACA 139-15; ACCTGGCACAGACAATATTTTAGGGAACCACAACGAAAGGAATACA 140-16; CAACCGGAAGGGCGTTATGGCCAACCTCAGAACCGCCCCCT 142-16; AACCGGAATGAAAAATCTAAAGCTGAAATCTCCCAAAAAGGG 144-16; TGCGCGAACTGATAGCCCAACGTTCCCCACAGCGTAGCAA 65-1; GCCAGCAAAAGTGTTTATGTAGAGGAGGTATA 66-1; TTTACCAACGCTAATCGCCAACGTCTCCCAGACGTTAGTAA 66-1; TTTACCAGCCCTATCACGGTGGAAAC 67-1; ATAGGGATACGCGAGTAGGGTGGAGCGAAAA 68-1; TTTACCAGCGCTATCACGGTGGAAAC 70-2; GGAACGTCACCGAGTAGGGTGCGAGCAAAA 68-1; TTTACCAACCGGATTAGGTGTGAGCCGATAG 69-1; ACCCGGCGAACCTACGTTTCTTTTACTATAA 70-2; GAACGTACCGAGTAGAGCTCGAGCAAAA 70-2; GAACGTACCGACTAGGTGCAGCCGATAG 71-2; GAATTATCACGAACCGATTAGGTGTGGAGCCATA 72-2; GAAGATGAGAAACGACATACATTGCAGTGCGAGCAACA 73-2; GAAGATGAGAAACGACATACATTGCCAGTGCGACG 74-2; GAGCGGCGCCTCTGAATTCCCGGTGCTTCTGA 73-3; CTCCGGCTAGGAATTCGCGTGCTGTCGCA 75-3; ACTACCGACCAGGGGTATTACGGGTTGGAGGCTA 77-3; CCCGGCGAGGGGAGTGAGGCGGTTTGTAG 77-3; CCCGGCCAGGAGGAGGGGGAATTACC 76-3; CATAACGAGGGGAGGGGGAGTGGGGTTTGTA 79-3; GCGGAACCCCCCCCGGGGGAACGAGGGCGCTTG 70-3; CCCGGCTAGGAGGAGGGGGAATTACCC 80-4; CCCCTTATACGCGGGGGAGCGGGATTTGC 76-3; CATACCACCCCCCCGGGGGAACGAGGGCGTTTGTA 79-3; CCGGGCAGGAGGGGGAGTGAGACCGCTGTGCTC 80-4; CCCCTTATACTAGGGAGGGGGAATTACCC 80-4; TCACGGCAACCCCAACACGGGAATTACCC 80-4; TCACAGAATTCCAGGGAGGGGAATTACCC 80-4; CCCCTTATATCTGCGTGGCGAACGACGAGA 84-4; CGCGCTACTATTTCCGGGTAGGGCAACGACGAGA 84-4; CCGCGTACTATTTCCAGGAGGGGAATTACCC 85-5; CCAAATACAACGGAAGCGCAGGCAATCAACCC 85-5; CCAAATATACGAGCGCGGCAATCAACCC 85-5; CCAAATATAACGTGGCAAGCCACGGCAATCAACCC 85-5; CCCACGTACAACCCTAAACGAAGGAATCACCC 85-5; CCCACGTACAACCTAAACGAAGGAAACCAACGAA 84-4; CCCCCGGAACCCCAATCAAATAACCC 85-5; CCCACGTACACCTAATAACGACGCAATCAACCCC 85-5; CCAAATATAACGAACCCCAATCAAACCCC 85-5; CCCACGTACACCCTAATGGCAAACCCCAACGCAATCAACCCC 85-5; CCAAATATAACGAACCCCAATCAACCACCCAACCCCAAGGGAACCCCCAAGGCAACCCCAAGGCAACCCCAAGGCAACCCCAAGCCCAACCCCAAGCCAACCCCAAGCAACCCCAAGCCAACCCCAAGCCCAAGCCCAACC
 152; TCAAAARTAATTGCGCTCTGGAGCACCACCCTCAGAGCGCC 153; TATTTAAAGCAATGCCGAATGCGCGAGCCTGGATATTCAGAGAGA 154; ATTAAGCAATAAGCCTCAGAGCCTTGATATTCACAAACAA	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACGTGGCACAGACAATATTTTAGGGAGCAACGAAAAGAATACA 139-15; ACGTGGCACAGCAATATTTTAGGGAACGAACGAAAAGAATACA 140-16; CACTAACGAGGCGATTAGTGCCACCCTCAGAACGGCCCCCCT 142-16; AACGGGTATTAAACCAAGTACGAAGTTCGCTACCAGTACGAA 143-16; ACCGGGTATTAAACCAAGTACGAAGTTCGTCACCAGTACAAA 143-16; ACCGGGAATGAAAATCTTAAAGCTAGCGAAATCTCCCAGAACAAAAAAAA
 152; TCAAAARTAATGCGCTCTGGAGCACCACCACCACAGAGCGC 153; TATTTTAAATGCAATGCAGCGCTGGAGGCCTGGATATTCAGAGAGAA 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGATATCAGAGAGAA 155; AACCGAACAGCCATACCCATACCAGGCGTTTGGTAACATAA 156; AAACGCAACAACCCATACTCCATACATGGCTTTGGTAA 157; TCAATGACCTATACGCAATTTTTACAGAATAATAACAGCCATAT 158; GATATCCATTACCCAATCACACGTTATGCGCCCTGCCCCTAT 159; GTAGCAACGACCCCCATATTAAGGCTATATTGCGGTTTTGCT 161; CAGAGCCACCACCCCCTATTTAAGGCTTATATTTCCCCTAGAAT 162; GATACTTGCCCCTCTCTGTACATAATTAATTTTCCCCTAGAACATAA 164; ATGGGTCAGGATGCAGGGGAGACTAAGTTAAGGCTGAGGAGAAAGAA	137-15; GAAACCATCAATCATATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACCTGGCACAGACATTATTTAGGGGGAAAGGAAAAGAATACA 139-15; ACCTGGCACAGACATTATTTTAGGGAGCAACTAAAGGAATACA 139-15; ACCTGGCACAGACAATATTTTAGGGAACGACACAAAGGAATACA 140-16; CACCCGGAGGGCGTTTAGGCCAACCTCGATACCGATAGTGCG 142-16; ACCGGGAATTAAACCAAGTACGAGTTTCGTCACCAGTACCGCACAAA 143-16; AGCAAAGAAAATCTAAAGCTGAAAGTCTCCAAAAAAAGG 144-16; TGCGCGAACTGATAGCCCAACGTCTTCCAGACGTTAGTAA 65c1; GCCAGCAAAATGTTTATGTAGATGAAGGTATA 66c1; TTTACCAACCGTATCACCGGTGAAAC 67c1; ATACGATACCGAGTTGAGTCAACGGTGAAA 66c1; TTTACCCAACCGCATTACGGTGGAAAC 67c1; ATACGATACCGAGTAGAGGTGTA 69c1; AGCCGGCGACCTCACCGGTGGAGGTTTATTTT 69c1; AGCCGGCGACCTCACCGGTGGAGGTGTAT 69c1; AGCCGGCGACCTCACCGGTGGCGTGTTGTGT 72c2; GAAACGTCACCGAGTAGAGGTCTGACGCAAAA 71c2; GAATATATCAAGTTCGCGCGGTGCTTGTGT 72c2; GAACGTCACCGACTGAGAGCCGTTAGTAAC 71c2; GAATAAGTTATGCAGCCGTTGCGTGTCTGGA 73c3; AGTAGCGACGCTTAAGTATCGCAGTGCGTGTGTGT 72c4; GAAGCGGCGCTCTGATTTCGTTGCGCGCTCTCA 73c3; AGTAGCGACGAGGTTTACCTGGGGTGTTGTGAG 74c2; GAAGCGGCGCTCTGATTCGCGGTGTTGCA 74c3; CCCGGTTAGGAGAACGACATTACATGCAAGG 74c2; GAAGCGGCGCCTGAATTCGCGGGTGTTGTGAG 74c3; CCCAGTGGGGAATTACGGGGGTTGGAGGTAA 74c3; TCCGGCGTAGGAAACGACATTACCAGGGTTGGAGGTAA 74c3; TCCCGCCTGAGATTCGCGGCGTTTGCA 74c3; CCCAGTGTGGAGTGGAGTGGGGGTTAT 74c3; TCCCGCCTGAGAGAGGGGGATTTGC 80c4; CCCCTTTGATACGGGGAGATGGGGTTGTG 74c3; GCCGACCAGGGAGAGGGGGATTTGC 80c4; CCCCTTTGTATACCGAGGGGGTTGGAGGTAA 80c4; GCCGGTACTCATTGAGGGAATCGGGTTGGAGCTAC 81c4; CCCCTTTGCACACCAGGGAATTGGTAACACC 82c4; TCCATATTACGGAGAGGGGGATTTGC 80c4; CCCCTTTTCCATAACGGGAAACGCAACGA 80c4; GCCGGTACTCTTTGCAGGGGCAATTGGTACACC 82c5; GTTTGCCACCAGGGAGATGGGCAATTAACGC 82c6; TCCAATCCACCAGGAGAGGCGCAATTGAAAATGC 82c6; GCAATATAACGCAGCGGCAATGCAACACGA 82c6; GCAATATAACGCAGCGGCAATGCAACACGA 82c6; CCCACCCGGAACACCCTAATGGTAACGCCAGGG 92c6; ACCACCCGGAACACCCTAATGGTAAGCCCAGGG 92c6; ACCACCGGAACACCCTATGGGAAGCCCCCCC 92c6; ACCACCGGAACACCGTATGGGAAGCCCCCCC 92c6; ACCACCGGAACACCCTATGGGAAGCCCCCCC 92c6; ACCACCGGAACACCCTATGGGAAGCCCCCCC 92c6; ACCACCGGAACCCCCATGGAAGCCCCCCCC 92c6; ACCACCC
 152; TCAAAARTAATTGCGCTCTGGAGCACCACCACCACAGAGCGC 153; TATTTAAATGCAATGCCGAGCGCTGGATATTCCAGAGCACG 154; ATTAAGCATTAAGCCAACACCCAGACCTTAACAGAGACAACAA 155; AACCGAACAGCCATAATCCATACATGCGCTTTTGTGATA 156; AAACCGAACAGCCATAATCCAACAGGTATATTCCACGCCTTGGATA 157; TCAATTACCTTATGCGATTTTTTACAGATAATGACCCCCGGCCTAT 158; GATATTCATTACCCAAATCAACAGGTAATGTCGCGCTTTTGCT 151; CTAGCAACGACCACCATCATCATGCGGTTTTGCCT 152; GATACTGCCCCTCTCTGTGACATAATTAATTTTCCCCTTAGAAT 153; GATGCTGCCCCCCCTCTTTTAAGGCTTAAGGCTTATGCGGGTTTTGCT 154; GATACTGCCCCCCCTCTTTTTAAGGCTTAAGGCTCAGAACAACGAACAA 155; AACGACACACACCCCCTCATTTTTAAGGCTTAGCAGAATGAAAA 156; ATGGGTGCAGGCAGCAGCGTAGCGACATAGGCCGAAAGCAACGAACG	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACCTGGCACAGACAATATTTTAGGGGACAACTAAAGGAATACA 139-15; ACCTGGCACAGCAATATTTTAGGGAACCAACTAAAGGAATACA 140-16; CACCCGGACGACCAATATTTTAGGCAACCTCAACGACCCCCCT 141-16; GAACCGGAGGGCGTTTAGGCCAACCTGAACCGCACCCCT 142-16; AACGGGTATTAAACCAAGTACGAAGTTCGCAACAGTAAGG 144-16; TGCGCGAACTGATAACCAAGTACGAAGTTCCCACAGTACAAA 143-16; ACCGGGAACTGATAGCCCTAACGTCTTCCAGACGTTAGTAA 65-1; GCCAGCAAAATGTTTATGTAGATGAAGGTATA 66-1; TTTACCAACCCTTACCGGTGGAAAC 67-1; ATACGATACGGCTGAAGGTCTGAGCGTGAAA 68-1; TTTAACCAATTGCACTGCGGGGGATTATTT 69-1; ACCGGCGAACCTTACGGTCGAGCCAAAA 68-1; TTTAACAATTGCACTCGCGGGGGATTATTT 69-1; ACCGGCGAACCTACGGTTGTCTTTACCTATAA 70-2; GGAAACGTCACCGAATAGACCCGTTAGGTAC 71-2; GAATTTACCACACCGATAGGCTCGAGCCAAA 71-2; GAATTTATCACGACTCGGGGGTCTTGCT 72-2; GAATTTATCACGCACTAGGCTGCTCTGCT 72-2; GAACTTCACCGACTAAGACCCGTTAGGTTCGA 73-2; GAACGTCACTGACACCGATCAAGGCTCGA 73-2; GAACGTCACTGACATCGGTGCTCTCA 73-3; ACTACCGACAGGACTTACGGCTGGAGGTCA 77-3; CTCCGGCTAGGAACGGCTTGTCGCTTCCA 73-3; GCCGCTAGGAAGTGGACTGTTTGTCTGCCCTCC 76-3; CATAAAGGTGCCTTTACGGGTGGAGGTCA 77-3; CTCCGCCTAGAGAACGGACGCTGTCTGTTC 77-3; CTCCGCCTAGGAAGTGGAACGAGGGTTAT 79-3; GCGCTACTATACGAGACGCGGTGCGTCC 80-4; CCCCTTATTACCGCAGCAGGCGCTGTCC 80-4; CCCCTTATTACGGAGAGTGGAACGAGGGTATTGC 80-4; CCCCTTATTACGGAGAGTGGAACGAGGGTATTGC 80-4; CCCCTTATTACGGCAGTGGAATTGC 80-4; CCCCTTATTACGGAGAGTGGAATTGC 80-4; CCCCTATTACGGAGAGTGGAATTGGC 80-4; CCCCTATTACGGAGAGTGGAATTGGC 80-5; GCAATAATTTTCTGTTGCGCTGCAATTGGAACGC 80-5; GCAATAATATTTCTGTTGCGCTGAACGCAGG 80-6; ACCACCGGAACACCAGGAATCGAATCG 80-5; CCAATATATTTTCTGTGGGAAGCGCCGGTCGCACC 80-5; GCAATATATTTTCATGGGAAGGCCAGGCGCAGC 80-5; CCAATATATTTTCATGCGAAACGAATGGAACGGA 80-5; TCCTCGTAACGACACGGAATCGAATCGACG 80-5; CCAATATATTTTCTGTGGGAAGGCCCGCCCCAGG 90-6; ACCACCGGAACACCGTATGGGAAGGCCCAGG 90-6; ACCACCGGAACACCGTATGGGCAATCGCACCC 90-6; ACCACCGGAACACCGTATGGGCAATCGCACGC 90-6; ACCACCGGAACACCGTATGGGCAATCGCACCCCAGG 90-6; ACCACCGGAACACCGTATGGGCAATCGCACCCCAGG 90-6; AAAGGGATTTCTCCCCAGGCAATCGCACCCCAGG 90-6; AAAGGGATTTCT
 152; TCAAAARTAATGCGCTCTGGAGCACCACCACCACAGAGCGC 153; TATTTTAAATGCAATGAGCGCTTGGATATTCCAGAGACG 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTCCAGAGACGA 155; AACCTTCAAAGCGAACCAGCACCTTACCAGAGCCTTTGATAACAACAA 156; AAACGCAACAACCAGGACCTCATCCAGAGCCTTTGTGCGATTGCGATT 157; TCAATGACTTATGCGATTTTTTACAAAATAAAACACCCCTAT 158; GATATCCATTACCCAAATCACGTTAATGCCCCCTGCCCCTAT 159; GTAGCAACGACCACCACAGAGGCTTAGCTGGGTTTGCTA 161; CAGACCACCACCACGAGGCTTAGCTGGCTATTCCGGTTTTCTAA 162; GATACTTGCCCTCTCTGTGCAATATTATTTTCCCCTAGAACACTA 163; GATGGCGCTCACGAGGGCAATGCATAGCTATAGGCTGAGAGACTA 164; ATGGGTTCAGATGCAGGGGAATGCAGACATATGCAGACAACGTAG 166; TTATCAGTAAACGAGGGGAGCGCAGCCAATGATAGCAAACGTAG 167; TCAGGGATTAAACGAGAGGGAGACAAGTTACCAGAAGGAACGAAG 168; GAGGGGACGACGACGCCCATTGTGCCAAGACAACGCCGG 170; AAACGCGAGAAGCCCCAGCGCTATCCAAATGCTACCAGAGAAGA 169; TTTTTGTTAATCAACGGGGAGAATTAACTGAACAATGCTACCAG 171; AACACCCAATAAATCCATCACGCCGATTTTTGGTTAAAGGGGAGAAAGCCCGAG 172; AGGATTAAGAGAGCCGCAGTTTCAGCCAATTATTAAGGCAAGAACGCC 174; GTCAGGACGTAACCCTTTAAGGGGAGAATTAACTGAACAACGCT 176; ATGAGGAGACACCCTTTAAACACCCCCAATTATTACGAGCAGTAT 177; TTCGGGGGAGAAAAGCCAATTAACCGAGGCTTTTTGATTAACG 174; GTCAGGACGTTCCCTTTAAACACCCTCAATTATACGAGCGTAT 175; AGGGTGGATTCCCATTAAACCACCCCCGGCTGTCAAAGGCGAGT 176; ATGAGGAAGTTCCCATTAAACACCCTCAATTATCGAGCGTGA 177; CCAGGGAGATTCCCATTAAACACCCCCGGATTACCAAGGAG 180; ACCTAGAAACACAATTAACCACCCCCGGATTACCACGGGAGGT 191; AACACCACTGACAAACCTCTCATTAACGATACCATTCCAGAAGA 192; ATCAAAACTCAACAAACCGCTCATAATTTCAGAACAAGGAGGGTTAACTATACCTATTACAGAGAA 194; CTCAAAAACTGAAAACCACCTCAATTACCATTACCACCGAAAAGGAA 195; ACCAGCATTCCAATAAACCGCGCAATAAACCAAACAAA 196; ACTTAAAAACGCTGAAACAGGCGCTGAACAGAACAAAAACAAA 197; ACGAGAACACCAACATAAATCGGCCCCGAATAACATAAC	137-15; GAAACCATCAATCATATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACCTGGCACAGACATTATTTAGGAGGAAAAGAAAAAAAAA
 152; TCAAAATTAATCGCGTCTGGAGCCACCCACCCTCAGAGCCGC 153; TATTTAAAGCAATGCCGTGAGGCCTGATATTACAGAGAG 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTACAGAGAG 155; AACCTCAAAGCGCATAACCCATCATACTGGCTTTTGATGATA 156; AACCGGCAACCAGCATTTTACCAAATTAACCAGCCATAT 158; GATATTCATTACCCTATACTGGCTATGCCCCTGCCTAT 159; GTAGCAACGGCTACAGAGGCTTAGTTGCTGATTTTGCACATA 161; CCGACAATGACCAACCACCACTAGGTATTTCCCGTTTTTGAGAA 162; GATACTGGCCTCCCTGTATAATTAATTATCCCCTTAGAAT 163; GATGGCTCCAGGGCGAGGCTAGTTGCCGGTTTTCTA 164; ATGGGTCCAGGGCAGCGGGCAAATCATAGGTCTAGCGGCTTTGCAAAATTAATT	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACCTGGCACAGACAATATATTTAAGGAGCAACGAAAAGAATACA 139-15; ACCTGGCACAGCAATATTTTAGGGAACGACGAAAGGAATACA 140-16; CACCGGACAGCAATATTTTAGGCAACCTGAACGGACGCCCCT 141-16; GAACCGGAGGGCTTTAGGCCAACCTGGAACCGACCGCACCCT 142-16; AACGGGTATTAAACCAAGTACGAAGTTCGTCACCAGTACAAA 143-16; ACCGGGACTGAAAGCACGAGTTCGGAACCCCAGTACAAA 144-16; TGCGCGAACTGATAGCCCTAACGTCTTCCCAGACGTTAGTAA 65-1; GCCAGCAAAATGTTTATGTAGATGAAGGTATA 66-1; TTTACCAACCCTTACCGGTGGAAAC 67-1; ATACGATACGAGTTGGACCCTAACGTCGAGCAAAA 68-1; TTTAACAATTTGCACTCGCGGGGGATTATTTT 69-1; ACCGGCGAACCTTACGGTTGAGCCAAAA 70-2; GGAAACGTCACCGACTAGGCTGAGCCCGTAGCTAA 71-2; GAATTTATCACGCACTCGGGGGGTCTTGGCT 72-2; GAATTTATCCACGCACTATGGTTCTTTCCATACA 71-2; GAATTTATCACGACTCGGGTGCTCTGCT 72-2; GAACTTACCGCAATAGACCCGTTAGGTCGAA 73-2; GAACGTCACTGACGCCGTTAGGTCTGAG 74-2; GACGTGCGCACTTACCGGTGGTCGTCTCA 75-3; ACTACCGACAGAGCCGTTAGGTCTGAG 74-2; GACGTGCGCTATTATTGCGCGCGCTCTCA 75-3; ACTACCGACAGAGGTTTATCGCGCGCCTCCA 76-3; CATAAAGGTGCCTTTACGGGTGGAGGTCA 77-3; CTCCGCCTAGGAACGCGCTTGGAGGCTCA 77-3; CTCCGCCTAGGAGAACGAGCGCTGGTCGTCT 80-4; CGCCTTTATACGAGCGCTGGTCGTCT 80-4; CGCCTTTATCAAGCGAGCGCTGTCTC 80-4; CGCCTTTATCAAGCGAGGCGCTGTCC 80-4; CCCCTTATTACCGAGAGCGCGGTTGGAGCGCA 80-4; CGCGTTTATCTGGGAGACGGAGTTTGG 80-4; CGCCTTATACGAAGGGCCGTGTCGTCC 80-4; CGCCTATTATCGGGAAGTGGAATTGC 80-4; CGCCTTATACGGAGGCGAATTGGC 80-4; CCCCTATTACCGGAGAGCGGAATTGGAACC 80-5; GTTTCCAATCTAACGAAGGAGCGGAATTGGAAC 80-6; ACACCGGAACACGGAATCGAACC 80-5; GCAATAATATTTCTGTTGGCTAGAACGAACGA 80-6; ACACCGGAACACCGGAATCGAATCG 80-5; CCAATATATTTCTGTGGGAAGCGCCGGTCGCACC 80-5; GCAATATATTTCTGTGGGAAGCGCCGGTCGCACC 80-5; CCAATATATTTCTGTGGGAAGGCCGAATCGAATCG 80-5; CCAATATATTTCTGTGGGAAGGCCAGGCCAGGG 90-6; ACCACCGGAACACCGTATGGGAATCGACCC 90-6; ACCACCGGAACACCGTATGGGAAGGCCAGG 90-6; ACCACCGGAACCACGCAATCGCACCCCAGG 90-6; ACCACCGGAACCCGTATGGGAACGCCCGTCCCAG 90-6; ACCACCGGAACACCGTATGGGCAACGCCAGGC 90-6; ACCACCGGAACACCGTATGGCACCGCCAGGC 90-6; ACCACCGGAACCCTATGGCAACGCCAGTCCCACG 90-6; ACCACCGGAACCCTATGGCAACGCCCGTCCCC
 152; TCAAAATTAATCGCGTCTGGAGCCACCCACCCTCAGAGCCGC 153; TATTATAATGCAATGCTGATGGGCGTATATTACAGAGA 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTACAGAGAA 155; AGCTTCAAAGCGAACCAGACCTTTACAGGCGCATATTACAGAGAATAACATAA 156; AAACGGGAATCACGCATTAATCCATTTTACAAAATAAACAGCCATAT 157; GCAACAACGCATACATCCATACATGCCATTTTGCACATAT 158; GATATTCATTACCCAATCAACACACCATTAGTGCGGGTTTTGCT 151; GCACAACGGCTACAGAGGCTTAGTTGCGGTATTTCCCCTATGAA 152; GATACTAGCCACCCCACTTTAAGGCTGAGCCAGGGTTAGTTGCGGTATTGCT 153; GATACTAGCCACCCCCATTTTAAGGCTTAGCGGGGTTTGCT 154; GATACTGCGCCTCCTGTGACATAATTAATTATCCCCTTAGAAT 155; GATACTGGCCTTACATGAGCGTGAAATCATAGGTCTGAGAGACTA 156; CTGCGATGGAGTGAAGGGTACAGGTGAAGAACAAAGCACAAGAACCATA 156; CTGCGATGGAGTGAAGGGTAGAGCGAGACAAAGGAACGAA 166; TTATCGGTAGATAAGGTAGACGAAGGTACCAGCAGAGGAA 166; TTATCAGTAAACGAAGAGCGGACACAAGGAACAAAGGAAGCGGAG 167; TCAGGGAATTAATGAAAGAGGGGAGCGTTAGCAAAGTTACCAGAAGGAAA 168; GAGGCACCACGACCTGCGCAGTATTAGGAAGGCGAGA 170; AAAAGGGTGAGAAGCGGAGCGTTAAGCAAAATTCTTACCAGGAGAAA 164; GTGGGACCACGCCTTAAGCAAAAGCACAATAAATCATACGGAGGAAT 171; AACATCCAATAAACAATCATACAGGGGGAAATTAAATTA	137-15; GAAACCATCAATCATATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACCTGGCACAGACATTATTTAGGGAGAACAAAAGAATAA 139-15; ACCTGGCACAGACAATATTTTAGGGAGCAACTAAAGGAATAC 140-16; CAACCGAGGGCGTTTAGGCCACCTCAGAACGGCACCCCT 141-16; GAACCGAGGGGCTTTAGGCCAACTTGGTACCGATAGTTGCG 142-16; ACCGGGACTGATAACCAAGTACGAGATTCGTCACCAGTACCGACAAA 143-16; AGCAAAAAATCTAAAGCTGAAAGTCTCAAAAAAAGG 144-16; TGCGCGAACTGATAGCCCTAACGTCTTCCAGACGTTAGTAA 65-1; GCCAGCAAAATGTTATGTAGAGAGGATA 65-1; GCCAGCAAAATGTTATGTAGAGGAGGTATA 66-1; TTTACCAACCGCTATCACCAGTGTCGGCGAAAA 66-1; TTTACCAACCGCTTACCAGTGTCGAGCAAAA 66-1; TTTACCGATCGCGGGGATTGATCTGCACAAAA 70-2; GGAAACGTCACCGGGGGATTGATTTT 69-1; ACCCGGCGACACAGGTCCGCCGGGGATTATTTT 69-1; ACCCGGCGACACAGGACCGGTGCTGTCTGCT 72-2; GAATTATCAACTTCGCATTGCTTTCTTACCATAAA 70-2; GGAAACGTCACCGGCGGTGTGTTGTGCA 71-2; GAATAGTATAGGATCGGCTGCTTCTGCA 72-2; GAATGATGACAAGGACTTACGTTGTGTGCGCACCC 76-3; CATTAAGGATAGGCTTGGGTGGATTA 71-3; TCCCGCGTTGAGAAACGACATTACATGCCAGG 74-2; GAAGGGGCGCCTGCGTTGTGGGGTATTA 75-3; AGTAGCGACAGGGCTATTACCGGGTGTTGTGTAG 75-3; AGTAGCGACAGGGGTATTACGGGTGGTTGTGAG 76-3; CCCAATTACGGGGGTTTATCGCGGTGCTTGCA 76-3; CCCAGTGGCAATTACCGGGGTTGGAGGTAA 79-3; TCCCGCGCTGAGATTACGGGGGTTGGAGGTAA 79-3; TCCCGCGTTGGAGGGGAATTACGGAGGGGATTACTC 80-4; CCCGTTTCATAACGAAGACCGGGATTACTGC 80-4; CCCGTTTCCATAACGAAGACCGGGATTACTC 80-4; CCCGTTTCCATAACGAAGACCGGGATTACTC 80-4; CCCGTTTCCATAACGAAGACCGGGATTACTC 80-4; CCCGTTTCCATACGGAAGCGCCGGTCGTTC 81-4; TCCCATCTGCAACGCAGGGGAATTACCC 85-5; GTTTCCAATCGCACAGCAGGGAATTACCC 85-5; GTTGCCACTGGCAACGCGGAATTACCC 85-5; GTTGCCACTGCGCAACGCGGAATTACCC 85-5; GTTGCCACTGCGCAACGCGGAATTACCC 85-5; GTTGCCACTGCGCAACGCGGAATTACCC 85-5; GTTGCCACTGCGCAACGCGGCAATGCACGGG 85-5; GCCAATCGCAAGCAGCAGCATTGCACAGGG 85-5; GCCAATCGCCAGCAGCACCGTATGGGAAGGCACCCC 85-5; GCCACCCGGAACCCGTATGGGCAACCCCCCAGG 90-6; ACCACCGGAACCCGTATGGGCAACCCGTCC 92-6; ACCACCGGAACCCGTATGGGCAACCCGCCCCCC 92-6; ACCACCGGAACCCGTATGGGCAACCCCCCCC 92-6; ACCACCGGAACCCGTATGGGCACTCCC 92-6; ACCACCGGAACCCGTATGGGCACCCCCCCC 92-6; ACCACCGGAACCCGTATGGGCACCCCCCCC 92-6; ACCACCGGAAC
 152; TCAAAATTAATCGCGTCTGGAGCCACCCACCCTCAGAGCCGC 153; TATTTAAAGCAATGCCGTGAGGCCTGATATTACAGAGAG 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTACAGAGAG 155; AACCTCAAAGCGCATAACCCATCATACTGGCTTTTGATGATA 156; AACCGGCAACCAGCATTTTACCAAATTAACCAGCCATAT 158; GATATTCATTACCCTATACTGGCTATGCCCCTGCCTAT 159; GTAGCAACGGCTACAGAGGCTTAGTTGCTGATTTTGCACATA 161; CCGACAATGACCAACCACCACTAGGTATTTCCCGTTTTTGAGAA 162; GATACTGGCCTCCCTGTATAATTAATTATCCCCTTAGAAT 163; GATGGCTCCAGGGCGAGGCTAGTTGCCGGTTTTCTA 164; ATGGGTCCAGGGCAGCGGGCAAATCATAGGTCTAGCGGCTTTGCAAAATTAATT	137-15; GAAACCAATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ATCCAAACCCTCAATCATATCGAAAGGGCAAAAGAATACA 139-15; ACCTGGCACAGACAATATTTTAGGGAACCAACTAAAGGAATACA 139-15; ACCTGGCACAGACAATATTTTAGGGAACCACAACGAAAGGAATACA 140-16; GAACCGGAAGGGCTATTAGTGCGAACCTGAACCGCACCCCT 142-16; AACCGGAATGAAAAATCTAAAGCGAGATTCGTCACCAGTACCGACAAA 143-16; AGCAAATGAAAAATCTAAAGCTGAAAGTCCCAAAAAAAGG 144-16; TGCGCGAACTGATAGCCCTAACGTCTTCCAGACGTTAGTAA 65-1; GCCAGCAAAAGTTTTATGTAGATGAAGGTATA 66-1; TTTACCAGCCCTAACGTCTACCGCTGAAAA 66-1; TTTACCAGCCCTAACGTCTACGGTGGAAAC 67-1; ATAGGATACGCGATTAGGTCGAGCAAAA 68-1; TTTACCAGCCCTATCACGGTGCAAAA 68-1; TTTACCAATCGCGGTGGAGTCTGAGCAAAA 68-1; TTTACCAATCGCGATTAGGTCTGAGCAAAA 69-1; AGCCGGCGAACCTACCGTGTCTTCTTTACTTAA 70-2; GAAACTGACCGACTAGGTCTGAGCAAAA 70-2; GAAACTGACCGAATAGGTCTGAGCAAAA 71-2; GAATTATCACCGAACTAGGTCTGAGCAAAA 72-2; GAAGATGATGAGAACGCGTTAGGTGTCTGCA 73-2; GAAGATGATGAGAAACGACATACATTGCAGG 74-2; GAGCGGCGCCTCTGAATTCGCGTGTCTTGTC 75-3; ACTAGCGAACGGACTATGCGTTGTGTGCCCAAC 75-3; ACTAGCGACAGGATTTCGCGTGTGTGAG 74-3; CCCGGCTAGGAATTCGCGGCTTGGAGCTA 77-3; CCCGGCTAGGAATTCGCGGCTTGGAGCTA 77-3; CCCGGCTAGGAATTCGCGGCTTGGAGCTA 77-3; CCCGGCTAGGAATTCGCGGCTTGGAGCTA 77-3; CCCGGCTAGTATACGGGGTGGGGTTTGTA 79-3; CGCGAACCACCCCCAGGGAACGAGGGCGATTTGC 80-4; CTCCGGCTAGGAGGGGGAGGAGGAGGGCGGATTTGC 80-4; CTCCAGCTAAGCAACGGCGGCGTTTGTAA 79-3; CGCGGAACCCCCCCAGGGGAACGAGGCGGGTTTGTA 79-3; CGCGGAACCCCCCAGGGGAACGAGGCGGATTTGC 80-4; CCCCCTATATACTGCGAGGCGCGATTTGC 80-4; CCCCCTATATACTGCGAGGCGCGCTTGCTC 80-4; CTCCAATTAACGAACGCCAATGAAACCC 80-5; CAAATAAACGTGGAGGCGCGAATTACC 80-5; CAAATATAACGTGCCGCGCAATCAACCC 80-5; CCAATATAACGTGCCGCGCAATCAACCC 80-5; CCAATATAACGTGCCAGGCAATCAACCG 80-5; CCCACCCGCAACCCCAATGAAAAAACC 80-5; CCCACCCCACGCAACCCAATGAAAAACCC 80-5; CCCCCCCCCCCGGGAAGCCCGCACCCC 90-6; ACCCCGGAACCCCGAATGCAATGCAACGCG 90-6; ACCCCGGAACCCCGAATGCAATGCAACGCG 90-6; ACCCCGGAACCCCGAAGACCCCAATGCAACCCCAAGG 90-6; ACCCCGGAACCCCGAAGACCCCAATGCAACCCCAAGG 90-6; ACCCCGAAACCCCGAAGACCCCAATGCAACCCCAAGG 90-6; ACCCCGAAACCCGAAGACCCCAATGCAACCCCAAGCCAAGCCCCAA
 152; TCAAAATTAATCGCGTCTGGAGCCACCCACCCTCAGAGCCGC 153; TATTATAATGCAATGCTGATGGGCGTATATTACAGAGA 154; ATTAAGCAATAAAGCCTCAGAGGCCTTGATATTACAGAGAA 155; AGCTTCAAAGCGAACCAGACCTTTACAGGCGCATATTACAGAGAATAACATAA 156; AAACGGGAATCACGCATTAATCCATTTTACAAAATAAACAGCCATAT 157; GCAACAACGCATACATCCATACATGCCATTTTGCACATAT 158; GATATTCATTACCCAATCAACACACCATTAGTGCGGGTTTTGCT 151; GCACAACGGCTACAGAGGCTTAGTTGCGGTATTTCCCCTATGAA 152; GATACTAGCCACCCCACTTTAAGGCTGAGCCAGGGTTAGTTGCGGTATTGCT 153; GATACTAGCCACCCCCATTTTAAGGCTTAGCGGGGTTTGCT 154; GATACTGCGCCTCCTGTGACATAATTAATTATCCCCTTAGAAT 155; GATACTGGCCTTACATGAGCGTGAAATCATAGGTCTGAGAGACTA 156; CTGCGATGGAGTGAAGGGTACAGGTGAAGAACAAAGCACAAGAACCATA 156; CTGCGATGGAGTGAAGGGTAGAGCGAGACAAAGGAACGAA 166; TTATCGGTAGATAAGGTAGACGAAGGTACCAGCAGAGGAA 166; TTATCAGTAAACGAAGAGCGGACACAAGGAACAAAGGAAGCGGAG 167; TCAGGGAATTAATGAAAGAGGGGAGCGTTAGCAAAGTTACCAGAAGGAAA 168; GAGGCACCACGACCTGCGCAGTATTAGGAAGGCGAGA 170; AAAAGGGTGAGAAGCGGAGCGTTAAGCAAAATTCTTACCAGGAGAAA 164; GTGGGACCACGCCTTAAGCAAAAGCACAATAAATCATACGGAGGAAT 171; AACATCCAATAAACAATCATACAGGGGGAAATTAAATTA	137-15; GAAACCATCAATAATCGGCTGTATCGGTTATCAGCTTGCT 138-15; ACCTGGCACAGACAATATTTTAGGAGGAAAAGAAAAGAA

204; GGTAGCTATTTTTGAGAGATCATTAACCGTTGTAGCAATACT 205; ATGGTCAATAACCTGTTTAGCTTGCGGAACAAAGAAACCACC 206; CTGTAGCTCAACATGTTTTAAAATATCCACAACAATATTACC 206; CCGTMUMECGAACAATATTACC	101-0
205; ATGGTCAATAACCTGTTTAGCTTGCGGAACAAAGAAACCACC 206; CTGTAGCTCAACATGTTTTAAAATATCCCAGAACAATATTACC	101c8; GAATTGAGTTATTTTAACCAATAGGAACGCCA
206; CTGTAGCTCAACATGTTTTAAAATATCCAGAACAATATTACC	102c8; AGTATCATATGGACAGTCAAATCACCATCAAT
	103c8; TCAATATAATCGAAGATTGTATAAGCAAATAT
207; GGCTTTTGCAAAAGAAGTTTTAGACTTTACAAACAATTCGAC	104c8; CCATCACGCAATACAAAGGCTATCAGGTCATT
208; AGATTTAGGAATACCACATTCAAATGGATTATTTACATTGGC	105c9; GTCAGACGATTGCATAAAGCTAAATCGGTTGT
209; CGAGGCGCAGACGGTCAATCAGTTATCTAAAATATCTTTAGG	106c9; CAGAGGGTAATGTAATGTGTAGGTAAAGATTC
210; CTAAAACACTCATCTTTGACCCTGACCTGAAAGCGTAAGAAT	107c9; ACGCTCAACAGTCTACTAATAGTAGTAGCATT
211; CGAATAATAATTTTTTCACGTATCACCTTGCTGAACCTCAAA	108c9; GAATTATCATCTGATAAATTAATGCCGGAGAG
212; CGTAACGATCTAAAGTTTTGTAACATCGCCATTAAAAATACC	109c9; GTAATAACATCACCATTAGATACATTTCGCAA
	110c10; ATTAAAGCCAGCAAATATCGCGTTTTAATTCG
	111c10; GCGCATTAGACGCAAGGCAAAGAATTAGCAAA 112c10; AACGCCAACATTTGCTCCTTTTGATAAGAGGT
	113c10; ACATTATCATTTGCTCCTTTTGATAAGAGGT 113c10; ACATTATCATTTATATTTTCATTTGGGGGGGGGG
	113c10; ACATTATCATTTATATTTTCATTTGGGGCGCG 114c10; GCCTTGCTGGTATATGCAACTAAAGTACGGTG
	115cll; CCAGTAAGCGTAAAAATCAGGTCTTTACCCTG
	116c11; AAATAGCAGCCGGAAGCAAACTCCAACAGGTC
	117c11; AATAAGAGAATCAATACTGCGGGAATCGTCATA
	118c11; AAATCCTTTGCGCTTAATTGCTGAATATAATG
	119c11; GCAACAGGAAAATAAAAACCAAAATAGCGAGA
	120c12; CTGGTAATAAGTAATTTCAACTTTAATCATTG
	121c12; AATCCAAATAAAAATGCTTTAAACAGTTCAGA
	122c12; GTCCAGACGACATCTACGTTAATAAAACGAAC
	123c12; TTAGAAGTATTGCCAGAGGGGGGTAATAGTAAA
	124c12; TCAATCGTCTGAACTAATGCAGATACATAACG
	125c13; GCCCGTATAAACGTAACAAAGCTGCTCATTCA
	126c13; TAATTTGCCAGAAGAACTGGCTCATTATACCA
	127c13; ACGCGCCTGTTCGGTGTACAGACCAGGCGCAT
	128c13; ACTAATAGATTGGTAGAAAGATTCATCAGTTG 129c13; GTCACACCCCCCCCCCTCCTTACTTACCCCCCA
	129c13; GTCACACGACCCTCCATGTTACTTAGCCGGAA 130c14; ATTATTCTGAAAAAGACAGCATCGGAACGAGG
	131c14; ATCCTGAATCTGAGTAATCTTGACAAGAACCG
	132c14; ATATATATCCCGGGTAAAATACGTAATGCCAC
	133c14; AATTGAGGAAGTAAGGGAACCGAACTGACCAA
	134c14; ATAGAACCCTTCCCAGCGATTATACCAAGCGC
	135c15; AAGAGAAGGATGCCCACGCATAACCGATATAT
	136c15; TAAATCAAGATTTGAGGACTAAAGACTTTTTC
	137c15; AATAATCGGCTGTATCGGTTTATCAGCTTGCT
	138c15; TCAATCAATATCGAAAGAGGCAAAAGAATACA
	139c15; GACAATATTTTAAGGAACAACTAAAGGAATTG
	140c16; CGGATAAGTGCCACCCTCAGAACCGCCACCCT
	141c16; CGTTTTAGCGAAGCTTGATACCGATAGTTGCG
	142c16; AAACCAAGTACGAGTTTCGTCACCAGTACAAA
	143c16; AAATCTAAAGCTGAAAATCTCCCAAAAAAAAGG
	144c16; GATAGCCCTAACGTCTTTCCAGACGTTAGTAA
	plug component for the cood
	plug sequences for the seed
	65cl; GGGAATTAGA
	66cl; ATTCATATGG
	67cl; CCTTGAAAAC
	68cl; ATTAATTACA
	69cl; TGACGGGGAA
	70c2; TAGCAAGGCC
	71c2; AGACACCACG
	71c2; AGACACCACG 72c2; AGTCAATAGT
	71c2; AGACACCACG 72c2; AGTCAATAGT 73c2; CTGAGCAAAA
	71c2; AGACACCACG 72c2; AGTCANTAGT 73c2; CTGAGCAAAA 74c2; AAACCGAAAAG
	71c2; AGACACCACG 72c2; AGTCANTAGT 73c2; CTGAGCAAAA 74c2; AAACGGAAAG 75c3; CACCGTAATC
	71c2; AGACACCACG 72c2; AGTCAATAGT 73c2; CTGAGCAAAA 74c2; AAAGCGAAAG 75c3; CACCGTAATC 76c3; AAAATACATA
	71c2; AGACACCACG 72c2; AGTCAATAGT 73c2; CTGACCAATA 74c2; AAAGCGAAAA 75c3; CACCGTAATC 76c3; AAATACATA 77c3; CCTTTTTAAC
	<pre>71c2; AGACACCACG 72c2; AGTCAATAGT 73c2; CTGACCAAAA 74c2; AAAGCGAAAG 75c3; CACGGTAATC 76c3; AAAATACATA 77c3; CCTTTTTAAC 78c3; AGTTACAAAA</pre>
	71c2; AGACACCACG 72c2; AGTCAATAGT 73c2; CTGACCAATA 74c2; AAAGCGAAAA 75c3; CACCGTAATC 76c3; AAATACATA 77c3; CCTTTTTAAC
	71c2; AGACACCACG 72c2; AGTCAATAGT 73c2; CTGAGCAAAA 74c2; AANAGCGAAAG 75c3; CACCGTAATC 76c3; AAAATACATA 77c3; CCTTTTTAAC 78c3; AGTTACAAAA 79c3; GTCACGCTGC
	71c2; AGACACCACG 72c2; AGTCANTAGT 73c2; CTGACCAATAG 74c2; AAAGCGAAAG 75c3; CACCGTAATC 76c3; AAATACACATA 77c3; CCTTTTTAAC 78c3; AGTTACAAAA 79c3; GTCACGCTGC 80c4; CAGACTGTAG
	71c2; AGACACCACG 72c2; AGTCAATAGT 73c2; CTGACCAAA 74c2; AAAGCGAAAG 75c3; CACGTAATC 76c3; AAAATACATA 77c3; CCTTTTAAC 78c3; AGTTACAAAA 79c3; GCTACGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TAAATGCTGA 82c4; GGGGAAAACA
	71c2; AGACACCACG 72c2; AGACACACG 73c2; CTGACCANAA 74c2; AAAGCGAAAG 75c3; CACCGTAATC 76c3; AAAATACATA 77c3; CCTTTTTAAC 78c3; AGTACAAAA 79c3; GTCACGCTGC 81c4; ATGATTAAGA 82c4; TAAATGCTGA 82c4; TAAATGCTGA 82c4; CGGGAAACA 82c4; CCGCTACAGG
	<pre>71c2; AGACACCACG 72c2; AGACACACG 72c2; AGTCAATAGT 73c2; CTGACCAAAA 74c2; AAAGCGAAAG 75c3; CACCGTAATC 76c3; AAAATACATA 77c3; CCTTTTTAAC 78c3; AGTTACAAA 79c3; GTCACGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TAAATGCTGA 83c4; GGGACAACA 84c4; CCGCTACTGG</pre>
	<pre>71c2; AGACACCACG 72c2; AGTCACACG 72c2; AGTCAATAGT 73c2; CTGAGCAAAA 74c2; AAAGCGAAAG 75c3; CACGTAATC 76c3; AAAATACATA 77c3; CCTTTTTAAC 77c3; GTCATGCTGA 80c4; CAGACTGTAG 81c4; ATGATTAAGA 81c4; ATGATTAAGA 83c4; GGGAGAAACA 84c4; CCGCTACAGG 85c5; CCTATTAGC 86c5; CCGAGAAAC</pre>
	71c2; AGACACCACG 72c2; AGACACACG 73c2; CTGACCAAAA 74c2; AAAGCGAAAG 75c3; CACCGTAATC 76c3; AAAATACATA 77c3; CCTTTTTAAC 78c3; ACTACAAAA 79c3; GTCACGCTGC 81c4; ATGATTAAGA 82c4; TAAATGCTGA 82c4; TAAATGCTGA 82c4; TAAATGCTGA 82c4; CGGCTACCAGG 85c5; CCTTATTAGC 86c5; CCGGAGAACA 87c5; AAAACTTTT
	71c2; AGACACCACG 72c2; AGTCAATAGT 73c2; CTGACCAAAA 74c2; AAAGCGAAAG 75c3; CACGTAATC 76c3; CACGTAATC 76c3; CACGTAATC 76c3; GTCACGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TAAATGCTGA 83c4; GGGAGAACA 84c4; CGGACACAGG 85c5; CCTACAGG 85c5; CCTACAGG 86c5; TTATACCTCA
	71c2; AGACACCACG 72c2; AGTCAATAGT 73c2; CTGAGCAAAA 74c2; AAAGCGAAAG 75c3; CACCGTAATC 76c3; AAAATACATA 77c3; CCTTTTTAAC 78c3; AGTACAAAA 79c3; GTCAGGCTGC 81c4; ATGATTAAGA 82c4; TAAATGCTGA 83c4; CGGAGAACA 84c4; CCGCTACAGG 85c5; CCTTATTAGC 86c5; CCGAGGAAC 87c5; AAAACTTTT 88c5; TTTAACGTCA 89c5; TTAACGTCA
	11c2; AGACACCACG 72c2; AGTCAATAGT 73c2; CTGAGCAAAA 74c2; AAACGCAAAG 75c3; CCCGATATC 76c3; CACGTAATC 76c3; CCTTTTAAC 78c3; AGTTACAAA 79c3; GCTCACGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TAAATGCTGA 83c4; GGGAGAACA 84c4; CCGTACAGG 85c5; CCTTATTAGC 86c5; TTTAACGTCA 88c5; TTTAACGTCA 89c6; TAACGTCCT 99c6; AACGAGACC
	<pre>71c2; AGACACCACG 72c2; AGTCACACACG 72c2; AGTCACACAG 73c2; CTGACCAAAA 74c2; AAAGCGAAAG 74c2; AAAGCGAAAC 76c3; AAAATACATA 77c3; CCTTTTTAAC 77c3; GCCAGGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 81c4; CCGCTACAGG 83c4; CGGACAAACA 84c4; CCGCTACAGG 85c5; CCCTACTAGG 85c5; CCGAGAAAC 84c4; CCGCTACAGG 85c5; CCGAGGAACC 87c5; AAAACTTTT 88c5; TTAACGTCA 89c5; TAACGTGCT 90c6; AACCAGGCC 91c6; AACCAGGACC 91c6; AGCAAGACAA</pre>
	71c2; AGACACCACG72c2; AGTCAATAGT73c2; CTGAGCAAAA74c2; AAAGCGAAAG75c3; CACCGTAATC76c3; AAAATACATA77c3; CCTTTTTAAC78c3; AGTTACAAAA79c3; GTCACGCTGC81c4; ATGATTAAGA82c4; TAAATGCTGA83c4; GGGGAAACA84c4; CCGCTACAGG85c5; CCTTATTACC86c5; CCGAGGAACC87c5; AAAACTTTT89c5; TTAACCTCA89c6; TTAACGTCA89c5; TTAACCTCAT90c6; AACAGAGCC91c6; AGAAAGTAA
	71c2; AGCACCACG 72c2; AGTCATAGT 73c2; CTGACCAAAA 74c2; AAACGCAAA 74c2; AAACGCAAA 75c3; CACGTAATC 76c3; CACGTAATC 76c3; CACGTAATC 76c3; GACTACAAA 79c3; GCTACGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TAAATGCTGA 83c4; GGGAGAACA 84c4; CGGACAACA 84c4; CGGAGAACA 84c5; CCGAGGAAC 84c5; TAACATTTT 88c5; TAACCAGCC 90c6; AAACATTTT 89c5; TAACGAGCC 91c6; AGAAAGTAA 92c6; CTAAATTTAA 92c6; CTAAATTTAA
	71c2; AGCACCACG72c2; AGTCACCACG73c2; CTGAGCAAAA74c2; AAAGCGAAAG75c3; CACGTAATC76c3; AAAATACATA77c3; CCTTITTAAC78c3; AGTTACAAAA79c3; GTCACGCTGC80c4; CAGACTGTAG81c4; ATGATTAAGA82c4; GGACAAACA84c4; CCGCTACAGG85c5; CCTTATTAGC86c5; CCGAGGAACC87c5; AAAACTTTT88c5; TATAACGTCA89c5; TAACGTGCT90c6; AACCAGAGCC91c6; AACAGAGCA92c6; CTAAATTAA92c6; CTAATTAA92c6; GAGCAGATA94c6; GAGCCGATT
	71c2; AGCACCACG 72c2; AGTCACACAG 73c2; CTGACCAAAA 74c2; AAACGCAAA 74c2; AAACGCAAA 75c3; CACGTAATC 76c3; CACGTAATC 76c3; CACGTAATC 76c3; CACGTAATC 76c3; GTCACGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TAAATGCTGA 83c4; GGGAGAACA 84c4; CGGACAACA 84c4; CGGAGAACA 84c5; CCGAGGAAC 84c5; TAACAGCAG 85c5; CCTAATTAGC 86c5; CCGAGGAAC 89c5; TAACCAGCC 90c6; AAACAGTAT 90c6; AAAAGTAA 92c6; CTAAATTTA 92c6; CTAAATTTA 92c6; CTAAATTTAA
	11c2; AGACACCACG72c2; AGTCAATAGT73c2; CTGAGCAAAA74c2; AAACGGAAG75c3; CCCAGTAATC76c3; AAAATACATA77c3; CCTTTTAAC78c3; AGTTACAAA9c3; GCTACGCTGC80c4; CGGACATAGCAGA82c4; TAAATGCTGGA83c4; GGGAGAACA84c4; CCGTACAGG85c5; CCTATTAGC86c5; TTAACGTCA86c5; TTAACGTCA86c5; TTAACGTCA9c6; AAAACTTTT88c5; TTAACGTCA90c6; AACCAGACC91c6; AGAAAGTAA93c6; TGCACGTAA93c6; TGCACGTAA93c6; CTAAATTAA93c6; CCGACGAAA93c6; CCGACGAAA94c6; GAGCCCATT95c7; CCTCAGAACC
	11c2; AGACACCACG 72c2; AGTCAATAGT 73c2; CTGACCAAAA 74c2; AAAGCGAAAG 75c3; CACGTAATC 76c3; CACGTAATC 76c3; CACGTAATC 76c3; GACTACAAA 79c3; GCTATTTAAC 78c3; AGTTACAAA 79c3; GCTACGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TAAATGCTGA 83c4; GGGAGAACA 84c4; CGGACAACA 84c4; CGGAGAACA 84c4; CGGAGAACA 84c4; CGGAGAACA 84c5; CCGAGGAAC 84c5; AATACTTTT 88c5; TAACCTGCT 90c6; AACAAAGTHA 90c6; AACAAAGTHA 90c6; CTAAATTAA 93c6; TCACAGTAA 93c6; CTGAATATAA 93c6; CTGAATATAA 93c6; CTCACGTAA 93c6; CTCACGTAA 93c6; CTCACGTAA 93c6; CTCACGTAAA 93c6; CTCACGTAAA 93c6; CTCACGTAAA 93c6; CTCACAGAC 93c6; CTCACGTAAA 93c6; CTCACGTAAA 93c6; CTCACGTAAA 93c6; CTCACGTAAA 93c6; CTCACGTAAA
	71c2; AGCACCACG 72c2; AGTCACACAG 73c2; CTGACCAAAA 74c2; AAACCGAAG 75c3; CACGTAATC 76c3; AAAATACATA 77c3; CCTTTTTAAC 78c3; AGTACAAAA 79c3; GTCACGCTAC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TAAATGCTGA 83c4; GGGCAAACA 84c4; CCGTACAGG 85c5; CCTATATGC 86c5; CCGAGAAAC 86c5; CCTAATTTT 88c5; TATACGTGCT 90c6; AACCAGAGCC 91c6; AAGCAGACC 91c6; AGGACAATAA 92c6; CTAAATTAA 92c6; CTGAATATA 92c7; GCGTAAAT 92c7; ACCAGAAC
	11c2; AGACACCACG72c2; AGTCAATAGT73c2; CTGAGCAAAA74c2; AAACGGAAG75c3; CCCAGTAATC76c3; AAAATACATA77c3; CCTTTTAAC78c3; AGTTACAAA79c3; GCCAGCTGAG80c4; CGGACATAGAA82c4; TAAAGCTAG83c4; GGGAGAACA83c4; GGGAGAACA84c4; CCGTACAGG85c5; CTTAACGTCA88c5; TTTAACGTCA88c5; TTAACGTCA90c6; AACAGAGCC91c6; AGAAGTAA93c6; TGCACGTAA93c6; TGCACGTAA93c6; TGCACGTAA93c6; TGCACGAAA93c6; TGCACGAAA93c6; CTAAATTAA93c6; CTCAAGAAC93c6; CTCAAGAAC93c6; CTCAAGAAC93c6; CTCAAGAAAA93c6; CCCACGAAA94c6; CAGAGCAAAAAAA93c7; CTGGAAAAA98c7; CTGAATAATA98c7; CTGAGAAAC99c7; ATCCTGGAAA99c7; ATCCTGGAAA99c7; ATCCTGGAAC
	71c2; AGCACCACG 72c2; AGTCAATAGT 73c2; CTGAGCAAAA 74c2; AAAGCGAAG 75c3; CACGTAATC 76c3; AAAATACATA 77c3; CCTTTTTAAC 78c3; AGTTACAAAA 79c3; GTCACGCTGC 80c4; CAGGACTATAG 81c4; ATGATTAAGA 82c4; CAGGACTGTAG 83c4; GGGACAAACA 84c4; CCGCTACAGG 85c5; CCTATATAGC 86c5; CCGAGGAAC 86c5; CCTAATTTAGC 86c6; GAGACCGAC 91c6; AGAAACTAA 92c6; CTAAATTAA 93c6; TCACGTAAA 94c6; GAGGCCGATT 95c7; CCTCAGAAC 96c7; ACCAGAACC 96c7; ACCAGAAC 9c7; ATCCTGAGAA 9c7; ATCCTGAGAA 9c7; ATCCTGAGAA 100c8; CACCAGAACC
	<pre>71c2; AGACACCACG 72c2; AGTCAATAGT 73c2; CTGAGCAAAA 74c2; AAAGCGAAAG 75c3; CACCGTAATC 77c3; CCTTTTTAAC 77c3; CCTTTTTAAC 78c3; AGTTACAAAA 79c3; GTCACGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TTAATGCTGA 83c4; GGGACAAACA 84c4; CCGCTACAGG 85c5; CCTTATTAGC 86c5; CCGAGGAAAC 87c5; AAAACTTTT 88c5; TTAACGTCA 89c6; TAACGTCAT 89c6; TAACGTCAT 89c6; CAGAGAACC 91c6; AACCAGAGCC 91c6; AACAGGACA 92c6; CTAAATTTAA 92c6; CTAAATTTAA 92c6; CTCAAATTAA 92c6; CTCAAATAATA 92c6; CCGAGGAAA 97c7; GCGTTAAATA 99c7; TCCGAGAAC</pre>
	11c2; AGACACCACG 72c2; AGTCAATAGT 73c2; CTGACCAAAA 74c2; AAAGCGAAAG 75c3; CACGTAATC 76c3; CACGTAATC 76c3; CACGTAATC 76c3; CACGTAATC 76c3; CACGTAATC 76c3; GACTACAAA 79c3; GCTACGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TAAATGCTGA 83c4; GGGAGAACA 84c4; CGGACAACA 84c4; CGGAGAACA 84c4; CGGAGAACA 84c4; CGGAGAACA 84c5; CCGAGGAAC 84c6; CGGAGAACA 90c6; AAACATTTT 88c5; TTAACCTGCT 90c6; AACAAAGTAA 90c6; AACCAAGCA 90c6; CTAAATTAA 90c6; CAAAATTAA 90c6; CTAAATTAA 90c6; CTAAATTAA 90c6; CAAAGTAAA 90c6; CTAAATATA 90c6; CAAAGAAC 90c6; CAAAGAAC 90c6; CTAAATGAAA 90c6; CAAAGAAC 90c7; ACCAAGAAA 90c7; CTGAAATAA 90c7; AACCAACAA 90c7; AACCAACAA 90c6; AACCCACAA 100c8;
	71c2; AGCACCACG 72c2; AGTCAATAGT 73c2; CTGACCAAAA 74c2; AAAGCGAAAG 75c3; CACGTAATC 76c3; AAAATACATA 77c3; CCTTTTTAAC 78c3; AGTACAAAA 79c3; GTCAGGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TAAATGCTGA 83c4; GGGGAAACA 84c4; CCGTTACAGG 85c5; CCTAACAGG 85c5; CCTAACAGG 86c5; CCGAGAAAC 86c5; CCGAGGAAC 89c5; TAACGTGCTT 90c6; AACCAGAGCC 91c6; AGGACAATTAA 92c6; CTAAATTAA 92c6; CTAAATTAA 92c6; CTAAATTAA 92c6; CTAAATAA 92c6; CTGAATAA 92c6; CTGAATAA 92c6; CTAAATTAA 92c6; CTGAATAAA 92c6; CTGAATAAA 92c6; CTGAATATA 92c6; CTGAATATA 92c7; ATCCTGAGAA 100c8; CACCAGAACC 100c8; CACCAGAACC 100c8; AAGCTGTT 102c8; AAGCTGTT
	11c2; AGACACCACG72c2; AGTCAATAGT73c2; CTGAGCAAAA74c2; AAAGCGAAAG75c3; CACCGTAATC76c3; AAAATACATA77c3; CCTTTTAAC78c3; AGTTACAAAA79c3; GCTCAGGCTGC80c4; CAGACTGTAG81c4; ATGATTAAGA82c4; TAAATGCTAG83c4; GGGAGAACA84c4; CCGTACAGG85c5; CCTATTTAGC86c5; CCTAATAGC86c5; TTTAACGTCA88c5; TTTAACGTCA88c5; TTTAACGTCA90c6; AAACATTTT88c5; TTAACGTCA90c6; AACAGAGCC91c6; AGAAAGTAA92c6; CTAAATTAA93c6; TGCACGTAAA94c6; GAGCCCGATT95c7; CTGAATAATA98c7; CTGAATAATA98c7; CTGAATAATA98c7; CTGAATAATA98c7; CTGAATAATA98c7; CTGAATAATA99c7; AACCCCCAAA100c8; TGCCATTT103c8; TGCAATTCA104c8; AAGCTCTTT103c8; TGCCAATCA104c8; AAGCTCTT105c9; CTTCAGCAG
	71c2; AGCACCACG72c2; AGTCAATAGT73c2; CTGACCAAAA74c2; AAAGCGAAAG75c3; CACGTAATC76c3; AAATACATA77c3; CCTTTTAAC78c3; AGTACAAAA79c3; GTCACGCTGC80c4; CAGACTGTAG81c4; ATGATTAAGA82c4; CAGACTGTAG83c4; GGGAGAACA84c4; CCGCTACAGG85c5; CCTAGTAGC86c5; CCGAGGAAC87c6; AAAACTTTT88c5; TTAACGTCA89c6; CCGAGGAAC90c6; AACCAGACC91c6; AGAAAGTAA92c6; CTAAATTAA92c6; CTCAGAGC91c6; AGAAAGTAA92c6; CTCAGAACA92c6; CTCAGAACA92c6; CTCAGAACA92c6; CTCAGAACA92c6; CTCAGAACA92c6; CCCAGAACC96c7; ACCCAGAAC9c6; AACACAGAC9c6; AACACTATTAA9c7; CCCTCAGAACA9c7; ATCCTGAGAAA100c8; CACCAGAAC101c8; TAACCCCAA102c8; AAGCCTGTT103c8; TGGCAATTCA104c8; AAGACTGTT103c8; CGTCAGGCAG104c8; AAGACTGTT103c8; CGCAATTCA104c8; AAGACTGTT103c8; CTGAGCAA104c8; AAGACTGTT103c8; CTGAGCAA104c8; AAGACTGTT103c8; CTGAGCAA104c8; AAGACTGTT103c8; CTGAGCAA104c8; AAGACTGTT103c8; CTGAGCAA104c8; AAGACTGTT103c8; CTGAGCAA104c8; AAGACTGTT103c8; CTGAGCAAAGT104c8; AAGACTGTT103c8; CTGACAAAGT104c8; AAGACTGTT103c8; CTGACAAAGT
	1/c2; AGCACCACG 7/c2; AGTCAATAGT 7/c2; AAGCCAAAA 7/c2; AAAGCGAAAG 7/c3; CTGAGCAAAA 7/c3; CCTTTTAAC 7/c3; GCCTTTTAAC 7/c3; GCCTTTTAAC 7/c3; GCCACGCTGC 8/c4; AGACTCAAAA 7/c2; GCCACGCTGC 8/c4; GCGCAAACA 8/c4; ATGATTAAGA 8/c4; CCGCTACAGG 8/c5; CCTTATAGC 8/c6; CCGAGGAAC 8/c6; CCGAGGAAC 8/c6; TTAACGTCCA 8/c6; TAACAGAGCC 9/c6; AACCAGAACC 9/c6; AACCAGAAC 9/c6; CAGGCCCACT 9/c6; CCCGAGAACA 9/c6; CCCGAGAACA 9/c6; CCCCAGAACC 9/c7; GCGTTAAATA 9/c7; CCGAGAATATG 9/c7; TCGAGATATGA 9/c7; TCGAGATATGA 10/c8; TAACCCACAC 10/c8; AAGCCTGTT 103/c8; TGCACATTCA 104/c8; AAGCCTCTT 105/c9; CTGAACAAGC
	11c2; AGCACCACG 72c2; AGTCANTAGT 73c2; CTGACCAAAA 74c2; AAACGCAAAA 74c2; AAACGCAAAA 75c3; CACGTAATC 76c3; CACGTAATC 76c3; CACGTAATC 76c3; CACGTAATC 76c3; CACGTAATC 76c3; GTCACGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TANATGCTGA 83c4; GGGAGAACA 84c4; CGGTACAGG 85c5; CCTTATTAGC 86c5; CCTACAGG 85c5; CCTACAGG 85c5; CCTACATTT 86c5; TTAACGTCT 90c6; AAAACTTTT 88c5; TTACGTCAT 90c6; AACAAAGTAA 92c6; CTAAATTAA 93c6; TCACGTAAA 94c6; GAGGCCGATT 95c7; CTCAGAAAC 96c7; AACAAGGAA 96c7; CTGAATAATG 99c7; ATCCAGAA 99c7; ATCCTGAGAA 100c8; TACCCACAA 102c8; AAGCCTGTT 103c8; TGCCAATTCA 104c8; AAGACTGTGT 105c9; GTTAAGCCA 106c9; TGACAAAGT 105c9; GTTAAGCCA 106c9; TGACAAAGC
	11c2; AGCACCACG 72c2; AGTCAATAGT 73c2; CTGACCAAAA 74c2; AAAGCGAAAG 75c3; CACGTAATC 76c3; AANATACATA 77c3; CCTTTTTAAC 78c3; GTCACGCTAC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; GGACAAACA 82c4; CCGCTACAGG 85c5; CCTATATGC 86c5; CCGAGAAACA 86c6; CCGAGGAAC 87c5; AAAACTTTT 88c5; TACCGGCTA 90c6; AACCAGAGCC 91c6; AGAAACTATA 92c6; CTAAATTAA 92c6; CTCAGGAAC 92c6; CTCAGAACTA 92c6; CTCAGAACA 92c6; CTCAGAATTA 92c7; ATCCTGAGAA 92c7; CTCGAATAATA <t< th=""></t<>
	11c2; AGACACCACG 72c2; AGTCANTAGT 73c2; CTGAGCAAAA 74c2; AAAGCGAAAG 75c3; CACCGTAATC 76c3; CACCGTAATC 76c3; CACCGTAATC 76c3; CACCGTAATC 76c3; CACGTAATC 76c3; CACCGTAATC 76c3; GGCAGCGTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TAAATGCTGA 83c4; GGGAGAACA 84c4; CCGTACAGG 85c5; CCTTATTAGC 86c5; CCGAGGAAC 87c5; AAAACTTTT 88c5; TTAACGTGCT 90c6; AAACAGCA 90c6; AAAAGTTTT 88c5; TTAACGTGCT 90c6; AAAAGTAA 92c6; CTAAATTAA 92c6; CTAAATTAA 92c6; CTAAATTAA 92c6; CTAAATTAA 92c6; CTAAATTAA 92c6; CTAAATAA 92c6; CTAAATAAA 92c6; CTAAATAAAA 92c6; CTAAATAAA 92c6; CTAAATAAA 92c6; CTAAATAAA 92c6; CTAAATAAAA 92c6; CTAAATAAA 92c6; CTAAATAAAA 92c7; ATCCTGAAA 92c6; CTGAATAAA <td< th=""></td<>
	11c2; AGCACCACG 72c2; AGTCAATAGT 73c2; CTGACCAAAA 74c2; AAAGCGAAAG 75c3; CACGTAATC 76c3; AAAATACATA 77c3; CCTTTTTAAC 78c3; AGTACAAAA 79c3; GTCACGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; CAGACTGTAG 83c4; GGGAGAACA 84c4; CCGTACAGG 85c5; CCTACAGG 85c5; CCTACAGG 86c5; CCGAGGAAC 86c5; CCGAGGAAC 86c5; CCGAGGAAC 86c5; CCGAGGAAC 86c5; CCTAATTTAGC 86c5; CCGAGGAAC 90c6; AACCAGACC 90c6; AACCAGACC 90c6; AACCAGACC 90c6; CACAACACAA 92c6; CTAAATTTAA 93c6; TCCCAGGAAC 96c7; ACCACAGACC 96c7; ACCACAGAAC 96c7; ACCCAGAAC 90c8; AACCCTGTTT 90c8; AACCCTGTT 90c8; AACCCTGTT 90c8; CCCCAGAAC 100c8; CACCAGAAC 100c8; CACCAGAAC 102c8; AACCCTGTT 103c8; TGGCAATTCA 103c8; GCACATCA
	1/2/2; AGCACACCACG 7/2/2; AGTCACATAGT 7/2/2; AAGCCGAAAA 7/2/2; AAAGCGAAAG 7/2/2; AAAGCGAAAG 7/2/2; AAAGCGAAAG 7/2/2; AAAGCGAAAG 7/2/2; AAAATACATA 7/2/3; CCTTTTTAAC 7/2/3; GCTCACGCTGC 8/2/4; ATGATTAAGA 8/2/4; ATGATTAAGA 8/2/4; ATGATTAAGA 8/2/4; ATGATTAAGA 8/2/4; CCGCTACAGG 8/2/4; CCGCTACAGG 8/2/4; CCGCTACAGG 8/2/4; CCGCTACAGG 8/2/4; CCGCTACAGG 8/2/5; CCGAGGAAC 8/2/5; CCGAGGAAC 8/2/5; CCGAGGAAC 8/2/6; CTAAATTTTT 8/2/6; CTAAATTAA 9/2/6; GAGGCCGATT 9/2/6; GAGGCCGATT 9/2/6; GAGGCCGATT 9/2/6; CTCAGTAAA 9/2/6; CTGAATATA 9/2/6; CCGCATATATA 9/2/6; CCGCATATATA 9/2/7; ACCTGGAAA 10/2/8; AAGCCTGTT 10/2/8; AAGCCTGTT 10/2/8; AAGCTGTTT 10/2/8; AAGCTGTTT 10/2/8; AAGCCTGTT 10/2/8; AAGCGCGAA 10/2/9; TATAAGCCA
	11c2; AGCACCACG 72c2; AGTCANTAGT 73c2; CTGACCAAAA 74c2; AAACGCAAAA 74c2; AAACGCAAAA 75c3; CACCGTAATC 76c3; CACCGTAATC 76c3; CACCTTATAC 77c3; CCTTTTAAC 78c3; AGTTACAAAA 79c3; GTCACGCTGC 80c4; CAGACTGTAG 81c4; ATGATTAAGA 82c4; TANATGCTGA 83c4; GGGAGAACA 84c4; CCGTACAGG 85c5; CCTTACTAGC 85c5; CCTTATTAGC 86c5; CCGACGAC 90c6; AAAACTTTT 88c5; TTAACGTCA 90c6; AAAACTTTT 88c5; TCACGTGAA 90c6; AAACATTTA 90c6; AAACATTTA 90c6; CTAAATTAA 90c6; CACAGGAAC 91c6; CGGCCGATT 95c7; CTCAGATAA 96c7; AACAGGACA 90c6; AACCAGAAC 90c6; AACCAGAAC 90c6; AACAGGCGAT 90c6; AAGCCTGTT 90c6; CACAGACAC 90c6; AAGCCTGTT 90c6; TCACAGAAC 90c6; CCACAGAAC 100c8; TACCCACAA 100c8; AAGCCTGTT <td< th=""></td<>
	1/2/2; AGCACACCACG 7/2/2; AGTCACATAGT 7/2/2; AAGCCGAAAA 7/2/2; AAAGCGAAAG 7/2/2; AAAGCGAAAG 7/2/2; AAAGCGAAAG 7/2/2; AAAGCGAAAG 7/2/2; AAAATACATA 7/2/3; CCTTTTTAAC 7/2/3; GCTCACGCTGC 8/2/4; ATGATTAAGA 8/2/4; ATGATTAAGA 8/2/4; ATGATTAAGA 8/2/4; ATGATTAAGA 8/2/4; CCGCTACAGG 8/2/4; CCGCTACAGG 8/2/4; CCGCTACAGG 8/2/4; CCGCTACAGG 8/2/4; CCGCTACAGG 8/2/5; CCGAGGAAC 8/2/5; CCGAGGAAC 8/2/5; CCGAGGAAC 8/2/6; CTAAATTTTT 8/2/6; CTAAATTAA 9/2/6; GAGGCCGATT 9/2/6; GAGGCCGATT 9/2/6; GAGGCCGATT 9/2/6; CTCAGTAAA 9/2/6; CTGAATATA 9/2/6; CCGCATATATA 9/2/6; CCGCATATATA 9/2/7; ACCTGGAAA 10/2/8; AAGCCTGTT 10/2/8; AAGCCTGTT 10/2/8; AAGCTGTTT 10/2/8; AAGCTGTTT 10/2/8; AAGCCTGTT 10/2/8; AAGCGCGAA 10/2/9; TATAAGCCA

116c11; TCAAAAATGA
117c11; TCGAGCCAGT
118c11; AACTCGTATT
119c11; GCCAGCCATT
120c12; CAGGAGTGTA
121c12; TATTTATCCC
122c12; AAGTAATTCT
123c12; ATTTGAGGAT
124c12; ATTTTGACGC
125c13; GAGTAACAGT
126c13; TTCCAGAGCC
127c13; CTAATGCAGA
128c13; AGCACTAACA
129c13; AGATTCACCA
130c14; TTCGGAACCT
131c14; CTACAATTTT
132c14; GAACAAGAAA
133c14; AGTTGAAAGG
134c14; GCCAACAGAG
135c15; GAGACTCCTC
136c15; TTTGAAGCCT
137c15; GAAACCAATC
138c15; TATCAAACCC
139c15; ACGTGGCACA
140c16; CAGTACCAGG
141c16; GAACGCGAGG
142c16; AACGGGTATT
143c16; AGCAAATGAA
144c16; TGCGCGAACT

Table 3 Oligonucleotide staple strand sequences for the gridiron seed. There are 212 strands in the overall gridiron origami seed, with the leading numbers in front of each strand denoting its identity. Strands 65–144 are necessary for making the 16 seed columns that each bind a single slat using five sockets (see Fig. S2). The non-socketed staples are full length 42-nt strands which will not allow binding of plug handles on slats, versus the socketed staples which have 10-nt removed from their 5' end to form a socket from the exposed seed scaffold. The column location for each of these strand types is denoted with c1–c16, where a matching set of five 10-nt plug sequences must be added to each corresponding slat in the order as written. The universal core staples are not implicated in binding of slats to the seed.

CAAGTTTTACGAGCACGTAGGTTTTTCTTTT	TTTAGCTATATAATGCTGTAGCGAGCTTCA
ACGTCAAAAGACGGGCAACAGCTGGCGGGGAG	TTAGATACATGCAACTAAAGTACGCCCGAAAG
AAGAGTCTGGCCCTGAGAGAGTGTGCCAGC	CTAAGAACCAAGCAAGCCGTTTTGCTAATG
AGATAGGGCGCTGGTTTGCCCCAGTCACTGCC	GACTTGCGGGTATTAAACCAAGTATAGATAAG
CACGCTGCTGACGGGGAAAGCCGGCGAACGT	AGATTAGTTCGGCTGTCTTTCCTTCCATCCTA
TTAATGCGGGAACCCTAAAGGGAGCCCCCGAT	AGAGGTCAGGCATCAATTCTACTAATAGCCA
TTGCTTTGTTGGGGTCGAGGTGCCGTAAAGCA	ATTGCTGAATATTTTCATTTGGGGGGCAAAGAA
CACCAGTGGGGCGAAAAACCGTCTATCAAAT	TTTTAAATATTTCGCAAATGGTCACTCAGAGC
TCACCGCCCACTATTAAAGAACGTGGACTCCA	GAAGTTTCAACGAGTAGATTTAGAAACATT
GCGGTCCATTGAGTGTTGTTCCAGTTTGGAAC	CCCAATCCAATGAAAATAGCAGCCAGCCCTTT
AAATCCTGTTATAAATCAAAAGAATAGCCCG	CAGTTACAACATAAAAACAGGGAAAACAATGA
TTTTTATACATCACGCAAATTAACTTGGCAGA	CTAACGAAATTAACTGAACACCAATTGAGT
CAGGAACGTCTTTGATTAGTAATAACGCTCAA	CAGCTACAGGTAATTGAGCGCGTCCAATACT
TAAACAGTAGAAGAACTCAAACGAAAAACG	GGTCAGGAGTCATAAATATTCATTCCAGAGGG
CGTGCTTTAATATCCAGAAATCCCCGGGTAC	AAGCGAACTTTAAACAGTTCAGATAGCGAG
AGGCGGTTAATTCGTAATCATGGTTGTTCTTC	ACTTCAAATAAATCAAAAATCAGGCCCTCGTT
TGCATTAGTGAAATTGTTATCCCATACCGG	AGAGAATAAAATAAACAGCCATACGGTATT
CGCTTTCCAACATACGAGCCGGAAGCGGCCAG	GACGGGAGGCGTCTTTCCAGAGCCAACCTCCC
GCAATACTGTACGCCAGAATCCTTAGCGGT	AGTCAGAGATTTTATCCTGAATCTTTAAATCA
TGCCTGAGGAGGCCGATTAAAGGGCGCCGCGC	GCGGAATCTTAGAGAGTACCTTTAATTGACC
TTGCTGGTCCTCGTTAGAATCAGATACTATGG	CTCAAATGCCAGACCGGAAGCAAAAGAGCTTA
CGAGCTCGTGCGTATTGGGCGCCAGGGTTAA	AATGACCATATCGCGTTTTAATTCTCAACATG
TTTCCTGTATGAATCGGCCAACGCATTGCCCT	CCTGACTAAAGATTAAGAGGAAGGTGTCTG
TTCCACACAGTCGGGAAACCTGTCTGCAGCAA	TTAAGAAAGGAAACCGAAGAAACGCAAAGACA
GTGTAAAGTTAATTGCGTTGCGCCAGGCGA	AATAGCAAACCCAAAAGAACTGGCTCAATAGA
TTCACCAGCCAACAGAGATAGAACACGCTGAG	TAAGCCCATTACGCAGTATGTTGACACCAC
TCGTCTGAGCGTAAGAATACGTGGGGTCAGTA	AATATCAGACATACATAAAGTTGGGAAGAAA
CTCATGGGAATGGCTATTAGTCCCACCAGC	GGTAATAGTTAATAAAACGAACTACGATTTTA
TATTACCGATAGCCCTAAATAAAGGTTTCTT	AGGCTTTACAGGTAGAAAGATTTTCAACTT
GCGTCCGTATAAACATCCCTTACAGAGCCGGG	TACCAGACGGAATACCACATTCAACGAGTAGT
GGGTTTCATCGTTAACGGCATCGCACTCAA	AACGGAATTAGCTATCTTACCGATTTACAG
AATGCGGCGCAGCCAGCGGTGCCGCCAGCATC	GACTCCTTAATAATAAGAGCAAGAGCGCATTA
ACCTGAAAAATGGATTATTTACACGTTGTA	TAGAAAATAGAGATAACCCACAAGCTGAACAA
ATATTTTTAAATACCTACATTTTGACATCACT	AATCTACGTAAAATGTTTAGACTGGATAGCT
GCGAACTGCCAGCCATTGCAACAGTATCGGCC	ACATTATTTGCAAAAGAAGTTTTGGAATCCCC
TGCTCGTCGAGCCTCCTCACAGTTGAGGCAA TTCAGCAATGCCAGCACGCGTGCCCATAGCTG	GAGATTTAGACGATAAAAACCAAAAAAACGAG
	AGATACATGCAACACTATCATAATCTTTAC
GGTTACCTGGGCCGTTTTCACGGTGCTCACAA CTGCATCAGCACTCTGTGGTGCTGCATAAA	AAAGGGCGATTGACGGAAATTATTGCGTTTTC AAATTCATATCACCGTCACCGACTATCAAGTT
AGCCAGCAAACCTCAAATATCAAATTGCCCGA	GGAATAATAGAGCCAGCAAAATCGATAGCA
TTAACACCTGGTCAGTTGGCAAATACAAAA	GGCAACATACCATTAGCAACTTTGAAAGAGG
AGAAGATTTGAGGAAGGTTATCTACATTTG	AGAACTGGACGGTGTACAGACCAGGCAGACGG
TCGCCATTGCACTAACAACGTCGCTGGCAGC	TAATCATACCTTCATCAAGAGTCCTGCTCC
TCACTGTTAGAGCACATCCTCATATGCCGTTC	AAATTGGGGGGATATTCATTACCCACATCGCCT
TCCGCCGTTGTAGAACGTCAGCGTGATGAA	GGTGAATTATGGTTTACCAGCGCCAATAAT
AGCGGGGTCAGCAACCGCAAGTCCCGTAA	TTGGGAATGTTTATTTTGTCACAAATGATTAA
TCAATATCGCCTGCAACAGTGCCCCTTCTG	GCACCATTATAAAAGAAACGCAAAAGCAAACG
GAAAGGAAAAAACAGAGGTGAGGCCACAGACA	ACAGATGACTCATTATACCAGTCAGGACGGT
CTTTAGGAAAAAATACCGAACGAATTTAATGC	GCTGGCTGTGTGAATTACCTTATGACGGAACA
CTCCGGCCGCCTGCGGCTGGTAATGGGACA	CAAGAACCCTTGAGATGGTTTAATCATCAGTT
TGCCGGACGGCGCGGTTGCGGTATCTGGTGTG	GTAACAAACGAGAAACACCAGAACTAATGC
GGTCTGGTCATTGCAGGCGCTTTCAGATGCCG	ATCGGCATATCTTTTCATAATCAATAAATCCT
ACGGCAGCTACGGCTGGAGGTGTGTGCCCC	TGCCTTTAAGCCACCGGAACCCAGACGAT
ACGTTATTGCGGAACAAAGAAACCTCAGATGA	GCACCGTCCACCCTCAGAACCGCCGCCAGC
TTCGACAAATTATCATCATATTCCAAAGAAAT	CGGAAACGCACCCTCAGAGACTTTTTCATGA
AGGATTTGCAATTCATCAATATTATCAAAA	TCAATCATCCATTAAACGGGTAAAGGGTAGCA
TAGATTAGATTATACTTCTGCGCCATGTTTA	ATGTTACCGAAGGCACCAACCTCCCTCAGC
CGGCAAACGGAATTTGTGAGAGATGGATAACC	GATAAATTAAGAATACACTAAAACGGGAGTTA
GGGTAAAGAAGGGATAGCTCTCAAGCTTTC	GGAACCAGGCGTCAGACTGTAGCCATTAAA
AAAAAGCCAGAAACAGCGGATCAAAGTCACGA	CAGAGCCGAATCAGTAGCGACAGATGAGCCAT
GGAGCGGACTCGTATTAAATCCTCCCTCAA	AGAGCCACTCACCAATGAAACCATCACCAGTA
AGATGATGAGAAGTATTAGACTTTCAACAGTT	GGAAGTTTAAGGGAACCGAACTGACCAAGGC
TTGTTTGGAGCCGTCAATAGATAATAAAAATAT	TGCCACTATTAGCCGGAACGAGGCGCGCATAG AGAGGCAAGTGTCGAAATCCGCGAAATCTTGA
CCAGTCCCGCGGTCCGTTTTTTCGTCTCTAA TCCGTGGTGTTAAACGATGCTGATACGGAACG	AGAGGCAAGTGTCGAAATCCGCGAAATCTTGA TTTGACCCAACGGAGATTTGTATAATCAAC
AGAGACGCGCACAGGCGGCCTTTAGTGGTGCT	CATTAAAGGTTCCAGTAAGCGTCAGGTTTTGC
TTTCTGCTATCGACATAAAAAAAATGCCA	TGGCCTTGGATACAGGAGTGTACTGACTCCTC
ATATACAGACGGATTCGCCTGATTCTTGCTTC	ATTGACAGGGGTCAGTGCCTTGATTCTGAA
TGCGTAGATTACAAAATCGCGCAGGTACATAA	CCACCAGATAAACAGTTAAATCTCCAAAAAA
TTATTTGTCAATTACCTGAGCATTCATTTG	ACGGCTACAAAAGGAGCCTTTAATAAAGGAAT
TAATGGAACAAACATCAAGCACCGCTTCTGG	AGCGAAACTTGCTTTCGAGGTGTTCAGCGG
TCACCGGAACCAGGCAAAGCGCCAGGCCTCAG	AAGGCCGCTGATACCGATAGTTGCGTATGGGA
AGAGGTGCGCAACTGTTGGGAATCTGCCAG	CTTTTGATATATTCACAAAAAATCACC
CGTTGTAACCTCTTCGCTATTACGGTTGGTGT	GTTTTAACGGAGGTTGAGGCAGGTGCCTCCCT
ATACCAAGTTTTCAGGTTTAACGACCAGAA	TGCCCGTAACCACCAGAGCCGCCACCCTC
TATTCATTCACGTAAAACAGAAATTGATTATC	AAGGCTCCAGAGGCTTTGAGGACTAAAGCCG
TGATGAAAGGGTTAGAACCTACCAAATCCTGA	TTTATCAGGACAGCATCGGAACGAATACGTAA
TGCCGGAAAACAATCGGCGAAACGTACAGAA	AAACAGCTTTTTGCGGGATCGTCAAAAACGAA
TCAGGCTGGAGCCGCCACGGGAACAGACTTTC	ATGACAACTCGCTGAGGCTTGCAACTCATC
GGTGCGGGAACGACGGCCAGTGCCACGGAAAA	TCAGTACCAAGTATAGCCCGGAATAGGTGTA
GCGAAAGGCGCCAGGGTTTTCCCACTTAAA	AAGAGAAGCTCAGGAGGTTTAGTACCGCCACC
TGTAAATCTGAAAACATAGCGATATTCATCTT	ACATGAACGCCACCCTCAGAACCGCCACCC
ATCAATATCTGAGAAGAGTCAATAAGAAAACT	CCCCTGCCACCACCCTCATTTTCAGGGATAG
AATTACCCATAGGTCTGAGAGAATGCAAAT	TGCGAATAATAGGAACCCATGTACCGTAACAC
ACAAAATTCGGCTTAGGTTTTAAATCAGCTC	AGTGAGAGTCACCAGTACAAACTACAACGC
GAAGATCGACCAATAGGAACGCCACGTTAATA	TTTTGCTATTCCACAGACAGCCCTCATAGTT
TTTGAGGTCTGGCCTTCCTGTAAGATTGTA	TCACCGTAGATTAGGATTAGCGGTACATGG
AGATGGGCATTAAATGTGAGCGAGGGTTGATA TTAAGACGATGTGAGTGAATAACGCTTTGA	CTCAGAACAGTATTAAGAGGCTGAGGTAATAA TCAGAGCCTATTTCGGAACCTATTAGTAACAG
ATCAAAATTTTTTTAATGGAAACAAGGCGAAT	CAAGCCCAATAATTTTTTCACGTTGAAATGC
ATCAAAATTTTTTTAATGGAAACAAGGCGAAT TTAACCTCAATTACATTTAACAATAAAGAAGA	TGAGTTTCATAGAAAGGAACAACTTGTATCGG
ATCARARTTTTTTTATGGARACARGGGAAT TTAACCTCAATTACATTAACAATAAGAAGA ATTTTTTACACTCCAGCAGCTTTCCGGAAA	TGAGTTTCATAGAAAGGAACAACTTGTATCGG CTGTAGCAAACAACTTTCAACAGTAATTTCTT
ATCAAAATTTTTTTAATGGAAACAAGGCGAAT TTAACCTCAATTACATTTAACAATAAAGAAGA	TGAGTTTCATAGAAAGGAACAACTTGTATCGG
ATCARAATTTTTTTTAATGGAAACAAGGGGAAT TTAACCTCAATTAACAATAAAGAAGA ATTTTTTACACTCCAGCCAGCTTTCCGGAAA	TGAGTTTCATAGAAAGGAACAACTTGTATCGG CTGTAGCAAACAACTTTCAACAGTAATTTCTT

Table 4 Oligonucleotide staple strand sequences for the single DNA origami reference square.

064	
	GAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACCTCAACCCTATCTCGGGCTATTCTTTGATTTAAAGGGATTTTGCCGATTTCGGAACCACCATCAAACAGGA
	CGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCCTGGCGCCCAATA AACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCA
	GCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGGGATTGTGGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGAATTCGAGCTCGGGATCCTCAA
	GAGGAGGCTCACGGACGCGAAGAACAGGCACGCGTGCTGGCAGAAACCCCCCGGTATGACCGTGAAAACGGCCCGCCGCATTCTGGCCCGCAGCACCACAGAGTGCACAGGCGCGCAGTGACA
	GCTGGATCGTCTGATGCAGGGGGCACCGGCACCGCTGGCTG
	TGGGATGGCACCACCGACGGTGCTGCCGTTGGCATTCTTGCGGTTGCTGCCGCACGACCAGACCAGCACGCTGCCGTACAAGTCCGGCACGTTCCGTTATGAGGATGGCTCTGGCCGG
	TGCCAGCGACGAGACGAAAAAAACGGACCGCGTTTGCCGGAACGGCAATCAGCATCGCTTTAACTTTACCCTTCATCATCAACGCCCCCTGTGCCGGCTTTTTTTACGGGATTTTTTATGTC
	TACACAACCGCCCAACTGCTGGCGGCAAATGAGCAGAAATTAAGTTTGATCCGCTGTTTCTGCGTCTCTTTTTCCGTGAGAGCTATCCCTTCACCACGGAGAAAGTCTATCTCTCACAAA GGGACTGGTAAACATGGCGCTGTACGTTTCGCCGATTGTTTCCGGTGAGGTTATCCGTTCCCGTGGCGGCTCCACCTCTGAAAGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGG
	GGGACIGEGETACGACIGACI
	TTTGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTG
	CAACGTGACCTATCCCATTACGGTCAATCCGCCGTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCCAGATT
	TTGATGGCGTTCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAATGCGAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTGGGG TCTGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTAACGATTACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGAATCTTCCCAA
	GCTACCCTCTCCGGCATTAATTATCAGCAGAGGGTGAATATCATTGATGGTGATTTGACGTCTCCGGCCTTTCCACCCTTTTGATCTTACCACACATTACCACATTACCACGGCATT
	TAAAATATATGAGGGTTCTAAAAAATTTTATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTTAGCTTTAGGCTCTGAGGGC
	TGCTTAATTTTGCTAATTCTTTGCCTGCCTGTATGGTTTATTGGATGTTAATGCTACTACTAGTGGAGAATTGATGCCACCTTTTCGACCCCCCCAATGGAAAAATATAGCTAACA
	ATTGACCATTTGCGAAATGTATCTAATGGTCAAACTAAATCTACTCGTTCGCAGAATTGGGAATCAACTGTTATATGGAATGAAACTTCCAGACACCGTACTTTAGTGCATATTTAAAAC TGAGCTACAGCATTATATTCAGCAATTAAGCTCTAAGCCATCCGCAAAAATGACCTCTTATCAAAAGGAGCAATTAAAGGTACTCTCAATCCTGACCTGTTGGAGTTTGCTTCCGGTCTG
	${\tt GCTTTGAAGCTCGAATTAAAACGCGATATTTGAAGTCTTTCGGGCTTCCTCTTAATCTTTTTGATGCAATCCGCTTTGCTTCTGACTATAATAGTCAGGGTAAAGACCTGATTTTTGATTTGATTT$
	TCATTCTCGTTTTCTGAACTGTTTAAAGCATTTGAGGGGGATTCAATGAATATTTATGACGATTCCGCAGTATTCGACGCTATCCAGTCTAAACATTTTACTATTACCCCCTCTGGCAAAA
	TTTTGCAAAAGCCTCTCGCTATTTTGCTCTTATCCCCCGTCTGGTAAACGACGGTTATGATAGTGTTGCTCTTACTATGCCCTCTGTATTCCCTTTTGCGCGTTATGTATCTGCATTAGA
	GTATTCCTAAATCTCAACTGATGAATCTTTCTACCTGTAATAATGTTGTTCCGTTAGTTCGTTTATTAACGTAGATTTTCTTCCCCAACGTCCTGACTGGTATAATGAGCCAGTTCTTAA GCATAAGGTAATTCACAATGATTAAAGTTGAAATTAAACCATCTCAAGCCCAATTTACTACTCGTCTGGTGTTTCTCGTCAGGGCAAGCCTTATTCACTGAATGAGCAGCTTTGTTACGT
	TTGGTAATGATATCCGGTTCTTGTCAAGATTACTCTTGATGAAGGCCAGCCA
	TGACCGTCTGCGCCTCGTTCCGGCTAAGTAACATGGAGCAGGTCGCGGATTTCGACACAATTTATCAGGCGATGATACAAATCTCCGTTGTACTTTGTTTCGCGCTTGGTATAATCGCTGG
	CAAAGATGAGTGTTTTAGTGTATTCTTTTGCCTCTTTCGTTTTAGGTTGGTGCCTCCGTAGTGGCATTACGTATTTACCCGTTTAATGGAAACTTCCTCATGAAAAAGTCTTTAGTCCTC
	CCTCTGTAGCCGTTGCTACCCTCGTTCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAACTCCCTGCAAGCCTCAGCGACCGAATATATCGGTTATGCGGT ATGGTTGTTGTCATTGTCGGCGCAACTATCGGTATCAAGCTGTTTAAGAAATTCACCTCGAAAGCAAGC
	A GEGTA TATA TATA TATA TATA TATA TATA TA
	GACAAAACTTTACATCGTTACCCTAACTATCAGGGCTGTCTGT
	TGAAAATGAGGGTGGCGGTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTACTAAACCTCCTGAGTACGGTGATACACCTATTCCGGGCTATACTTATATCAACCCT
	ACGGCACTTATCCGCCTGGTACTGAGCAAAACCCCGCTAATCCTAATCCTTCTCTTGAGGAGTCTCAGCCTCTTAATACTTTCATGTTTCAGAATAATAGGTTCCGAAATAGGCAGGGGGC ACTGTTTATACGGCACTGTTACTCAAGGCACTGACCCCGTTAAAACTTATTACCAGTACAACTCCTGTATCATCAAAAGCCATGTATGACGCTTACTGGAACGGTAAATTCAGAGACTGCG
	a of the transference of the transference of transference of the transference of the transference of the transference of the transference of t
	GTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGAGG
	AATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTGTCGCTACTGATTACGGTGCTGCTATCGATGGTTTCATTGGTGACGCTTTCCGGCCTTGCTAATGGTAATG
	TACTGGTGATTTTGCTGGCTCTAATTCCCAAATGGCTCAAGTCGGTGACGGTGATAATTCACCTTTAATGAATAATTTCCGTCAATATTTACCTTCCCTCCC
	AACATACTCCCTAATAAGGASTCTTAATCACASTCTCTTTGGGTATTATTCCGTTATTGCTTCTCGGTATTATTGCGCTACTCTGGTAACTTGTTCGGCTACTTGCTTAATGACTTGTTCGGCTACTGCTAATGACTTGTTCGGCTACTGCTAATGACTTGTTCGGCTACTGCTAATGACTTGTTCGGCTACTGCTAATGACTGCTTCGGTATTGCGTATCGCTACTGCTAATGACTTGTTCGGCTACTGCTAATGACTTGTTCGGCTACTGCTAATGACTGCTGCTAATGACTGCTGCTAATGACTGCTGCTAATGACTGCTGCTAATGACTGGTGCTACTGGTAGTGCTGGTATGACTGGTGCTAGTGTGGCTACTGGTGGTGGTGGTGGCTACTGGTGGTGGTGGTGGTGGGTG
	TTCGGTAAGATAGCTATTGCTATTGTTCTTGCTCTTATTATTGGGCTTAACTCAATTCTTGTGGGTTATCTCTCTGATATTAGCGCTCAATTACCCCTCTGACTTTGTTCAGGGTG
	GTTAATTCTCCCGTCTAATGCGCTTCCCTGTTTTTATGTTATTCTCTCTGTAAAGGCTGCTATTTTCATTTTTGACGTTAAAAAAAA
	GTTTATTTTGGAAAGCAAATTAGGCTCTGGAAAGAGCGCTCGTTAGCGTTGGTAGGATAAATTGTGAGCTGGGTAGGAAAATAGCAACTAATCTTGATTTAAGGCTCCAAAAACC
	GCAAGTCGGGAGGTTCGCTAAAACGCCTCGCGTTCTTAGAATACCGGATAAGCCTTCTATATCTGATTTGCTTGC
	TTATCTATTGTTGATAAACAGGCGCGTTCTGCATTAGCTGAACATGTTGTTTATTGTCGTCGTCGGCACAGAATTACTTTATCTTTTGTCGGTACTTTATATTCTCTTATTATCTGGCTCGA
	gcctctgcctaaattacatgttggcgttgttaaatatggcgattctcaattaagccctactgttgggcgttggcctttatactggtaagaatttgtataacgcatatgatactaaacaggct
	CTAGTAATTATGATTCCGGTGTTTATTCTTATTTAACGCCTTATTTAT
	COUNTER TO A DECEMPTION OF A D
	TTAAAAAAGGTAATTCAAAATGAAATTGTTAAATTGTAATTTAATTTTGTTTTCTTGATGTTTGTT
	TTGGTATTCAAAGCAATCAGGCGAATCCGGTATTGTTTTCTCCCCGATGTAAAAGGTACTGTTACTGTATATTCATCTGACGTTAAACCTGAAAAATCTACGCAATTTCTTTATTTCTGTTTTA
	CAAATAATTTTGATATGGTAGGTTCTAACCCTTCCATTATTCAGAAGTATAATCCAAACAATCAGGATTATATTGATGAATGCATCATCAGAATAATCAGGAATATGATGATAATCGCGATGTCGGATTGTTCGATAATCAGGAATATGATGATAATGTTACTCAAAATTAATAACGTCGGGCAAAGGATTTAATACGGGGTTGTCGAATAGTTGTTAGTAAAGCCTAATACTTTTAAAAATTAATAACGTCGGGCAAAGGATTTAATACGGGGTTGTCGAATTGTTGTAAAGCCTAATACTCAAAATTAATAATGATGATGATGATGATGATGATGATGATG
	AAATGATATTATCAATGACGGCTCTAATCAATTAGTTAGT
	TGATATTTGAGGTTCAGCAAGGTGATGCTTTAGATTTTCATTTGCTGCTGGCTG
	TCGTTCGGTATTTTTAATGGCGATGTTTTAGGGCTATCAGTTCGCGCATTCAGAACGCCATTCAAAAATATGTCTGTGCCACGTATTCTTACGCTTTCAGGTCAGAAGGGTTCTA
	$\label{eq:construct} transformation of the state of the$
	$\label{eq:construction} TCGTCCGCTTTTATAGCCATTTTACGCTATCAGCAGATCGTTCAGAAGATCGTCCACCGTATTTTTACCCTTTCAGGCCAGGAGGGTTCTTCAGGCAGG$
	TCGTTCGGTATTTTAATGCCATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACTAATAGCCATTCAAAAATATTGTCTGTGCCACGTATTCTACGCTTTCAGGTCAGAAGGGTTCTA TGTTGGCCACAATGTCCCTTTTATTACTGCTCGTGGTGACTGGGGGAATCGTCCAATGTAAATAATCATTCAGACGATTGAGGGTATTTCCATGAGCGTTTTTCCTGGT TGGCTGGCGGTAATATTGTCTGGATATTACCAGCAAGGCCGATAGTTTGGGTGGTTCTGCCAGGCAAGGAGTATTACCAAAGAAGTATTGCTAGG CAGACTCTTTTACTGGGGGCCCCACGATAGTAAAAACACTTCTAGGGATGCTGGGGCGCCCGTGAAAGCGCCCTGTTTAGCTCCCGCCTCCTGTTAGCTCCCGCCTCCGTTCTAACG AAGCACGTTATACGGCCCGCCAAAGCAACCATAGTACGGCCCCTGTAGCGGCGCGCATTAAGCGCGCGGGGGGGG
	$\label{eq:construction} TCGTCCGCTATTATAGCCGATGTTTAGGCCATCGGCGCATTAAAGACCAATCAAAATATTGTCTGTGCCACGGTATTCTTACGCTTTCAGGAGGGGTTCTATGTGGCGGGAGATGTTTTTTTT$
	TCGTTCGGTATTTTAATGCCATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACTAATAGCCATTCAAAAATATTGTCTGTGCCACGTATTCTACGCTTTCAGGTCAGAAGGGTTCTA TGTTGGCCACAATGTCCCTTTTATTACTGCTCGTGGTGACTGGGGGAATCGTCCAATGTAAATAATCATTCAGACGATTGAGGGTATTTCCATGAGCGTTTTTCCTGGT TGGCTGGCGGTAATATTGTCTGGATATTACCAGCAAGGCCGATAGTTTGGGTGGTTCTGCCAGGCAAGGAGTATTACCAAAGAAGTATTGCTAGG CAGACTCTTTTACTGGGGGCCCCACGATAGTAAAAACACTTCTAGGGATGCTGGGGCGCCCGTGAAAGCGCCCTGTTTAGCTCCCGCCTCCTGTTAGCTCCCGCCTCCGTTCTAACG AAGCACGTTATACGGCCCGCCAAAGCAACCATAGTACGGCCCCTGTAGCGGCGCGCATTAAGCGCGCGGGGGGGG
	TCGTTCGGTATTTTTATATGCCGATGTTTTAGGGCTATCAGTTCGGCGATTAAAGACTAATAAGCCATTCAAAATATTGTCTGTGCCACGGATGTTTACGGTTTACGGATGGGAGGGGTTTTA TGTTGGCCAGAAATGTCCCTTTTATTACTGGTGGGACTGGTGGACTGGTGAAATGCCGATGTAATACAAATGTTGAGGGTAGTAGTAGTAGTAGTACTTCCAGAGGGTTTTCCTGT TGGCTGGCCGGTAATTTGTCTGGATATTACCAGCAAGGCCGATAGTTGAGTTCTGTTCTACACAAGCGATTATACTAAAAATGTAGTGCTACAACGGTTATTCCCAGAGCGTTTTCCTGAC CAGACTCTTTTACTGGTGGGCCCCACGGATATTAAAAACACTTCTCAGGATTGGCGTACCGTTCCTGCTAAAATCCCTTTAATCAAAGAGTATTGCTACAACGGTTATTACCAA CAGACTCTTTTACTGGTGGGCCCCCGCAATAGTACGCGCCCCGTGGGGCGCGCGC
634	TCGTTCGGTATTTTTATATGCGGATGTTTAGGGCTATCAGTCGGCATTAAAGACTAATAGCCATTCAAAATATTGTCTGTGCCACGTAGTTTTACGCTTTTACGGTTCAGAAGGGGTTCTA TCGTTGGCGGAGATGTCCCTTTTATACGGCGTGGCAGCGGGAGGGGGGGG
634	TCGTTCGGTATTTTTATATGCCGATGTTTTAGGGCTATCAGTTCGGCGATTAAAGACTAATAAGCCATTCAAAATATTGTCTGTGCCACGGATGTTTACGGTTTACGGATGGGAGGGGTTTTA TGTTGGCCAGAAATGTCCCTTTTATTACTGGTGGGACTGGTGGACTGGTGAAATGCCGATGTAATACAAATGTTGAGGGTAGTAGTAGTAGTAGTACTTCCAGAGGGTTTTCCTGT TGGCTGGCCGGTAATTTGTCTGGATATTACCAGCAAGGCCGATAGTTGAGTTCTGTTCTACACAAGCGATTATACTAAAAATGTAGTGCTACAACGGTTATTCCCAGAGCGTTTTCCTGAC CAGACTCTTTTACTGGTGGGCCCCACGGATATTAAAAACACTTCTCAGGATTGGCGTACCGTTCCTGCTAAAATCCCTTTAATCAAAGAGTATTGCTACAACGGTTATTACCAA CAGACTCTTTTACTGGTGGGCCCCCGCAATAGTACGCGCCCCGTGGGGCGCGCGC
634	TCGTTCGCTATTTTTATATGCCGATGTTTAGGGCTATCAGTCGCGCATTAAAGACTAATAAGCCATTCAAAATATTGTCTGTGCCACGATTTTTACCGTTTCAGGCAGAGGGGGTTCATAAGACGATTTTTACGACTTTTAGGGATTTTACGATTTCAGGAGGGGTTTTA TGGTCGGCGATATTTTTATATCGGCGATGGTGGGACGGGGGGGG
634	TCGTTCGGTATTTTTAATGCGACTGTTTAGGGCATACAGTTCGGCGATTAAAGACTAATAGCCATTCAAAATGTTGTCGTGCCACGGTTTTACGGCTTTACGGCAGTTCAGGAATGTGCCACGGTAATGTCGCCACGTAATGTGAGCGTTATACGACGGCACGGTAGTTTCCACGAGGGGTTTTCGTGCGGCGGTAATGTCCACGGGCGGTAATGTCCCCCGGGGGTTTTCCAGGAGGGGTTTTCGTGCAGGGGGGGG
634	TCGTTCGGTATTTTTATATGCGGATGTTTAGGGCTATCAGTCGGCATTAAAGACTAATAAGCCATTCAAAATATTGTCTGTGCCACGAGATTTTTACCGTTTCAGGACGAGAGGGGTTCA TGTGGCGCAGAATGTCCCTTTTATATACTGGGCTGGTGACGGGGGGGG
634	TCGTTCGGTATTTTTTANTGCGGATGTTTAGGGCTATCAGTTCGGCGATTCAAAARCATTATAGCCATTCAAAARATATTGTCTGTGCCACGAGTTTTACGGTTCAGAAGGGGTTTTA TGTTGGCCAGAAATGTCCCTTTTATTACTGGTGGACTGGTGAATGCCGATGAAAGCAATAACCATTCAGACGAGCAGTTATTGCGCACGTTATTCCAGAGGGGTTTTTCCAGGAGGGTTTTTCGTGCAACGGTTTTCCAGGAGGGTTTTTCAGGCTACGGCAGTTATTCAGAGGGTATTTCCAGAGGGGTTTTTCCAGGAGGGTTTTTCGTGCAACGGTTATTGCTGCAACGGTTATTGCTGCAACGGTTATTGCTGCAACGGTTATTGCTGCAACGGTTATTGCTGCAACGGTTATTGCTGCAACGGTTATTGCTGCAACGGTTATTGCTGCAACGGTTATTGCTGCAACGGTTATTGCTGCAACGGTTATTGCTGCAACGGTTATTGCTGCAACGGTTATTGCTGCAACGGTTATTGCTGCAGCGCGCCGTTAAGGGGGGTGGGT
634	TCGTTCGGTATTTTTTATATGCGGATGTTTAGGGCTATCAGTCGGACGATTCAAAARATATTGCTCTGGCCACGATTTTTAGCGTTTAGGGAGGGGGGGG
634	TCGTTCGGTATTTTTTANTGCGGATGTTTAGGGCTATCAGTCGGACGACGGCGATTAAAGACTAATAAGCCATTCAAAATGTTGCCGCACGGTATTTTTACCACTTTACGGCTTTCAGGACGGGTTTTCAGGACGGGTTTTTCAGGCAGCGCAGGACGCACGGGGAGGGCGGGAGGGCGCGGAGGGGGG
634	TCGTTCGGTATTTTTTATATGCGGATGTTTAGGGCTATCAGTCGGACTGAAAGCTAATAGCCATCAAAATGTTGTCGTGCCACGGATTTTTACCGTTTAGGCTTTTAGGGCAGGGGGGGG
634	TCGTTCGGTATTTTTTATATGCGGATGTTTAGGGCTATCAGTTCGGACGATCAAAARATCATGTCGTGCCACGATTTTTTAGCCTTTCAGGAGGGGGTTTT TGGTCGGCGATATTTTTTTTTTTTTTTTTTTTTTTTTTT
634	TCGTTCGGTATTTTTTATATGGCGATGTTTAGGGCTATCAGTTCGGCGATTAAAGCTAATAAGCCATTCAAAATATTGTCTGTGCCACGAGTTTTACGGATGTTACGACGGAGGGGGGAGGGTCGGATGTGGCGGATGTTTTTATATATGGGTTATATATGGGTTTTAATGATG
634	TCGTTCGCTATTTTTTATAGCGATGTTTAGGGCTATCAGTTCGGCATTAAAGCTAATAAGCCATTCAAAATATTGTCTGTGCCACGTATTTTACCACTTTACGGCAGGATTTTCACGAGGGGTTTTTCGTGCACGGCAGTTTTTATATTATTATTATTATTATTACTAGTTCAGGACGGTTTTTCCAGGGGCGTGAGTGGCGGTAGTTTTTATTATTATTATTATTATTATTATTACTAGTGGCGGTTTTTCCAGGGGCGTTATTGCTGCAGCGGTTTTTCCAGGGCGGTAGTTTTCCAGGGCGGTTATTGCTGCAGCGGCGGTTATGTGCGCAGCGCGCGTTATGCGGCGCGCTGATTTCCAGGGGCGGTTATGTGCGCCGCCGTCGCGTGTGGCGGCGCGCGC
634	TCGTTCGGTATTTTTTATGCGATGTTTAGGGCTATCAGTCGGCATTAAAGACTAATAAGCCATTCAAAATATTGTCTGTGCCACGTATTTTACGGTTTACGGATGTCAGGAAGGGGTTTT TGGTGGCGGTAATTGTCCGTTTTATATACGGCGGACGGGGGGGG
634	TCGTTCGCTATTTTTTATAGCGATGTTTAGGGCTATCAGTTCGGCATTAAAGCTAATAAGCCATTCAAAATATTGTCTGTGCCACGTATTTTACCACTTTACGGCAGGATTTTCACGAGGGGTTTTTCGTGCACGGCAGTTTTTATATTATTATTATTATTATTACTAGTTCAGGACGGTTTTTCCAGGGGCGTGAGTGGCGGTAGTTTTTATTATTATTATTATTATTATTATTACTAGTGGCGGTTTTTCCAGGGGCGTTATTGCTGCAGCGGTTTTTCCAGGGCGGTAGTTTTCCAGGGCGGTTATTGCTGCAGCGGCGGTTATGTGCGCAGCGCGCGTTATGCGGCGCGCTGATTTCCAGGGGCGGTTATGTGCGCCGCCGTCGCGTGTGGCGGCGCGCGC
634	TCGTTCGCTATTTTTTATGCCGATGTTTAGGGCTATCAGTTCGGCGATTAAAGCTAATAAGCCATTCAAAATATTGTCTGTGCCACGTATTTTACCAGTTTAGGGCGGGTTTTCAGGCAGG
634	TCGTTCGCTATTTTTTATAGCGCATTTTTAGGCTATCAGTCGGCAGTTAAAGCTAATAGCCATTCAAAATATTGTCTGTGCCACGTATTTTTACCATTTTCAGGCAGG
634	TCGTTCGGTATTTTTTATGCGATGTTTAGGGCTATCAGTCGGCATTAAAGCTAATAAGCCATTCAAAATGTTGTCGTGCACGTATTTTACCACTTTAAGGGCATTTTCAGGCAGG
634	TCGTTCGCTATTTTTTATAGCGCATTTTTAGGCTATCAGTCGGCAGTTAAAGCTAATAGCCATTCAAAATATTGTCTGTGCCACGTATTTTTACCATTTTCAGGCAGG
634	T CGTTCGGTATTTTTAAGGCAGGTGTTTAGGGCTATCAGTCGCGCATTAAAGACTAATAGCCATTCAAAAATATTGTCGTGCGCCGGTATTGTTAGGTTTTAGGTCTTCGGGCGGCAAAGGGTCGAA TGTGGCCGGAGATGTCTTGGGCTGGCGCTGGCGCGGGCGG
634	T CETTEGETATTITAATGECGATETTITAGEGCATECAGTTCAGGCGATTAAAGCTAATAGCCATTECAAAAATATCTCTTCAGCCAGATTGACCTTTAGECTTTCAGGCGATCAGAAGGGTCTT T GEGCTGGCGATAATTTTTTAATGGCGATETTITGGCGGTGGCGATCGAAATAATAATCCATTTCAAAAATATTCCTTTTAGCGCAGAGTAAGGATCTTTCAGGCGTCAAAATGAGGTTTTTCCTGAG CGACTCTTTTATTTTTTTTTTCTGGGTGGTGTGACGCCGAGTGGATGGCGAATGAAATAATCGGCCTCTTAAGCGGCGAAGGAGTAAGTA
634	TCGTTGGGTATTTTAATGGCGATGTTTTAGGCGATGGTATCAGTTGGCGGATTAAAGCTAATAGCGATTGCAAAGCGATGTGCGCATATTCTTCAGGCTATTTAGGGGGGGG
634	T CETT CGCAATETT CAAGCCATETT TAAGCCATT CAGCCATATAAGCCATT AAAGCCATT CAAAAAATT TET CTET CECCACGTAATT TCT CAGCCTACGGGGT CAGAATGGGCACGAATGGGT ATT CCATAGCGGT CCTCT CTT TT CAGCCT TT CAGCCAAATGGGGGT ATT CCATAGCGGGCGATT TT CCATGGGGGGGGGG
634	TCGTTGGGTATTTTAATGGCGATGTTTTAGGCGATGGTATCAGTTGGCGGATTAAAGCTAATAGCGATTGCAAAGCGATGTGCGCATATTCTTCAGGCTATTTAGGGGGGGG
634	TCGTTCGGTATTTTAATGCGATGTTTAAGGGTATCAGTCGGGATTAAGGCATTAATAGCCATTCAAAAAAATATGTGGTGCGCGTTTTGCGTTTCCGGGTCGTTTGGGGATGGGGGATTGGGGGATTGCGCATGAGGGGATTGGGGGGGTTTGGGGGGGG
634	T COTT COGTATUTT AN TEAC CONTAINT AN COCCAT TANAGE CAN TANAGE CAN TANAGE CAN ATTA TEACT TO TAGE CONTAINT GETT AN CONTAINT GETT TAGE CONTAINT GETT AN CONTAINE GETT TAGE CONTAINT GETT TAGE CONTAINT TAGE CONTAINT GETT TAGE CONTAINT GETT AN CONTAINE GETT TAGE CONTAINT GETT AN CONTAINE GETT TAGE CONTAINT GETT AN CONTAINE GETT TAGE CONTAINT GETT AN CONTAINE GETT AN CONTAINE GETT TAGE CONTAINT GETT AN CONTAINE GETT AN CONTAIN
634	TCGTCCGCMATTTTAATGCCCATGTTTAACGGCTATCAGTCCCCCATATAACGCATCCAATAATTCGTCGCCCCAGGTATCTTCAGCCTTCAGGCGCTCCAGGGGGTTATTCCTGGTAGGGGCTTTCCGTTTAAGGCGCCCCGCGGGGGATGGTTTCCTGTTTAGGCGCCCCGCGGGGGGGG
634	T COTT COGTATUTT AN TEAC CONTAINT AN COCCAT TANAGE CAN TANAGE CAN TANAGE CAN ATTA TEACT TO TAGE CONTAINT GETT AN CONTAINT GETT TAGE CONTAINT GETT AN CONTAINE GETT TAGE CONTAINT GETT TAGE CONTAINT TAGE CONTAINT GETT TAGE CONTAINT GETT AN CONTAINE GETT TAGE CONTAINT GETT AN CONTAINE GETT TAGE CONTAINT GETT AN CONTAINE GETT TAGE CONTAINT GETT AN CONTAINE GETT AN CONTAINE GETT TAGE CONTAINT GETT AN CONTAINE GETT AN CONTAIN

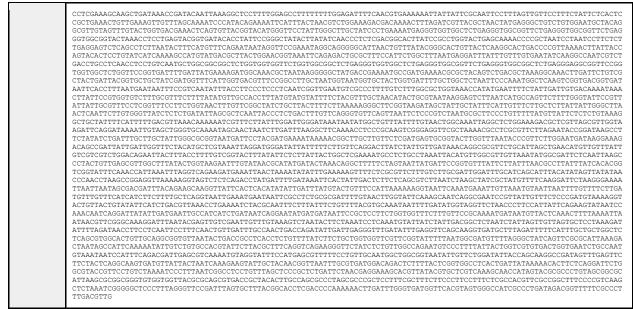


Table 5 Sequences of the p8064 and p8634 scaffolds used to fold the 6HB and 12HB slats, single DNA origami reference square, and gridiron seed.

7-nt x32	6-nt, x256	7-nt, x256	8-nt, x256
(GATTGTC, -7.365) (GTAAGAC, -7.035)	(CGAAGT, -7.209) (CCAACC, -7.639)	(GTTATCG, -7.365) (GATTGTC, -7.365)	(AGCAGACG, -11.032) (AAATGAGG, -8.622)
(GIAAGAC, -7.695) (TTACACC, -7.695)	(CCGAAA, -7.329)	(GTTCGAA, -8.155)	(AAAIGAGG, -8.622) (AAATCTGG, -8.622)
(GATAACC, -7.035)	(CTACAT, -5.649)	(GTGTGTG, -8.665)	(AAACCGGG, -11.002)
(GTAGAAG, -6.875)	(GAAATG, -5.699)	(ACCCCAT, -9.185)	(AAGTGCAT, -9.562)
(GTTACAG, -7.185)	(CCAAGT, -7.029)	(GAAGATC, -7.055)	(AGGTTGTT, -9.272)
(CTTATGC, -7.425)	(CAAAGT, -6.189)	(GTTGGAT, -7.855)	(AGGGCTAG, -10.212)
(CTGAACT, -7.695)	(GGCGAT, -8.449)	(GAAACTC, -7.315)	(AGCGTAGG, -10.702)
(CGGAAAA, -8.255)	(CTTCCT, -6.719)	(CTGTTCT, -7.695)	(AACGGGAC, -10.902)
(CCTTACT, -7.365)	(CGAATT, -6.369)	(GTCGAAA, -8.155)	(AACTCCGC, -11.142)
(CATTTGC, -8.015)	(CTAGGT, -6.439)	(CAAGATG, -7.355)	(ACCTATCC, -9.032)
(GTTGCAA, -8.525)	(AGATAG, -5.339)	(TTAGTGC, -7.935)	(ATTGACGC, -10.352)
(GTTTGTC, -7.625)	(CATTAC, -5.419)	(GTTCGTT, -8.295)	(AGCATTTC, -9.022)
(GGAATTC, -7.315)	(ACCTCT, -7.109)	(CCTCAAA, -7.815)	(AAGAGACT, -8.702)
(GTGAATC, -7.365)	(TTCTGC, -7.289)	(GTTGCTT, -8.355)	(AAGGATCT, -8.702)
(TTTGACC, -7.975)	(AGAAAG, -5.879)	(CTTGCCT, -9.035)	(ATTGACCC, -9.622)
(GTTTCAC, -7.625)	(AGGAAC, -6.879)	(CTGAACT, -7.695)	(AAGGAATC, -8.472)
(CAAACTC, -7.465)	(AGTGGG, -7.869)	(GTAAGAG, -6.875)	(AACCAGCG, -11.292)
(CTAGATC, -6.615)	(ACCGAC, -8.209)	(GCGAAAC, -9.145)	(AGGTCAAA, -9.132)
(TTTAGCC, -7.885)	(GAAGAA, -5.899)	(GTCATCT, -7.595)	(AGATGTCT, -8.752)
(CTTGTGT, -8.005)	(TTCGGG, -8.169)	(CATCAAG, -7.355)	(AAAGCAGC, -10.362)
(CTTTTCC, -7.415)	(GATCAC, -6.439)	(ACGATCC, -8.875)	(AAATACCG, -8.782)
(GTATGAG, -6.925)	(CGGAAG, -7.659)	(CAACGAT, -8.185)	(AGGCAAGG, -10.802)
(GATGTCG, -8.535)	(CTTCTT, -5.879)	(CCTTTGG, -8.405)	(AGAGGTAT, -8.422)
(GTGATAG, -6.925)	(CGTATC, -6.439)	(CGTGAAA, -8.305)	(AGCACAAT, -9.562)
(CTTTGAG, -7.305)	(GAGAAT, -5.779)	(CAGAAAG, -7.305)	(AAGTCGGC, -11.142)
(CGCAAAA, -8.805)	(ATGCTC, -7.169)	(CTTTGCT, -8.195)	(GACGTAAA, -8.802)
(CTTCTGT, -7.695)	(ATGGTC, -6.929)	(GTAGATG, -6.925)	(AGCTTCAC, -9.862)
(GTATCAG, -6.925)	(CACAAG, -6.689)	(CCTCCAT, -8.535)	(AAACCCCT, -10.062)
(AAGAGAG, -7.385)	(GGGAAG, -7.329)	(CCCCAAT, -8.795)	(AGATCGAC, -9.542)
(GATTTCC, -7.315)	(CCAATT, -6.189) (ATGGGT, -7.419)	(GTTAACC, -7.295) (CTTCAAG, -7.305)	(AAGTGCCG, -11.292) (ACGATTCC, -9.802)
(CCTAATC, -6.875)	(ATGGGT, -7.419) (AGGTAC, -6.599)	(CTTCAAG, -7.305) (CGAGAAA, -7.995)	(ACGATTCC, -9.802) (AAAATCCC, -8.732)
	(AGGIAC, -0.599)	(CGAGAAA, -7.995)	(AAAAICCC, -8./32)

(CAAAAG, -5.799)	(CGATCAA, -8.045)	(AACCTGGG, -10.562)
(AAGGAT, -6.269)	(GTTGGAA, -7.975)	(AGAGTCCT, -9.542)
(GACAAC, -6.699)	(CATCGAA, -8.045)	(AAACTTCG, -9.062)
(CTTACT, -5.599)	(CGTTTTC, -7.905)	(AACGCAAT, -10.002)
(CGTGAG, -7.709)	(GTCAATC, -7.365)	(AGGGTGTG, -10.612)
(AGGACG, -8.049)	(CCTAGAC, -7.715)	(AGATCGAT, -8.932)
(GCTCAG, -7.619)	(CCTTAAG, -6.975)	(AAGAGTGC, -9.862)
(ACTGAA, -6.439)	(GATGTCG, -8.535)	(AAGAGCAC, -9.862)
(TTTGCT, -6.939)	(GCGTAAT, -8.255)	(AGCTTCGC, -11.382)
(GGCGTT, -8.709)	(ATTGCCT, -8.585)	(AAAGCTGT, -9.512)
(GGTTTT, -6.299)	(ATATCGC, -7.995)	(AAACTGGG, -9.722)
(CTCCAG, -7.219)	(CTTTCGT, -8.135)	(AAGGGTCG, -10.742)
(GTAGGT, -6.599)	(CGCAAAA, -8.805)	(AAACACCT, -9.272)
(GGTCAG, -7.379)	(GTAACAG, -7.185)	(ACTTACGC, -10.022)
(TTAGCT, -6.349)	(CACAATG, -7.665)	(AAGGAAAG, -8.572)
(CGTGAC, -7.869)	(ATGACTC, -7.595)	(AGGTACGG, -10.462)
(AGATAC, -5.499)	(GTGTAGC, -8.425)	(GATAAAGC, -8.202)
(GCTAAT, -5.999)	(GTCATAG, -6.925)	(GGTATAGT, -7.912)
(CGTAAT, -6.089)	(GTTATGC, -7.585)	(AGCATCCT, -10.092)
(CAAAAC, -5.959)	(GTTCTTG, -7.465)	(AAACCCAT, -9.272)
(ATCGTC, -7.109)	(ATCTCCG, -8.715)	(GCATATAC, -7.972)
(GTTAAG, -5.369)	(GCAACCT, -9.195)	(AGCTCATT, -9.252)
(ACGAGC, -8.449)	(CTGTACT, -7.415)	(GACGTTAA, -8.802)
(CCTCAG, -7.219)	(TTACTGC, -7.935)	(AGGCTGAG, -10.542)
(CCTCAT, -6.769)	(ACTTCCG, -8.975)	(AACGGTAT, -9.172)
(TTGTGC, -7.599)	(CCTAATC, -6.875)	(AGGCAGAG, -10.542)
(ATACCC, -6.599)	(GAAATCC, -7.315)	(AAGGGAAT, -8.962)
(AAGGAG, -6.719)	(CCACAAA, -8.125)	(ATATGGCC, -9.582)
(GTACTT, -5.759)	(CATTGAG, -7.355)	(AAGTCACT, -9.012)
(GAGACG, -7.559)	(CTCGCAA, -9.385)	(AAACTCGG, -9.902)
(AACTCT, -6.269)	(ATTTCGC, -8.535)	(AGTTCCGG, -10.742)
(CTAGAT, -5.339)	(GTTCGAT, -8.035)	(AGGTGAAA, -9.132)
(GAATCT, -5.779)	(GGTGAAC, -8.465)	(AACGTCGG, -11.232)
(AACTTG, -6.189)	(CGCTTAA, -8.215)	(AAGGTAGC, -9.532)
(GCAAAC, -7.199)	(CCAAAAC, -7.725)	(AAACCGAG, -9.902)
(GTGATT, -6.089)	(CCTATGG, -7.865)	(AGGGGTAC, -10.132)
(AGGTCG, -8.049)	(TTCTTCC, -7.665)	(AACAGGCG, -11.292)
(TTCAGC, -7.289)	(GCTGTAA, -7.935)	(AAGTGACC, -9.622)
(GTTCAA, -6.209)	(GTTTCTG, -7.465)	(AAATGGTC, -8.782)
(CTATCC, -5.949)	(GAAGCAT, -8.095)	(ACATCTCC, -9.362)
(GATCTT, -5.779)	(GTTACAC, -7.345)	(ACGGTACT, -10.012)
(AAGGAC, -6.879)	(CTGTAAG, -7.025)	(AAAGTCCC, -9.572)
(AAGCAC, -7.429)	(GTTGCAA, -8.525)	(AGATGAGT, -8.752)
(GTTCAT, -6.089)	(CCTAAAC, -7.135)	(AGACACAT, -9.062)
(CAACAT, -6.239)	(CTAATCG, -7.205)	(AGGCCAAG, -10.802)
(GCAAAA, -6.709)	(CTTAGAG, -6.715)	(ACGATCAA, -9.362)
(GTAGAC, -6.109)	(GTACCAT, -7.575)	(AAGGGGAG, -10.252)
(GTGCAG, -7.929)	(GCTATTG, -7.425)	(AGAGACAT, -8.752)
(GTACAC, -6.419)	(CCATTAC, -7.185)	(AAAGCCAT, -9.512)
(CATAAC, -5.419)	(CTATCCT, -7.105)	(AACTGCAC, -10.172)
(TTGTCG, -7.379)	(CTCCCAA, -8.655)	(AGCAACAT, -9.562)
(TTGGGG, -7.989)	(CAACCTT, -7.955)	(GCGTATAA, -8.762)
(AGAGCT, -7.349)	(GAGTATC, -6.775)	(AGGGCTAC, -10.372)
(ATCGGG, -8.049)	(CTAACTC, -6.875)	(AGACCTAT, -8.422)
(ATCGAC, -7.109)	(GTGAATC, -7.365)	(AGGATCCT, -9.542)
(AAGGGT, -7.369)	(GCTGAAA, -8.215)	(GACCTAAA, -8.312)
(GTAACT, -5.759)	(GTTGTTG, -7.775)	(AAGCACGT, -10.842)
(GAGTTT, -6.039)	(GCCTAAT, -7.765)	(AACCCGAC, -10.902)
(AAGCAA, -6.939)	(CACCAAA, -8.125)	(AGCCTATT, -8.922)
(GTACAA, -5.929)	(TTGAGCG, -9.385)	(AAGCTCCT, -10.042)
(CTTGAC, -6.539)	(TTCGCAA, -9.055)	(ACCTAAGC, -9.532)
(GCTAAC, -6.609)	(CAGTCAA, -7.865)	(AAATCCAC, -8.782)
(CTCGTG, -7.709)	(GTAGGAA, -7.385)	(AGACGAAC, -9.802)
(CAAACT, -6.189)	(CATATGC, -7.475)	(AGCCTTAT, -8.922)
(AGTCAT, -6.319)	(CTACATG, -7.075)	(AAACAGCT, -9.512)
(TTTGGC, -7.549)	(GGTATTC, -7.035)	(AGACTGCT, -10.092)
(GGATAA, -5.619)	(GTGAGTT, -7.855)	(AGGTTGAT, -9.012)
(AACTGT, -6.579)	(CCTTATG, -7.025)	(AAAGCGAG, -10.142)
(CTATAG, -4.669)	(TTGGTCG, -9.145)	(AGCTCGAG, -10.722)
(GAGAAC, -6.389)	(ATTGCTC, -8.095)	(ATATGCGC, -10.312)
(5151110, 0.505)	((111110000, 10.312)

(GCCAAG, -7.879)	(GTTGACG, -8.795)	(ACTTACCC, -9.292)
	CTACGG, -7.379)	(CTGAGTT, -7.695)	(ACCATTGT, -9.322)
	TTGCCT, -7.779)	(AAGACAG, -7.695)	(AGAGGAAT, -8.702)
	ATGACC, -6.929)	(TTTACCC, -7.645)	(ACGTTGAT, -9.502)
	CTCAAT, -5.929)	(GTAGAAC, -7.035)	(AGCTGAAC, -9.862)
	ATGTCC, -6.929)	(CATGGAA, -7.865)	
			(AGATGTGT, -9.062)
	GTCAAT, -6.089)	(GTAGGTT, -7.525)	(ACATAGCC, -9.582)
	ATTTGG, -6.189)	(GTCATTC, -7.365)	(AGCTCTAT, -8.662)
	AGAGAC, -6.619)	(TTAGACC, -7.385)	(AGTGAAGC, -9.862)
	ATTGGC, -7.429)	(CAAAACC, -7.725)	(AGCCTAGG, -10.212)
	CAATGT, -6.239)	(CAGAGAA, -7.555)	(AGGGTGAC, -10.462)
	AATCAG, -5.929)	(ACGATCG, -9.205)	(AGTGACAT, -9.062)
	CAATAG, -5.259)	(CTGATCT, -7.435)	(AGTTGGAT, -9.012)
	AGACAC, -6.929)	(GATTTCC, -7.315)	(AAACGAGG, -9.902)
	ATCAGC, -7.169)	(GCTATAC, -6.995)	(AGATTGCT, -9.252)
	GTGACC, -7.539)	(TTGTGCG, -9.695)	(ACATACGC, -10.072)
(CAATTG, -5.849)	(GTCTGAA, -7.715)	(ATTGAGCC, -9.862)
(AGGTGG, -7.869)	(CCTTTTC, -7.415)	(AGCATGGC, -11.252)
(ACCGAG, -8.049)	(CTCACCT, -8.535)	(AGGTACAA, -8.852)
(AAAGCT, -6.769)	(CCAGTAA, -7.535)	(AGCAGAAA, -9.372)
(GCCTAG, -7.289)	(TTGTGTC, -8.025)	(GACTTTAC, -7.962)
(CTTCGT, -7.209)	(CCATTAG, -7.025)	(AGATCGCG, -11.212)
(CGATCG, -7.889)	(GATAACC, -7.035)	(AGCCTAAT, -8.922)
	GGATCG, -7.559)	(CCTAGAA, -7.225)	(AGCTGGAG, -10.542)
	GATCAT, -5.829)	(GCCTATT, -7.765)	(AAATAGCG, -9.022)
	CTTGAA, -6.049)	(CTCAAGG, -8.145)	(AAATAGGC, -8.692)
	CCTAAT, -5.599)	(GCTTTTG, -7.965)	(AACAGGTT, -9.272)
	GATAAG, -5.109)	(CTGTAGG, -7.865)	(ACATAGGC, -9.582)
	GGTAAA, -5.879)	(GTGAGAT, -7.595)	(ACGTGAAT, -9.502)
	GCACAG, -7.929)	(TTCTGCG, -9.385)	(AGGCGTAG, -10.702)
	GTATTG, -5.419)	(CTATTGC, -7.425)	(AGAGCAAC, -9.862)
	ATGTGC, -7.479)	(CTGGAAT, -7.695)	(ACCTACAA, -8.852)
	GTGAGC, -7.779)	(CCCATAA, -7.535)	(AAGGGTGG, -10.562)
	AGGGAG, -7.559)	(CGTCAAA, -8.305)	(AGGATTTC, -8.472)
	CATTAG, -5.259)	(TTGTCTC, -7.715)	(AGCTTCAT, -9.252)
	CTGAAT, -5.929)	(TTCAGTC, -7.715)	(AAGTACGC, -10.022)
	GAATGT, -6.089)	(GTCTCTT, -7.545)	(AAATTGCC, -9.282)
	CGGAAT, -7.209)	(CTTAACC, -7.135)	(AGGCCTAG, -10.212)
	ATTTCG, -6.369)	(CATTTGC, -8.015)	(AACTCCCG, -10.742)
	CGAAGG, -7.659)	(CGTCTAA, -7.715)	(AGGTACGC, -10.862)
	AAACAG, -6.189)	(GTAATCC, -7.035)	(AACCCACG, -11.052)
	ATGCCG, -8.599)	(CTAACTG, -7.025)	(AACACCGC, -11.452)
	CTCAAC, -6.539)	(CTAAAGC, -7.375)	(AGGTCGAG, -10.482)
	GAAGCG, -8.059)	(CTCATGG, -8.195)	(AGCACAGC, -11.252)
	ACGGAC, -8.209)	(CCTTAAC, -7.135)	(ACGATTTC, -8.962)
	GTAGAA, -5.619)	(CAAGATC, -7.205)	(AAGGATAC, -8.192)
	AGGAGC, -7.959)	(ACTGTCG, -9.025)	(AGGTAGGC, -10.372)
	AAGCAG, -7.269)	(GTCTAAG, -6.875)	(ACCGTAAA, -9.292)
	TTGGAG, -6.889)	(GCTAAAC, -7.535)	(ATTTCCCC, -9.572)
(TTCGCG, -8.899)	(GAATGCG, -9.035)	(ACGCTAAC, -10.022)
(CTTCAC, -6.539)	(CCTGAAT, -7.695)	(AGTTCGAT, -9.192)
(GGAAAA, -6.159)	(CTGATGC, -8.595)	(AGCAAGGG, -10.802)
(CACAAC, -6.849)	(GTTCATC, -7.365)	(AGCAATGT, -9.562)
(CTAGAG, -5.789)	(TTGTACC, -7.695)	(ACATTCCC, -9.622)
(CTTGCT, -7.269)	(GTATCTC, -6.775)	(AAAGCTCT, -9.202)
(CTGTTC, -6.539)	(CAAACAG, -7.615)	(AGCATCGC, -11.432)
	GTCGAC, -7.719)	(CTCCAAT, -7.695)	(ACCATTTC, -8.782)
	GATCAA, -5.949)	(CCTAGAT, -7.105)	(AGTAGCGC, -11.102)
	GAGATT, -5.779)	(CATAGAG, -6.765)	(ACCTAGAT, -8.422)
	ACACAT, -6.629)	(GTTGTGT, -8.165)	(AGGGCTTC, -10.652)
	CATCTT, -5.929)	(GAACATC, -7.365)	(ACTAACCT, -8.682)
	AGCAAC, -7.429)	(GAAAGTC, -7.315)	(AGCGTTAT, -9.412)
	ACGGAG, -8.049)	(GTAACTC, -7.035)	(AAAAGCGT, -9.952)
	CCTATC, -5.949)	(GCTAAAG, -7.375)	(AAGAGTGG, -9.462)
	GTGAGG, -7.379)	(CTACATC, -6.925)	(AGGCAAAT, -9.512)
	ATGGCT, -7.659)	(TTTAGCC, -7.885)	(AAAGCCAC, -10.122)
	CTGAAG, -6.379)	(CTTGTGT, -8.005)	(AAATACCC, -8.452)
	CTACAA, -5.769)	(GTTCTCT, -7.545)	(AGATCAGT, -8.752)
	GAATAG, -5.109)	(GTCTGAT, -7.595)	(AAGGTGTT, -9.272)
(GGAAAT, -6.039)	(CGTTAAG, -7.465)	(AGTCCTAA, -8.542)
•			

(CTACTT, -5.99) (CTCTCC, -7.715) (ATTGOGC, -11.122) (CTACG, -7.865) (CAASTTC, -7.315) (AGTAAGC, -3.802) (CTACG, -7.865) (CCAAGG, -7.815) (AGTAAGC, -3.822) (CTTTRG, -5.219) (CTACG, -7.815) (AGTAAGC, -3.822) (CTTTRG, -6.89) (CCACGA, -7.815) (AGTAAGC, -3.922) (CAACCA, -2.69) (CTACGA, -7.715) (AAGCAG, -3.932) (CTACT, -5.29) (CTACGA, -7.755) (AAGCAG, -3.932) (CTACT, -5.939) (CTTTOTO, -7.755) (AAGCAG, -3.932) (CTACT, -5.939) (CTTTOTO, -7.455) (AAGCAG, -3.932) (CCAAG, -5.939) (CTTTOGA, -7.453) (AAGCCG, -3.932) (CCAAG, -6.939) (CTTTOGA, -7.453) (AACCCG, -3.932) (CTATAG, -5.939) (CTTTAGA, -7.453) (AACCCG, -3.932) (CTTATAG, -5.939) (CTTTAGA, -7.453) (AACCCG, -3.932) (CTTATAG, -5.93) (CTTTAGA, -7.453) (AACCCG, -3.932) (CTTATAG, -5.439) (CTTTAGA, -7.453) (AACCCGA, -3.933) (CTTTAG, -7.433) (AACCCGA, -3.933) (AACCCGA, -3.933) (CTTTAG, -7.439) (CTTTAGA, -7.435) (AAACCCG,	1		
(CTAAGG, -G.049) (CCATATC, -G.25) (AACTCAG, -9.802) (GTRAGG, -G.869) (CCTAAGG, -7.815) (AAGTCAG, -9.822) (CTTTAG, -5.200) (CCAAAG, -7.15) (AAGTCAG, -8.82) (CTTTAG, -5.200) (CCAAAG, -7.15) (AAGTCAG, -8.82) (CAATCA, -6.89) (CCAATC, -7.633) (AAGTCAG, -8.972) (CAATCA, -5.99) (CTAATG, -7.453) (AAGTCAG, -1.322) (CAATCA, -5.99) (CTAATG, -7.153) (AAGTCAG, -1.322) (CAATCA, -5.99) (CTAATG, -7.153) (AAGTCAG, -1.62) (CAAA, -6.30) (CTTAAG, -7.153) (AAGTCAG, -1.62) (CCAAA, -6.30) (CTTAAG, -7.453) (AAGTCAG, -1.62) (CCAAA, -6.20) (CCTAATG, -7.153) (AAGTCAG, -1.62) (CAAAA, -6.20) (CCTAATG, -7.153) (AAGTCAG, -2.772) (AAGTCAG, -5.89) (CTTAATG, -7.153) (AAGTCAG, -2.772) (CACCATA, -6.20) (ACCCAA, -6.213) (AAGTCAG, -1.62) (CATCAA, -6.20) (CCACTAA, -7.553) (AAGCATGA, -1.622) (CATCAA, -6.20) (CCACTAA, -7.553) (AAGCATGA, -2.722) (CATCAA, -6.20) (CCACTAA, -7.553) (AAGCATGA, -2.722)<	(CTACTT, -5.599)	(TTCTGTC, -7.715)	(ATTTGGGC, -10.122)
ICTERACE, -7.8693 (CARTER, -7.315) (AGTERACE, -9.222) ICTTING, -5.2091 (CTCARAG, -7.1515) (AGTERACE, -9.222) ICTTING, -5.2091 (CCCARAG, -7.153) (AGTERACE, -9.122) ICTALCT, -5.8031 (CCCARAG, -2.123) (ACTERACE, -8.123) ICTALCT, -5.8031 (CCCARAG, -2.123) (ACTERACE, -2.123) ICTALCT, -5.9031 (CCTARACE, -7.155) (ARACEG, -10.302) ICTALCT, -5.9031 (CCTARACE, -7.155) (ARACEG, -10.302) ICTALCT, -5.9031 (CCCARA, -8.155) (GACCTAR, -8.162) ICCARAT, -5.9031 (CCTARACE, -7.655) (ARACEG, -10.612) ICTALC, -5.5401 (TTCCAR, -7.815) (ARACEG, -10.612) ICARATE, -5.9031 (CCTARA, -7.815) (ARACEG, -8.012) ICARATE, -5.9031 (CCTARA, -7.815) (ARACEG, -0.822) ICARATE, -6.0391 (CCTARA, -7.815) (ARACEG, -1.823) ICARATE, -6.0391 (ARCETAR, -7.855) (ARACEG, -3.222) ICARATE, -6.0391 (ARCETAR, -7.855) (ARACEG, -3.222) ICARATE, -7.0361 (CCTARA, -7.855) (ARACEGG, -3.222) ICARATE, -7.0361 (CCTARA, -7.855) (ARACEGG, -3.222) ICARATE, -7.0361 <t< td=""><td></td><td></td><td></td></t<>			
(TTCCAG, -C.889) (CCTAAG, -T.15) (AAGGTTAG, -9.22) (CTTAG, -5.209) (CCATCT, -7.635) (AAGGAT, -8.972) (GTACAT, -5.090) (CCATCT, -7.135) (AAGGAT, -8.422) (AACCAA, -6.690) (CCATCT, -7.135) (AAGCAC, -8.122) (CTTAGT, -5.490) (CCATCT, -7.135) (AAGCAC, -11.132) (CTTAGT, -5.490) (CCATCT, -7.175) (AGGTTAGT, -1.435) (CTTAGT, -5.490) (CCATCT, -7.175) (AGGTTGGT, -1.132) (CTTAGT, -5.490) (CCATCT, -7.175) (AGGTTGGT, -1.435) (CCAAA, -6.090) (CTTAGT, -7.455) (AACCTGA, -1.455) (CCAAA, -6.090) (CTTAGT, -5.430) (CAAACTGGT, -1.651) (CCAAA, -5.649) (CCCAGA, -8.155) (AAACTGGT, -1.632) (CAAAA, -5.649) (CTCCAA, -7.455) (AACACCGT, -1.0.322) (CACAAA, -6.020) (CACTA, -7.455) (AACACCGT, -1.0.322) (CACAAA, -6.030) (CACTA, -7.455) (AACACCGT, -1.8.22) (CACAAA, -6.030) (CACTA, -7.455) (AGGTAGT, -8.162) (CATCAA, -6.030) (CACTA, -7.455) (AGGTAGT, -8.162) (CATCAA, -6.030) (CACTA, -7.455) (AACACCG, -8.162) (CATCAA, -7.558) (TTCCCA, -7			
(CTTTAG, -5.209) (CTCALAA, -7.715) (AAAAGCUT, -8.22) (GTACAT, -5.809) (CCCALAT, -8.135) (ACTAGACT, -8.422) (CATCAT, -5.909) (CTALAG, -7.125) (ACTAGACT, -8.22) (CTALAT, -5.690) (CTALAG, -7.125) (ACTAGACT, -8.120) (CTALAT, -5.590) (CTALAG, -7.513) (AAACCCC, -10.212) (CTALAT, -5.797) (CACALAT, -8.135) (AAACCCC, -10.212) (CALAT, -5.797) (CACALAT, -8.135) (AAACCCCC, -10.212) (CAAAC, -5.777) (AGOCTBAC, -1.613) (AAACCCCC, -10.122) (CAAAT, -5.778) (CTCCAAA, -7.813) (AAACCCCC, -9.121) (CAAAT, -5.049) (CTCCAAT, -7.125) (AACCACAA, -9.272) (CAAAT, -5.049) (CCTAATC, -7.125) (AACCACAA, -9.272) (CAACCA, -5.280) (CTCAATC, -7.125) (AACCACAA, -9.272) (CAACCA, -6.209) (CACCAA, -7.815) (AAACCACA, -9.272) (CAACCA, -7.819) (AACCACAA, -9.272) (CACCAA, -8.282) (CTAATC, -7.135) (CACCAA, -9.272) (AACCACCA, -9.272) (CACATA, -6.209) (CACCAA, -7.555) (AACCACAA, -9.272) (CACATA, -6.291) (CACCAA, -7.255)		· · ·	
(CTTGT,0.189) (CCATCG, -7.695) (AGGGTAGC, -8.22) (AACCAA, -6.699) (CCAATC, -5.25) (AGCATC, -8.972) (CAATCT, -5.990) (CTTATC, -7.75) (AGCGTAC, -11.182) (CTATCT, -5.990) (CTTATC, -7.75) (AGCTAC, -10.302) (CTAGT, -5.979) (CCAAAG, -7.45) (AGCTAC, -8.432) (CCATGT, -5.979) (CCCAAAG, -7.463) (AACCTA, -8.432) (CCAAA, -6.309) (CTTCAG, -7.463) (AACCTA, -8.432) (CCAAAG, -6.309) (CTCCAAG, -7.463) (AACCTAG, -10.612) (CCAAAG, -5.491) (CTCCAAG, -7.193) (AACCTAG, -10.172) (CCAAAG, -5.492) (CTCCAAG, -7.193) (AACCTAG, -7.422) (CAAAGA, -6.099) (ACCCAA, -7.55) (ACCACAG, -7.422) (ACCAAG, -7.639) (ACCCTAA, -7.635) (ACCACAG, -9.272) (CAACAG, -7.479) (CTCAAG, -7.635) (AACACCG, -9.272) (CAACAG, -7.479) (CTCAAG, -7.655) (AACACCG, -9.272) (CAACAG, -7.479) (CTCACG, -7.455) (AACACCGG, -9.272) (CAACAG, -7.479) (CTCACG, -7.455) (AACACCGG, -9.272) (CAACCG, -7.479) (CTCACG, -7.655) (AAC			
(GTRACT, -5.809) (CCCAAAT, -8.235) (ACTACA, -6.693) (CAATCC, -5.925) (CTATCC, -7.425) (ACTACAT, -6.373) (GTRACT, -5.929) (CTATACC, -7.755) (ACTACACG, -1.132) (GTRACT, -5.599) (CCATACC, -7.3515) (AACTACG, -0.323) (GTATCT, -5.799) (ACCAAAC, -7.655) (AACTACG, -7.615) (GCATAC, -7.730) (ACCAAAC, -7.615) (AACAAC, -8.023) (GCATAC, -7.516) (AACAAC, -7.615) (AACAAC, -8.023) (GAAAAC, -7.530) (CTCTCAC, -7.815) (AACACC, -7.912) (GAAAAC, -5.543) (CTCTCAC, -7.815) (AACACC, -7.912) (AATACAC, -5.543) (CTCTCAC, -7.815) (AACACCC, -7.072) (AATACAC, -6.209) (CCTCACA, -7.815) (AACACCC, -7.212) (AATACAC, -6.209) (CACCTAT, -7.655) (AACACCC, -7.223) (AATACCA, -6.139) (CTCACA, -6.315) (ACATCAC, -7.910) (GTRACC, -7.149) (GTAACC, -7.149) (GTAACC, -7.149) (GTACCA, -6.231) (ACCACAA, -7.910) (ACATCAC, -7.910) (GTTCAC, -6.231) (ACACCACA, -7.910) (ACATCAC, -7.910) (GTTCAC, -7.539) (GTTAACC, -7.623)			
(AACCAA, -6, 699) (GAACTCG, -8, 229) (ACCACT, -9, 7425) (ACCACC, -1, 132) (GTAACT, -5, 499) (GTTATG, -7, 773) (ACTACC, -1, 132) (GTAACT, -5, 593) (GCTAACA, -7, 515) (AAACACG, -10, 132) (CATACT, -5, 793) (GCCAAAT, -8, 355) (GACCAC, -10, 132) (GCCAAA, -6, 139) (GCCAAAT, -8, 105) (AAACACG, -10, 612) (GAATT, -5, 549) (TTCCAC, -7, 145) (AAACACG, -10, 612) (GAATTA, -5, 549) (TTCCAAC, -7, 1815) (AACTACG, -9, 272) (GATTAG, -5, 649) (TTCCAAA, -7, 655) (AACACAG, -9, 272) (GATTAG, -5, 649) (GTTATG, -7, 185) (AACTAGA, -9, 672) (GATAA, -6, 099) (ACCCAA, -7, 655) (AAACAGG, -9, 222) (GTATAG, -7, 649) (GTTATG, -7, 185) (AAATAGG, -9, 222) (GTAAG, -6, 539) (GCCAAA, -6, 7, 853) (AAACAGG, -9, 222) (GTAAG, -6, 539) (GCCAAA, -7, 655) (AAACTGG, -9, 912) (GTTAGG, -7, 189) (AACTGG, -7, 815) (AACTGGG, -9, 172) (GATAG, -7, 549) (CCCAAA, -7, 185) (AACTGGG, -9, 172) (GTTAGG, -7, 189) (CACTAG, -7, 185) (AAAGTGGG, -17, 122)	(CTTTGT, -6.189)	(CCATTCT, -7.695)	(AGGGTAGG, -9.972)
(CAATCT, -5.929) (CTHATCC, -7.429) (ACGTGGG, -11.192) (CTAGAT, -5.99) (CATTAGC, -7.775) (AGGTGGG, -10.302) (CATAGT, -5.979) (CACAAG, -7.515) (AAGGTGGG, -10.212) (CCAAA, -6.309) (CTTAGA, -7.455) (AAGCTGG, -0.612) (CCAAA, -6.309) (CTTCAGA, -7.4515) (AAGCTGG, -0.612) (GAAATC, -5.549) (CTCTGAA, -1.815) (AAGTGG, -0.612) (GAATC, -5.549) (CTTCAGA, -1.815) (AAGTGG, -0.732) (AATGG, -1.223) (CCTGAAA, -1.815) (AAGTGG, -0.742) (AAGTGG, -1.323) (CCTGAAA, -1.815) (AAGTGG, -0.742) (GAAAG, -5.649) (CTTCAGA, -1.815) (AAGTGG, -0.727) (AAGTGG, -7.139) (CTGTAA, -7.455) (AAGTGG, -7.27) (GTAAG, -5.73) (GACTAG, -7.855) (AAGTGG, -7.29) (CTTCAT, -7.369) (CTGTAGA, -7.855) (AAGTGG, -7.29) (CTAAGT, -5.53) (GACTAGT, -7.55) (AAAAAGG, -7.902) (CTAAGT, -5.53) (CAGTAGT, -7.25) (AAAAAGG, -7.902) (CTAAGT, -7.55) (CAAAAAGG, -7.902) (CTGTAGT, -7.25) (CTAAGT, -7.55) (CAATT, -5.75) (AAAAAGG, -7.	(GTACAT, -5.809)	(CCGAAAT, -8.135)	(ACTAGACT, -8.422)
(CAATCT, -5.929) (CTHATCC, -7.429) (ACGTGGG, -11.192) (CTAGAT, -5.99) (CATTAGC, -7.775) (AGGTGGG, -10.302) (CATAGT, -5.979) (CACAAG, -7.515) (AAGGTGGG, -10.212) (CCAAA, -6.309) (CTTAGA, -7.455) (AAGCTGG, -0.612) (CCAAA, -6.309) (CTTCAGA, -7.4515) (AAGCTGG, -0.612) (GAAATC, -5.549) (CTCTGAA, -1.815) (AAGTGG, -0.612) (GAATC, -5.549) (CTTCAGA, -1.815) (AAGTGG, -0.732) (AATGG, -1.223) (CCTGAAA, -1.815) (AAGTGG, -0.742) (AAGTGG, -1.323) (CCTGAAA, -1.815) (AAGTGG, -0.742) (GAAAG, -5.649) (CTTCAGA, -1.815) (AAGTGG, -0.727) (AAGTGG, -7.139) (CTGTAA, -7.455) (AAGTGG, -7.27) (GTAAG, -5.73) (GACTAG, -7.855) (AAGTGG, -7.29) (CTTCAT, -7.369) (CTGTAGA, -7.855) (AAGTGG, -7.29) (CTAAGT, -5.53) (GACTAGT, -7.55) (AAAAAGG, -7.902) (CTAAGT, -5.53) (CAGTAGT, -7.25) (AAAAAGG, -7.902) (CTAAGT, -7.55) (CAAAAAGG, -7.902) (CTGTAGT, -7.25) (CTAAGT, -7.55) (CAATT, -5.75) (AAAAAGG, -7.	(AACCAA, -6.699)	(GAGATCG, -8.225)	(AGCACTAT, -8.972)
(CTRAGT, -5.499) (CTTTGG, -7.753) (AAACACGG, -10.302) (CTRAGT, -5.979) (CCRAAAT, -8.353) (GAACACG, -10.22) (CCRAAA, -6.309) (CTTAGG, -7.653) (GAACAT, -8.432) (CCAAAA, -6.309) (CTTTAGG, -7.653) (AAACTGG, -10.612) (GAAAAG, -5.439) (CTTCAG, -7.815) (AAACTGG, -9.912) (GAAAAG, -5.439) (CTTCAG, -7.815) (AAACTGG, -9.622) (GAAAAG, -5.923) (CCTGAAA, -1.25) (ACCACAA, -9.622) (GTACAA, -6.099) (AACCCG, -1.252) (ACCACAA, -9.622) (GTACAA, -6.199) (CACCAA, -9.653) (ACCACAA, -9.122) (GTACAA, -6.199) (CACCAA, -1.633) (ATACAGG, -9.221) (GTACAA, -6.199) (CACCAA, -1.633) (AAACTGG, -1.233) (GTTCAA, -6.139) (GTTCAC, -1.633) (AAATTCG, -9.122) (GTTACA, -7.135) (CACCAAA, -9.633) (AAATTCG, -9.723) (GTTCAA, -7.619) (CTTACA, -7.953) (AAAATTCG, -9.121) (GTTACA, -7.633) (CACCAAA, -9.633) (AAATTCG, -9.723) (GTTACA, -7.533) (CACCAAA, -9.633) (AAATTCG, -7.963) (GTTCAA, -6.633) (GTTACA, -7.963)			
(CTARAT, -5.599) (CATARG, -7.515) (CARTAR, -5.353) (CARTAR, -5.432) (CCARAR, -6.309) (CACARA, -6.353) (CACARA, -6.309) (CACARA, -6.309) (CACARA, -6.309) (CARAR, -5.649) (CTTCARA, -3.155) (CACTARC, -5.312) (CACTARC, -5.312) (CARAR, -6.209) (CCTCARA, -3.155) (CACTARC, -0.322) (CATCARC, -2.273) (CATARA, -6.209) (CCTCARA, -3.153) (CACTARC, -0.423) (CACTARC, -0.423) (CATARA, -6.209) (CCTCARA, -3.153) (CACTARC, -0.432) (CATCARC, -0.433) (CATARA, -6.209) (CACCAR, -3.553) (CACTARC, -2.263) (CACTARC, -2.263) (CATARA, -6.209) (CATCAR, -3.155) (CACTARC, -3.263) (CATARAC, -3.263) (CATARA, -6.209) (CATARA, -3.653) (CATARAC, -3.263) (CATARAC, -3.263) (CATARA, -6.209) (CATARA, -7.155) (CACATAR, -3.273) (CACATAR, -3.273) (CATARA, -5.59) (CATARA, -7.253) (CACATAR, -3.273) (CATARA, -5.203) (CATARA, -7.285) (CATARA, -3.273) (CATARA, -5.203) (CATARA, -7.285) (CATARA, -7.2912) (CTCARA, -7.473) (CATARA, -7.285)			
(CATCART, -5.373) (CCCARAT, -6.335) (CACARAG, -7.695) (CACARAG, -7.695) (CCCARA, -6.309) (CTTTAGG, -7.695) (CACARAG, -7.615) (CACATAC, -10.122) (GAARAG, -7.379) (CTTCAGG, -7.815) (CACATAC, -9.912) (GAARAG, -7.815) (CACACAC, -9.912) (GAARAG, -5.229) (CCTGTCAG, -7.425) (ACACCAC, -9.927) (ACCCAC, -9.272) (ACCCAC, -5.230) (CCTTACA, -7.455) (ACCCACA, -9.272) (GAACCA, -7.813) (CATCAA, -6.099) (CATCAA, -9.565) (AAACCCC, -9.272) (CATCAA, -6.099) (CATCAT, -7.653) (AAACCCC, -9.272) (CATCAA, -6.339) (CATCAT, -7.653) (AAACCACC, -9.272) (CATCAA, -6.339) (CATCAT, -7.653) (AAACCACC, -9.722) (CATCAT, -7.453) (CATCAT, -9.172) (CATCAT, -7.353) (CATCAT, -7.653) (AAACCACC, -9.722) (CATTAT, -7.453) (CATTAT, -7.853) (AAACCACC, -9.722) (CATTAT, -7.453) (CATCAT, -7.653) (AACTTC, -9.122) (CATTAT, -7.653) (AACTTC, -9.122) (CATTAT, -7.353) (CATTAT, -7.755) (AAACACC, -9.722) (CATTAT, -7.553) (AATTAT, -9.222) (CATTAT, -7.639) (CATTAT, -7.735) <td></td> <td></td> <td></td>			
(GCCARA, -7, 223) (PACAGAG, -7, 653) (RAARAGG, -9, 062) (CCARA, -6, 539) (GCTAGA, -7, 655) (RAARCG, -9, 012) (GAARTC, -5, 549) (CTCTGAG, -7, 815) (RAARCCG, -9, 272) (GAARAG, -5, 649) (CCTTAATG, -7, 455) (RACTCTAC, -9, 272) (ACCTACA, -6, 029) (CCTTAATG, -7, 453) (ACCTTAC, -9, 272) (ACCTACA, -6, 039) (CCTTAATG, -7, 453) (ACCTTCC, -9, 272) (GCARA, -6, 039) (CCCCAA, -7, 655) (AACTAGG, -9, 272) (GCARA, -6, 039) (CACTAT, -7, 655) (AACTAGG, -9, 272) (GCARAC, -7, 659) (CACTAT, -7, 655) (AACTAGG, -9, 272) (GCARAT, -6, 639) (CTCTCC, -7, 853) (ACCTATG, -9, 272) (GCARAT, -7, 473) (CCTAAA, -7, 815) (ACCTATG, -9, 272) (GCARAT, -6, 539) (CTCTCC, -7, 855) (AACCAAT, -9, 172) (GCGARA, -7, 473) (CCTTAAG, -7, 655) (AACCAAT, -9, 12) (GTTTGA, -6, 299) (CTCTCAC, -7, 655) (AACCAAT, -9, 12) (GCTTAA, -7, 135) (CCTTAA, -7, 135) (ACCATATG, -9, 122) (GCTTAA, -7, 653) (GCTTAA, -7, 135) (ACCTATG, -9, 122) (GCTTAA, -7, 13			
(CCAAAA, =6.309) (CTTCAGG, =7.453) (AAACTGGC, =10.122) (GAAAAG, =5.439) (TTCCAAG, =7.813) (AAACTGGC, -9.912) (GAAAAG, =5.429) (CTGTCAG, =7.453) (AAACTGGC, -9.912) (AACGAG, =5.229) (CCTGAAA, -7.815) (ACGCACA, -9.522) (AACGAG, =6.299) (CACTAA, -7.655) (AGCCAA, -9.522) (CATCAA, -6.299) (CACTAA, -7.655) (AGCCAA, -9.222) (GAACG, -7.453) (CTTACG, -7.655) (AACCAGC, -9.222) (CATCAA, -6.539) (CTTACG, -7.655) (AACCAGC, -9.222) (CTTAGC, -7.459) (CTTACG, -7.655) (AACCAGC, -9.912) (ATTACC, -6.559) (CTTACG, -7.655) (AACAACGC, -9.912) (ATTACG, -5.59) (CTTACG, -7.655) (AACAACGC, -9.922) (CTTAGC, -7.479) (TTTACC, -6.755) (AACAACGC, -9.922) (CTTAGA, -7.559) (CATAACA, -7.735) (AACAACAGC, -9.522) (CTTAGA, -7.639) (CCTACAA, -7.735) (AACAACAGC, -9.522) (CTTAGA, -7.639) (CCTACAA, -7.735) (AACAACAGC, -9.822) (CTTAGA, -6.29) (AACTAGAC, -7.633) (AATTAC, -6.29) (CATTAG, -7.642) (AAACAAGC, -7.962) <td></td> <td></td> <td></td>			
(TTCCACG, -7.373) (GCACAC, -8.705) (AAGTCGC, -9.912) (GAATC, -5.549) (TTCCTAG, -8.155) (AGATCGC, -9.272) (GAATG, -5.649) (CTCTAG, -7.455) (AGCCGA, -9.272) (ACCGA, -8.289) (GCTAATG, -7.455) (AGCATGA, -9.542) (GTGAA, -6.299) (GCCCAA, -9.545) (AGCAGA, -9.542) (CATAGT, -5.649) (GTGTATG, -7.455) (AAGAGCC, -9.272) (GAACG, -7.819) (AGCCAA, -7.655) (AAGAGCC, -9.272) (GCAAT, -7.653) (AGCTAG, -7.655) (AAGCAC, -9.272) (GCAAT, -7.473) (CCGGAA, -7.655) (AAGCAG, -9.122) (GCGAT, -7.473) (CCGGAT, -7.655) (AAGCAGA, -9.122) (GCGTAT, -6.589) (TTCCTC, -6.555) (AAGCAGA, -9.122) (GCGTTT, -6.589) (GTTAACG, -7.655) (AAGCAGA, -9.122) (GCTTT, -6.589) (GTTAACG, -7.655) (AAGCAGA, -9.122) (GTTTAG, -6.293) (GTTAACG, -7.655) (AAGCAGA,			
(GAATC, -5.549) (CTGTCAG, -7.815) (GACCAC, -9.912) (GAAAG, -5.229) (CCTGTCAG, -7.425) (ACCCAC, -9.0272) (ACCAG, -5.229) (CCTGTAG, -7.455) (ACCCACA, -9.682) (GTCAAA, -6.209) (CACCAT, -7.655) (ACCCACA, -9.282) (CATCAA, -6.099) (CACCAT, -7.655) (ACCCACA, -9.282) (CATCAA, -6.39) (GTCATC, -7.085) (AAACCGC, -9.282) (CATCAA, -6.539) (GTCATC, -7.085) (AACCGC, -9.222) (GAACC, -7.459) (CCCACAA, -7.813) (ACCCCA, -7.085) (ACCTCAC, -9.912) (GTCAT, -6.539) (GTTATC, -7.085) (ACCTCAC, -9.922) (GCCATT, -6.539) (GTCATC, -7.922) (GCTAT, -6.539) (GTTACG, -7.635) (AACCACA, -9.122) (GTTAAC, -6.735) (AACCACA, -9.222) (GTTAA, -6.29) (GATATC, -7.635) (AACCACA, -9.222) (GCTATA, -6.29) (CCTATAC, -7.735) (AACCACA, -9.822) (GTTAA, -6.29) (GCATATC, -7.735) (AACCACAC, -9.822) (GTTAA, -6.209) (CCATAC, -7.735) (AACCACAC, -9.822) (GTTAA, -6.29) (CCATACA, -7.735) (AACCACAC, -9.822) (GTTAA, -6.209) (CCATACA, -7.735) (AACCACAC, -9.822	(CCAAAA, -6.309)		(AGCCTAGC, -10.612)
(GAARAG, -5.649) (CTGTCAG, -8.195) (AAGCCC, -10.742) (AGTCGA, -6.293) (CCTANTG, -7.425) (ACCTCAG, -9.272) (GTGARA, -6.209) (GCCCAR, -7.85) (AACCCG, -10.852) (CATCAG, -6.139) (CACCCAG, -7.85) (AACCAGC, -3.272) (GAACCG, -7.819) (AACTCAG, -7.055) (AACCAGG, -3.272) (GTGARA, -6.339) (GTGTAGT, -7.055) (AACTCGC, -3.272) (GTGAAC, -6.339) (GTGTAGT, -7.055) (AACTCGC, -3.272) (GTGAAC, -6.339) (GTTCCTC, -7.055) (AACTCGC, -9.9.12) (GCGAAT, -6.339) (GTTAACG, -6.755) (AACTCGC, -9.9.92) (GCGAAT, -6.329) (GTTAACG, -7.025) (AAGCAGC, -1.172) (AATCGG, -7.659) (GTTAACG, -7.075) (AAGCAGC, -1.172) (AATCGG, -7.619) (CCTAAG, -7.075) (AAGCAGC, -1.9.22) (GTTAAC, -6.189) (CCTAAG, -7.155) (AAGCAGC, -1.9.22) (GTTAAC, -6.203) (GTTAACG, -7.625) (AAGTAGC, -1.9.22) (GTTAAC, -7.619) (CCTAAG, -7.151) (AACCAGC, -1.2.22) (GTTAAC, -7.613) (GTTAAC, -7.625) (AAGTAGC, -1.9.22) (GTTAAC, -7.613) (GTTAAC, -7.625) (AACCAGC, -1.9.22) (GTTAC, -7.613)	(TTCACG, -7.379)	(GCAGAAC, -8.705)	(AAACTGGC, -10.122)
(GAARAG, -5.649) (CTGTCAG, -8.195) (AAGCCC, -10.742) (AGTCGA, -6.293) (CCTANTG, -7.425) (ACCTCAG, -9.272) (GTGARA, -6.209) (GCCCAR, -7.85) (AACCCG, -10.852) (CATCAG, -6.139) (CACCCAG, -7.85) (AACCAGC, -3.272) (GAACCG, -7.819) (AACTCAG, -7.055) (AACCAGG, -3.272) (GTGARA, -6.339) (GTGTAGT, -7.055) (AACTCGC, -3.272) (GTGAAC, -6.339) (GTGTAGT, -7.055) (AACTCGC, -3.272) (GTGAAC, -6.339) (GTTCCTC, -7.055) (AACTCGC, -9.9.12) (GCGAAT, -6.339) (GTTAACG, -6.755) (AACTCGC, -9.9.92) (GCGAAT, -6.329) (GTTAACG, -7.025) (AAGCAGC, -1.172) (AATCGG, -7.659) (GTTAACG, -7.075) (AAGCAGC, -1.172) (AATCGG, -7.619) (CCTAAG, -7.075) (AAGCAGC, -1.9.22) (GTTAAC, -6.189) (CCTAAG, -7.155) (AAGCAGC, -1.9.22) (GTTAAC, -6.203) (GTTAACG, -7.625) (AAGTAGC, -1.9.22) (GTTAAC, -7.619) (CCTAAG, -7.151) (AACCAGC, -1.2.22) (GTTAAC, -7.613) (GTTAAC, -7.625) (AAGTAGC, -1.9.22) (GTTAAC, -7.613) (GTTAAC, -7.625) (AACCAGC, -1.9.22) (GTTAC, -7.613)	(GAATTC, -5.549)	(TTCCAAG, -7.815)	(AGATGCAC, -9.912)
(AATCAG, -9.289) (CCTCAAA, -7.815) (ACCTCAG, -9.272) (AGGGAD, -9.289) (CCTCAAC, -7.655) (AGCCAGG, -10.852) (CATCAA, -6.099) (CACCTAC, -9.185) (AAACCAGG, -9.282) (CATCAA, -7.319) (CATCAAC, -9.545) (AAACCAG, -9.282) (CATCACA, -7.189) (CAGCTACT, -7.655) (AAACCAG, -9.282) (CATCAC, -7.479) (CCGTGTACT, -7.695) (AAACCAG, -9.272) (GTCGT, -7.369) (CCGTACA, -7.679) (ACGTACT, -8.620) (GTCGT, -7.369) (CCGTGTAC, -7.695) (AACCAG, -9.281) (GCGATT, -6.583) (CTTGTCT, -7.695) (ACGTACT, -9.902) (GCGAG, -7.479) (CTTGAC, -7.623) (AACCAG, -1.1.472) (AATCGG, -6.089) (CGTACAG, -7.615) (AACCAGC, -1.1.472) (AATTGG, -6.203) (CGTTACAG, -7.615) (AACCAGC, -1.222) (CGTTT, -6.623) (CACATAG, -7.615) (AACCAGC, -9.822) (GCTGAG, -7.619) (CGTACAG, -7.615) (AACCAGC, -1.22) (GCTGAG, -7.619) (CGTACAG, -7.615) (AACCAGC, -9.822) (GCTTT, -6.239) (GTTACAG, -7.615) (AACCAGC, -9.822) (GTTAG, -7.619) (CGTATC, -7.315) (AACCAGC, -9.952) (GTTAG, -7.6193)		(CTGTCAG, -8.195)	
(AGCCRAG, -8.289) (CCTRATG, -7.425) (ARCACRAG, -9.682) (CGTCAA, -6.299) (AGCCCAA, -9.545) (ARACAGG, -9.222) (CATAGT, -5.649) (AGCCCAA, -9.545) (ARAAGCG, -9.222) (CATAGT, -7.639) (AGCTCAG, -7.615) (ARACAGG, -9.272) (CATAGT, -7.639) (AGCTATG, -7.615) (AGCTATGT, -8.632) (CTGAAC, -7.479) (CCCCAAA, -7.815) (AGCTATGT, -9.122) (GCAATT, -6.589) (CTTCCTC, -7.625) (AAGCTAGT, -9.012) (GCGATT, -6.539) (CGTTAAG, -7.625) (AAGCAGT, -9.02) (GGTTAT, -6.539) (CGTTAAG, -7.625) (AAGCAGT, -9.02) (GCTAAT, -6.209) (CCCTAAG, -7.625) (AAGCTAGT, -9.922) (GCTTAT, -6.239) (CGTTAGG, -7.625) (AAGTAGC, -1.9.62) (GCTATT, -6.239) (CGTAGG, -7.625) (AAGTAGC, -1.9.62) (GCTTAT, -6.239) (CGTATG, -7.151) (AAGCAGA, -8.643) (GTTAGT, -7.619) (CACATAG, -7.625) (AAGCTAGC, -10.122) (GTTAGT, -6.239) (CGTTAGC, -7.151) (AAGCAGC, -9.962) (GTTAGT, -6.373) (GTTAGAG, -7.151) (AAGCTAGC, -10.122) (GTTAGT, -6.139) (GTTGAG, -7.7			
(GTGARA, -6.209) (CACCTAT, -7.655) (ARACCTGG, -10.852) (CATCAR, -6.394) (GTTACG, -7.185) (ARACCG, -9.282) (CATCAR, -7.539) (CATCAR, -7.535) (ARACGG, -9.723) (GTGGATC, -7.359) (CACCTAT, -7.655) (ARACGG, -9.723) (GTGGATC, -7.359) (CCACCTAR, -7.655) (ARACGC, -9.912) (GTCGT, -6.539) (CCTCGTC, -7.655) (ARACCTG, -9.912) (GCACT, -6.539) (GTTACC, -6.755) (ARACCAT, -9.912) (GCACT, -6.539) (GTTACC, -6.755) (ARACCAT, -9.912) (GCACT, -6.839) (CCACTAG, -7.553) (ARACCAT, -9.912) (GTTAG, -5.369) (CCACTAG, -7.613) (ARACCAT, -9.922) (GTTAG, -6.089) (CACATAG, -7.053) (AGTTAGT, -6.223) (GTTAG, -7.161) (CACATAG, -7.613) (AGTTAGT, -7.922) (GTTAG, -7.613) (CACATAG, -7.623) (AGTTAGT, -7.922) (GTTAGT, -6.239) (GTTCAG, -7.131) (AAGCGAG, -9.842) (GTTCAG, -7.633) (GTTCAG, -7.131) (AAGCGAG, -9.842) (GTTAGT, -6.879) (GATTAG, -7.515) (AAGCGAG, -9.9572) (GTTCCC, -7.339) (GTTCAG, -7.355)			
(CATCAA, -6.099) (ABCCCAA, -9.545) (ABAAGCAC, -9.282) (CATAGT, -5.649) (GATACG, -7.895) (ABACGAG, -9.722) (CTCAAC, -6.539) (GATACG, -7.895) (ABACGAG, -9.722) (ATCGAC, -7.479) (CCACAA, -7.815) (ACCTTGC, -9.912) (ATCGAC, -7.479) (CTCATC, -7.895) (ABACTCG, -9.912) (GCATAT, -6.599) (TTCTCC, -8.053) (ABACTCG, -9.102) (CGTCAG, -7.559) (CTATACC, -6.753) (ABACTCG, -9.122) (GTTAG, -5.369) (CTTACC, -7.655) (AAACAGG, -11.472) (AATACG, -6.089) (CATACA, -7.155) (AATACC, -7.852) (GCTGAG, -7.619) (CTTAC, -7.655) (AATACC, -7.852) (GCTGAG, -7.619) (CTTACAC, -7.655) (AAATACC, -7.952) (GCATTT, -6.039) (GTATAC, -6.755) (AAACAGC, -9.862) (GTTCAT, -6.879) (GGATATC, -7.155) (AACGAA, -9.862) (GTTCAT, -6.79) (GTATAC, -6.755) (AAACGAC, -8.72) (ATTCCC, -7.349) (GTATAC, -7.255) (AAACGAC, -9.732) (GTCAT, -6.739) (GTATAC, -7.255) (AAACGAC, -9.732) (GTCAT, -7.353) (GTTCAC, -7.255) (AAACG			
ICATAGT, -5.649 (GTTACTG, -7.185) (ATAGAGG, -9.272) IGMACG, -7.819 (CAGCAG, -7.695) (AAGCAGG, -9.722) ICTCGAC, -7.369 (CCAGAAA, -7.815) (RAGTAGT, -8.682) IATCGLAC, -7.479 (CTTGTCT, -7.853) (RAGTAGT, -8.172) ICGCAATT, -6.329 (TTTGTCT, -7.853) (RAGCCAT, -9.912) ICGTTAG, -7.559 (GTTAGG, -7.555) (RAGCCAT, -9.122) ICGTTAG, -6.329 (TTTACG, -7.625) (RAGAGG, -9.152) ICGTTAG, -5.369 (CCTAAGA, -7.155) (RAGCAGG, -1.122) ICGTTAG, -6.089 (CCATAG, -7.075) (RACTATGT, -9.222) ICGTGAG, -7.619 (CCTTACT, -7.365) (GAATAACC, -7.962) ICGTAAG, -6.209 (CCATAG, -7.675) (RAGCAGA, -9.862) ICGTGAA, -6.209 (GGAATTC, -6.775) (RAGCAGA, -9.862) ICGTCAG, -7.619 (CCTTAG, -7.55) (RAGCAGA, -9.862) ICGTCAG, -7.629 (GGAATC, -7.35) (RAGCAGA, -9.862) ICGTCAG, -7.639 (GTTCAG, -7.55) (RAGCAGA, -8.822) ICTTCAG, -6.379 (GTCAGA, -7.025) (RAGCGG, -1.10.22) ICTCAG, -7.639 (GTTAGA, -7.55) (RAGCGGA, -1.10.22) ICTTCAG, -7.639 (CTCAGA, -7.255)			
(GAACGG, -7.819) (AAGTCAG, -7.695) (GAACAGGG, -9.722) (GTCACA, -6.539) (GCCAGAA, -7.815) (ACATCTGC, -9.912) (ATCCAC, -7.479) (CCCAGAA, -7.815) (ACATCTGC, -9.912) (GCCATT, -6.589) (TTCCTC, -6.755) (AAGACAG, -9.912) (GCCATT, -6.592) (GTATACC, -6.755) (AAGACAG, -9.912) (GTCCAC, -7.559) (GTATACC, -6.755) (AAGACAG, -9.112) (GTCAGA, -7.539) (GTATACC, -6.755) (AAGACAG, -9.1147) (AATACG, -6.089) (CCATAGA, -7.715) (AAGTCAG, -7.625) (AATACG, -7.619) (CCTAGA, -6.209) (GCATAC, -7.625) (AACAGAC, -10.122) (GTCAA, -6.209) (GGATATC, -7.35) (ACCTAC, -7.625) (AAGCGAA, -9.862) (GTCAA, -6.209) (GGATATC, -7.35) (ACCTAC, -7.35) (ACCTAC, -7.342) (GTCAAT, -6.089) (GAATATC, -7.35) (AACCGAC, -9.342) (TTCAC, -7.625) (AAGCGAA, -9.202) (GTTAGA, -8.202) (TTCAC, -7.35) (GTTACC, -7.35) (AATCCG, -8.32) (CTCAGA, -7.625) (AAGCGACT, -10.352) (AATCCGG, -11.102) (GTTAGA, -7.626) (TTAGAC, -7.255) (AATCCGG, -11.122			
(CTGRAC, -6.539) (CTGTATC, -7.085) (AGCTATT, -8.482) (GTTCGC, -7.479) (CTGTGTC, -7.685) (AAGTTGC, -9.12) (GCGATT, -6.589) (TTCCTCC, -8.505) (AAGTCGC, -9.12) (GTGCAG, -7.559) (GTATACC, -6.755) (AAGAGAGG, -9.152) (GTTAG, -5.369) (CGTAGA, -7.15) (AAGCGAG, -9.152) (GTTAG, -5.369) (CGTAGA, -7.15) (AAGCGAG, -9.222) (GCTTAG, -7.619) (CGCATAG, -7.655) (AGATTACC, -6.922) (GTTGAG, -6.039) (CGTAGA, -7.745) (AAGCAGAC, -9.862) (GTGTAA, -6.29) (CGAATAT, -7.365) (AAGCAGAC, -9.862) (GTGTAA, -6.039) (GGATTAC, -6.775) (AAGCAGAC, -9.862) (GTGTAA, -6.039) (GTTCAAC, -7.625) (AAGCAGAC, -8.422) (GTGGAT, -6.39) (GGATTAC, -7.315) (AAGCAGAC, -9.572) (GTCAA, -7.619) (GTTCAAC, -7.355) (AAGCAGC, -0.352) (TTCTCC, -6.739) (GTGTAAG, -7.515) (AAGCAGC, -0.352) (GTCAA, -7.619) (GTTCAC, -7.365) (AAGCACC, -0.352) (GTCAA, -7.619) (GTTCAC, -7.55) (AAGCACC, -0.352) (GTCAA, -7.5929) (GTCAGA, -7.515) (AAGCACC, -0.352) (GTCAA, -7.5929) (GTCA	(CATAGT, -5.649)		
(CTTCGT, -7.36) (CCAGAA, -7.815) (ACACTGC, -9.912) (ATGCAC, -7.479) (CTTCTC, -7.655) (AAGTCCC, -9.922) (GCGTAT, -6.589) (TTCCTCC, -8.505) (AAGTCCG, -9.902) (GTTAG, -7.559) (GTTAACC, -6.755) (AAGCCAT, -9.122) (GTTAG, -5.369) (GTTAACC, -7.625) (AAGCCAT, -9.222) (GTTTAG, -6.089) (CACATG, -7.075) (ACTTACC, -8.922) (GTTTGT, -6.629) (CGAAAG, -7.755) (AATTACC, -7.625) (GTTCAA, -7.629) (CGTAAC, -7.625) (AAACAGC, -8.222) (GTTCAA, -6.09) (GCAAAG, -7.745) (AAACAGC, -8.822) (GTCAA, -6.09) (GCAAAG, -7.625) (AAACAGC, -9.622) (GTCAT, -6.089) (GGAATC, -7.315) (AAGCGAC, -9.342) (ATCCGT, -8.149) (ACCCTAC, -8.415) (AATCCACC, -9.342) (TTCTCC, -6.739) (GTTCAT, -7.365) (AAGCACC, -9.572) (CTTAGA, -6.379) (GTTCAC, -7.625) (AAACGACC, -9.572) (GTAAGC, -7.59) (GTTCAC, -7.625) (AAACGACC, -9.572) (GTCAG, -6.379) (GTTCAC, -7.625) (AAGCACCA, -10.352) (GTCGAC, -7.599) (GTTCAC, -7.625) (AA	(GAACCG, -7.819)	(AAGTCAG, -7.695)	(AAACAGGG, -9.722)
(CTTCGT, -7.36) (CCAGAA, -7.815) (ACACTGC, -9.912) (ATGCAC, -7.479) (CTTCTC, -7.655) (AAGTCCC, -9.922) (GCGTAT, -6.589) (TTCCTCC, -8.505) (AAGTCCG, -9.902) (GTTAG, -7.559) (GTTAACC, -6.755) (AAGCCAT, -9.122) (GTTAG, -5.369) (GTTAACC, -7.625) (AAGCCAT, -9.222) (GTTTAG, -6.089) (CACATG, -7.075) (ACTTACC, -8.922) (GTTTGT, -6.629) (CGAAAG, -7.755) (AATTACC, -7.625) (GTTCAA, -7.629) (CGTAAC, -7.625) (AAACAGC, -8.222) (GTTCAA, -6.09) (GCAAAG, -7.745) (AAACAGC, -8.822) (GTCAA, -6.09) (GCAAAG, -7.625) (AAACAGC, -9.622) (GTCAT, -6.089) (GGAATC, -7.315) (AAGCGAC, -9.342) (ATCCGT, -8.149) (ACCCTAC, -8.415) (AATCCACC, -9.342) (TTCTCC, -6.739) (GTTCAT, -7.365) (AAGCACC, -9.572) (CTTAGA, -6.379) (GTTCAC, -7.625) (AAACGACC, -9.572) (GTAAGC, -7.59) (GTTCAC, -7.625) (AAACGACC, -9.572) (GTCAG, -6.379) (GTTCAC, -7.625) (AAGCACCA, -10.352) (GTCGAC, -7.599) (GTTCAC, -7.625) (AA	(CTGAAC, -6.539)	(GTGTATC, -7.085)	(AGGTAGTT, -8.682)
(ATGCAC, -7, 479) (CTTTTT, -7, 655) (AAGCGTAT, -9, 172) (GCATT, -6, 929) (GTTACC, -6, 755) (AAGCCAT, -9, 012) (GTCAG, -7, 559) (GTTACG, -7, 625) (AAGAGGG, -9, 152) (GTTTAG, -5, 369) (CGTAGA, -7, 715) (AACCGAG, -9, 122) (GTTTAG, -5, 609) (GCATAG, -7, 755) (AACGTACT, -9, 222) (GCTTA, -6, 619) (CCTTACT, -7, 365) (GATTAGC, -7, 652) (GTTCA, -6, 619) (CCTTAC, -7, 655) (AAGCGAG, -7, 662) (GGTTCT, -6, 639) (GTTCAG, -7, 625) (AAGCGGAC, -9, 862) (GGTTCT, -6, 639) (GGTATC, -7, 315) (AAGCGGAC, -9, 862) (GTTCAG, -7, 619) (GGTATC, -7, 315) (AAGCGGAC, -1, 612) (TTCCC, -7, 6, 73) (GTTCAG, -7, 615) (AAGCGGAC, -9, 862) (GGTTCT, -6, 673) (GTTTACG, -7, 315) (AAGCGCG, -1, 102) (TTCCC, -7, 639) (GCTTCAG, -7, 315) (AAATCGCG, -3, 522) (CTTAGA, -7, 593) (CTACAG, -7, 625) (AACCGAG, -8, 802) (GAGGG, -7, 673) (GTTTCAC, -7, 615) (AAGCGAC, -10, 012) (CTTCAG, -7, 529) (CATCGAG, -7, 625) (AACCGAG, -1, 10, 012) (GTTAGA, -7, 593) (CTACAG, -7, 755) (AACGCAG, -10, 022) <td></td> <td>· · ·</td> <td></td>		· · ·	
(CGCATT, -6.589) (TTCCTCC, -8.505) (AAACTCCG, -9.902) (CGCATT, -6.923) (GTTACC, -6.755) (AAGACAAC, -9.012) (GTCGAG, -7.559) (GTTACC, -6.755) (AAGACAAC, -9.152) (GTTTTA, -5.369) (CGCAACA, -7.075) (AACTCGG, -1.472) (AATCCG, -6.089) (CGCAACA, -7.075) (ACTTACC, -8.222) (GTTACA, -7.619) (CGTTACA, -7.655) (AATACC, -8.922) (GTTCAA, -6.209) (GTACAC, -7.625) (AAACCGC, -10.122) (GGTTCT, -6.039) (GGTAATC, -6.735) (AAGAGAA, -8.822) (GTTCAT, -6.079) (GGTATC, -6.735) (AAGCGACC, -9.62) (GTTCC, -6.739) (GTTCAC, -7.315) (ACGTTACC, -9.322) (TTCTCC, -7.049) (GTTCAC, -7.625) (AAGCGACC, -9.572) (CTTACA, -6.379) (GTTCAC, -7.625) (AAGCGACC, -1.012) (GTTAAC, -6.379) (GTTCAC, -7.625) (AAGCGACC, -1.0352) (TTGTCC, -7.049) (GTTCAC, -7.625) (AAGCGACC, -1.0352) (GTAAA, -6.119) (CTACAAG, -7.025) (ACGTACA, -9.622) (GTAAA, -6.139) (GTTACC, -7.585) (ACGTACA, -9.622) (GTTACC, -7.599) (TTGACC, -7.585) (AACGCAC, -9.572) (GTTACC, -7.599) <t< td=""><td></td><td></td><td></td></t<>			
CGGGTAT, -6.229) (GTAACC, -6.755) (AGAGACG, -9.152) (GTTAG, -5.369) (GTAACG, -7.625) (AAGAGAG, -9.152) (AATACG, -6.089) (CACATAG, -7.075) (AATTACGC, -8.922) (GCTGAG, -7.519) (CACTTAG, -7.655) (AATTACC, -8.922) (GCTGAG, -7.619) (CCTTACT, -7.355) (GATAACC, -7.962) (GACTTT, -6.039) (GGTAAC, -7.625) (AACAGCG, -10.122) (GACTTT, -6.639) (GGTATC, -6.775) (AGAGGAA, -8.822) (GTGAAT, -6.089) (GGATATC, -6.775) (AGAGGAA, -8.822) (GTGAAT, -6.089) (GGATATC, -7.315) (AACAGCG, -9.572) (ATTCCT, -6.739) (GTCATC, -7.515) (AAAGACC, -9.572) (CTTCAT, -5.929) (CATCGAA, -8.415) (AACGACT, -10.352) (CTTGAG, -7.592) (CATGCAA, -7.075) (AAGCACT, -10.352) (GTACGG, -7.590) (CTTACAC, -7.975) (AAGCACT, -10.022) (GTACGG, -7.590) (CTTACAC, -7.055) (AACGACAC, -9.622) (GTACGG, -7.590) (CTACAG, -7.055) (AACGCAC, -9.622) (CTTGAC, -7.599) (CATCAC, -7.975) (AAGCACT, -10.022) (GTACGG, -7.590) (CTACAG, -7.055) (ACGTACAT, -9.222) (GTACGG, -7.599)			
(GTCGAG, -7, 559) (GTTAGC, -7, 625) (AAGCAGC, -9, 152) (GTTAG, -5, 369) (CGTAGA, -7, 715) (AATCCGCG, -11, 472) (ATAGC, -6, 089) (CACATAG, -7, 075) (ACTTAGCT, -9, 222) (CGTTTT, -6, 629) (CACATAG, -7, 355) (GATTAGCT, -9, 222) (GTTGAG, -7, 612) (CCTTACT, -7, 355) (GATTAGCT, -9, 322) (GTCAG, -7, 612) (CACATAG, -7, 625) (AACCAGC, -9, 682) (GGTTTT, -6, 087) (GGATATC, -6, 775) (AGCGAGC, -9, 682) (GTTAT, -6, 089) (GGATATC, -6, 775) (AGCGAGC, -9, 342) (ATTCTC, -6, 739) (GTGTGAC, -7, 625) (AACCAGC, -9, 572) (CTTCAC, -7, 049) (GTGTGAC, -7, 055) (AACCGAG, -8, 202) (TTCTCC, -7, 049) (GTTGACC, -7, 055) (AACTGAGG, -11, 102) (GTAAG, -6, 057) (GATTAGC, -10, 352) (CACGAGC, -11, 472) (GTAAGA, -6, 119) (CTTCACA, -7, 055) (AATCGCGG, -11, 472) (GTAAGA, -6, 119) (CTTCACA, -7, 055) (AATCGCGG, -11, 472) (GTAAGA, -7, 049) (GTGAAC, -7, 055) (AACTGAG, -11, 472) (GTAAGA, -7, 059) (GTCAAC, -7, 055) (ACTATAC, -9, 052) (GTAGG, -7, 1049) (GTCAAC, -7, 055) (ACGTACA, -10, 122)			
(GTTTAG, -5.369) (CGTAGAA, -7.715) (AATCCGCG, -11.472) (AATACG, -6.089) (CACATAG, -7.075) (AGCTAGCT, -8.222) (GCTGAG, -7.619) (CCTTACT, -7.365) (AGTTAGCT, -8.921) (GTTAG, -6.039) (CGTAAC, -7.455) (AACCAGCG, -10.122) (GATCTA, -6.039) (GCTAAC, -7.455) (AACCAGCG, -10.122) (GATTT, -6.039) (GGATATC, -7.355) (AACCAGAC, -9.862) (GGTGAT, -6.079) (GGATATC, -7.315) (AACCGACG, -9.342) (GTGGAT, -6.089) (GGAATC, -7.355) (AAGCAGAC, -9.572) (GTCAC, -6.739) (GTTGATG, -7.355) (AAGCAGC, -10.352) (TTCTCC, -6.739) (GTTCAC, -7.655) (AAACCAC, -8.202) (GTAGAG, -7.059) (GTTCAC, -7.955) (AAATCCAC, -8.802) (GGAGG, -7.059) (GTTCAC, -7.955) (AATCCAC, -7.962) (GTACG, -7.539) (GTTACAC, -7.955) (AATCCAC, -7.962) (GTAGG, -7.539) (GTCAATC, -7.355) (AGCATAT, -9.022) (GTAGG, -7.539) (GTCAAT, -7.355) (AGCACTT, -10.012) (GTACG, -7.539) (CTCAATC, -6.615) (ACGACAT, -9.222) (GTACG, -7.539) (GTCAAT, -7.355) (AGCACATT, -9.122) (GTACT, -5.699) <			
(AATACG, -6.089) (CACATAG, -7.075) (ACCTATCT, -9.222) (CGTTT, -6.629) (AAGTGAG, -7.055) (AGTTAGC, -8.922) (GCTTAA, -6.209) (CCTATAC, -7.365) (GATAACC, -7.962) (GATTAT, -6.039) (CCTATAC, -7.525) (AACAGAC, -9.862) (GGTTCT, -6.879) (GGAATC, -7.155) (AACAGAC, -9.862) (GGTATA, -6.039) (GGAATC, -7.135) (AAGAGAA, -8.822) (GTGAA, -6.139) (GCTATAC, -7.135) (AAGAGAA, -9.572) (ATGCG, -8.149) (ACCGTAG, -8.695) (ACGTAGC, -9.572) (ATGCG, -8.149) (ACCGTAG, -8.695) (AAGCACC, -9.572) (TTGCC, -7.049) (GTTCAC, -7.350) (AAAGCACCT, -10.352) (CTGAG, -6.379) (GTTACC, -7.355) (AAACCAC, -8.802) (GAGAGG, -7.069) (TTGACC, -7.975) (AAACCAC, -8.802) (GAGAGG, -7.069) (TTACAC, -7.955) (AACCGACG, -10.012) (GCTAAA, -6.119) (CTACAG, -7.055) (AACCGACG, -10.02) (CATATG, -5.309) (CTACAT, -7.955) (ACGTACT, -9.22) (AGGGG, -7.669) (GTATAC, -7.955) (ACGTACC, -7.962) (CACTAT, -5.579) (GTACAT, -7.955) (ACGTACC, -10.22) (CACTAT, -5.579) (GTAC		· · ·	
(CGTTTT, -6.629) (AACTAGA, -7.695) (AGTTACT, -8.922) (GCTGAG, -7.619) (CCTACT, -7.365) (GATAACC, -7.962) (GATTTGA, -6.039) (CGTAAC, -7.455) (AAACAGG, -10.122) (GATTT, -6.039) (GGTATC, -6.775) (AAGCAGAC, -9.862) (GTGAAT, -6.089) (GGAATTC, -7.315) (ACGTGAC, -9.342) (ATGCGT, 8.149) (ACCGTAG, -7.315) (AAGCGAA, -8.822) (TTCTCC, -6.739) (GTGTATG, -7.315) (AAGCGAC, -9.572) (CTTCAC, -5.929) (CATGCAC, -7.355) (AAACCGG, -1.1.12) (TTCTCC, -7.049) (GTTGATC, -7.355) (AAATCGAG, -8.202) (TTGAG, -6.379) (GTTGATC, -7.355) (AAATCGAG, -8.202) (GTAATG, -5.339) (CTTCACA, -7.625) (AAATCGAG, -8.402) (GTAATG, -5.339) (CTACAAC, -7.025) (AACGGAC, -10.012) (GCATAT, -5.339) (CTACAAT, -7.595) (ACGTACT, -9.222) (ATGGG, -7.869) (GTATGC, -7.555) (AAGCGACTT, -9.222) (ATGGG, -7.599) (GTCAAT, -7.955) (ACGTACT, -9.22) (CATTT, -6.189) (GTATGC, -7.955) (ACGTACT, -9.22) (CATTT, -5.379) (ACCTCC, -7.355) (AAGGACCT, -9.22) (ATGGG, -7.599) ((GTTTAG, -5.369)	(CGTAGAA, -7.715)	
(GCTGAG, -7, 619) (CCTTACT, -7, 365) (GATAACC, -7, 962) (GATTT, -6, 039) (CGTAAA, C, -7, 745) (AAACAGC, -9, 862) (GCTTT, -6, 039) (GGATATC, -7, 715) (AAGCAGAC, -9, 822) (GTGTAA, -6, 089) (GGATATC, -7, 715) (AAGCAGAC, -9, 342) (ATGCGT, -8, 149) (ACCGTAG, -8, 695) (AGCGTACC, -9, 342) (ATGCGT, -6, 739) (GTGATG, -7, 715) (AAGGACC, -9, 572) (CTTCTC, -6, 739) (GTGATC, -7, 365) (AAGGACC, -9, 572) (CTTGAG, -6, 379) (GTTGATC, -7, 365) (AAGCACG, -8, 202) (TTGTCC, -7, 049) (GTGACC, -7, 365) (AAGCAGA, -8, 802) (GAAGG, -7, 069) (TTGAACC, -7, 375) (AATCCGG, -8, 802) (GCTAAA, -6, 119) (CTGACAC, -7, 575) (AATCCGG, -11, 472) (GTTACC, -7, 539) (CTACAA, -7, 795) (AATCCGG, -7, 962) (CTATAC, -5, 309) (CTATCC, -6, 615) (AACGACAA, -10, 62) (ATTAC, -5, 593) (GTATATC, -7, 355) (AGGTACAT, -9, 962) (ATGGG, -7, 619) (GTATATC, -7, 365) (AGCACACT, -9, 552) (ATTAC, -5, 369) (GTATATC, -7, 365) (AGCACACT, -9, 62) (CTATAC, -5, 379) (GTGTAT, -7, 905) (ACCTACT, -8, 972) <td>(AATACG, -6.089)</td> <td>(CACATAG, -7.075)</td> <td>(ACGTATGT, -9.222)</td>	(AATACG, -6.089)	(CACATAG, -7.075)	(ACGTATGT, -9.222)
(GTTGAA, -6.209) (CGAARAG, -7.745) (AAACAGGC, -10.122) (GGTTT, -6.039) (GTCAAC, -7.625) (AAGCAGAC, -9.862) (GGTTCT, -6.879) (GGAATTC, -6.775) (AAGGAAA, -8.822) (GTGAAT, -6.089) (GGAATC, -7.315) (ACTGTAC, -9.342) (ATCCGT, -8.149) (ACCGTAG, -8.695) (AAGCAGC, -9.572) (TTCTCC, -6.739) (GTTGATC, -7.315) (AAAGACC, -9.572) (CTTGAG, -6.379) (GTTGATC, -7.365) (AAGCACCT, -10.352) (CTTGAG, -6.379) (GTTCACC, -7.255) (AAGCGGG, -7.069) (GTACGG, -7.539) (CTAGAC, -7.025) (AAGCGGA, -10.012) (GATATG, -5.309) (CTAGAT, -6.875) (GATCACT, -10.012) (GTATAG, -7.59) (CTAGAT, -7.355) (ACGTACAT, -9.22) (CATATG, -5.309) (CTAGAT, -7.355) (ACGTACAT, -9.22) (ATGCGG, -7.59) (GTAAGT, -7.355) (AGGACATT, -9.012) (CATCT, -6.189) (GTATAGC, -7.355) (AGGACATT, -9.012) (CATCAT, -5.39) (CTCAGAT, -7.355) (AGGACATT, -9.012) (CATCT, -6.189) (GTATAGC, -7.355) (AGGACATT, -9.012) (CATCAT, -5.39) (GTATAGC, -7.355) (AGGACATT, -9.012) (CATCT, -6.189) <	(CGTTTT, -6.629)	(AAGTGAG, -7.695)	(AGTTAGCT, -8.922)
(GTTGAA, -6.209) (CGAARAG, -7.745) (AAACAGGC, -10.122) (GGTTT, -6.039) (GTCAAC, -7.625) (AAGCAGAC, -9.862) (GGTTCT, -6.879) (GGAATTC, -6.775) (AAGGAAA, -8.822) (GTGAAT, -6.089) (GGAATC, -7.315) (ACTGTAC, -9.342) (ATCCGT, -8.149) (ACCGTAG, -8.695) (AAGCAGC, -9.572) (TTCTCC, -6.739) (GTTGATC, -7.315) (AAAGACC, -9.572) (CTTGAG, -6.379) (GTTGATC, -7.365) (AAGCACCT, -10.352) (CTTGAG, -6.379) (GTTCACC, -7.255) (AAGCGGG, -7.069) (GTACGG, -7.539) (CTAGAC, -7.025) (AAGCGGA, -10.012) (GATATG, -5.309) (CTAGAT, -6.875) (GATCACT, -10.012) (GTATAG, -7.59) (CTAGAT, -7.355) (ACGTACAT, -9.22) (CATATG, -5.309) (CTAGAT, -7.355) (ACGTACAT, -9.22) (ATGCGG, -7.59) (GTAAGT, -7.355) (AGGACATT, -9.012) (CATCT, -6.189) (GTATAGC, -7.355) (AGGACATT, -9.012) (CATCAT, -5.39) (CTCAGAT, -7.355) (AGGACATT, -9.012) (CATCT, -6.189) (GTATAGC, -7.355) (AGGACATT, -9.012) (CATCAT, -5.39) (GTATAGC, -7.355) (AGGACATT, -9.012) (CATCT, -6.189) <	(GCTGAG, -7.619)	(CCTTACT, -7.365)	(GAATAACC, -7.962)
(GACTTT, -6.039) (GTCCAC, -7.625) (AAGCAGAC, -9.862) (GTGAT, -6.089) (GGATTC, -7.315) (ACGTACA, -8.22) (ATCCGT, -8.149) (ACCGTAG, -7.515) (ACCTACC, -9.342) (ATCCGT, -8.149) (ACCGTAG, -7.515) (ACCTACC, -9.572) (CTTCAT, -5.929) (CATGCAA, -8.415) (GATATAGC, -8.202) (TTCTCC, -7.049) (GTTGATC, -7.365) (AAGCGAC, -10.352) (CTGAA, -7.059) (GTTCACC, -7.2755) (AACCGACG, -10.012) (GACAGG, -7.069) (TTCAACA, -7.975) (AAGCGACC, -10.062) (GTAAA, -6.119) (CTACAAG, -7.025) (AAGCGAAC, -10.062) (GTAAA, -6.19) (CTACAAG, -7.025) (ACGTACT, -9.222) (GTACG, -7.599) (GTAATCC, -7.355) (ACGTACT, -9.222) (ATGGGG, -7.799) (GTCACT, -7.355) (ACGTACT, -9.222) (CATTT, -6.189) (GTATTGC, -7.355) (ACCTACT, -9.22) (CATACG, -7.597) (CATCACT, -9.355) (ACCTATCT, -8.732) (CTTAC, -5.369) (TTGTCC, -7.955) (ACCTACT, -9.552) (CTATAC, -5.397) (CCTATC, -7.955) (ACCTACT, -7.962) (CATACC, -7.779) (GTCACA, -7.975) (AGGTATC, -7.962) (CTACG, -7.779)			
(GGTTGT, -6.879) (GGATATC, -6.775) (AGAGAAA, -8.822) (GTGAAT, -6.089) (GGATTC, -7.315) (ACGTGACC, -9.342) (ATGCAC, -8.149) (ACCGTAG, -8.695) (AGCGTAGC, -11.102) (TTCTCC, -6.739) (GTGATG, -7.515) (AAAGGACC, -9.572) (CTTCAT, -5.929) (CATGCAA, -8.415) (GAATCACC, -10.352) (CTTGAG, -6.379) (GTTCAC, -7.655) (AAACCACC, -10.102) (GAACG, -7.049) (GTTCAC, -7.625) (AATCCGAG, -8.802) (GAACG, -7.059) (TTCACAC, -7.625) (AATCCGAG, -11.012) (GTACCG, -7.539) (CTACAAC, -7.025) (ACGTACAT, -10.012) (GCTAAA, -6.119) (CTAGAT, -7.055) (ACGTACAT, -9.222) (TTGCAC, -7.599) (GTCAGAT, -7.035) (AGGACATT, -9.022) (TTGCGG, -7.869) (GTTATC, -7.385) (AGGCAAT, -9.222) (CATCAT, -5.979) (ACCTGCT, -7.385) (AGGACATT, -9.022) (CATCAT, -5.979) (ACCTGCT, -7.385) (AGGACATT, -9.022) (CATCAT, -5.979) (CTGTAA, -7.955) (ACCTATGT, -7.385) (ACGTATC, -7.382) (GATACG, -7.379) (TTGTCC, -7.385) (ACCTATC, -7.282) (AGGAAAC, -9.222) (ATCACG, -7.379) (CAAAA, -8.215) (AACTA			
(GTGRAT, -6.089) (GGAATTC, -7.315) (ACGTACC, -9.342) (ATGCGT, -8.149) (ACGTAG, -8.635) (AAGGCTAC, -11.102) (TTCCC, -6.739) (GTGATG, -7.515) (AAAGGACC, -8.202) (TTGCTC, -7.049) (GTGATC, -7.365) (AAAGCACC, -8.202) (TTGAG, -6.379) (GTTGACC, -7.365) (AAATCCAG, -8.202) (GTAGAG, -7.059) (TTGAACC, -7.975) (AATCCGG, -10.352) (GAAA, -6.119) (CTAGATC, -6.615) (AACGGAAC, -10.062) (GTAAA, -6.119) (CTAGATC, -6.615) (AACGTACC, -7.952) (GTAGCG, -7.593) (GTAGCAT, -7.595) (ACGTACT, -9.222) (ATGGGG, -7.869) (GTATGC, -7.035) (AGGTACT, -9.222) (ATGGGG, -7.79) (GTATGC, -7.955) (ACGTACT, -9.252) (AGGTAGT, -6.189) (GTATGC, -7.955) (ACGTACT, -9.252) (CAGTTT, -6.189) (GTCACT, -7.905) (ACGTACT, -8.732) (CAGTAT, -5.979) (ACCTGCT, -9.425) (AGGAAC, -7.962) (AGGTCG, -7.79) (GTCACA, -7.975) (ACCTACT, -8.732) (CATACG, -7.79) (GTCACA, -7.905) (ACCTACT, -7.962) (ATGCGG, -7.79) (GTCACA, -7.975) (AGCTACT, -7.962) (ATCGCG, -8.539) (CTG			
(ATGCGT, -8.149) (ACCGTAG, -8.695) (ACCGTAGC, -11.102) (TTCTCC, -6.739) (GTTGATG, -7.515) (AAGCGTAGC, -9.572) (CTTCAT, -5.929) (CATGCAA, -8.415) (GATTAGC, -8.202) (TTGTCC, -7.049) (GTTGATC, -7.365) (AAATCGAC, -8.802) (GAGAGG, -7.059) (TTGAACC, -7.975) (AAATCGAC, -8.802) (GACAGG, -7.059) (TTGAACC, -7.975) (AATCGGA, -11.472) (GTACCG, -7.539) (CTACAAC, -7.025) (AACGGACC, -10.062) (GTACCG, -7.539) (CTACAAC, -7.035) (ACGTACAT, -9.222) (ATGCGG, -7.599) (GTCAGAT, -7.035) (ACGTACAT, -9.222) (ATGCGG, -7.779) (ACCTGCT, -7.385) (ACGTACAT, -9.222) (CATCAT, -5.979) (GTTAGTC, -7.385) (ACGTACAT, -9.222) (CATCAT, -5.979) (GTTAGTC, -7.385) (ACGTACAT, -9.222) (CATCAT, -5.979) (GTCACAT, -7.955) (ACCTATCT, -8.732) (CATCAG, -7.779) (GTTAGTC, -7.385) (ACGTATAC, -7.962) (CATCAG, -8.539) (TTGTGC, -8.525) (ATTAGCC, -10.022) (ATCCGG, -8.739) (TTGTGC, -8.525) (ATTAGCC, -9.672) (ATCGCG, -7.379) (GATAAA, -7.815) (AACGTACA, -9.522) (GTACAC, -5			
(TTCTCC, -6.739)(GTTGATG, -7.515)(AAAGGACC, -9.572)(CTTCAT, -5.929)(CATGCAA, -8.415)(GATTAAGC, -8.202)(TTGTCC, -7.049)(GTTGATC, -7.365)(AAGCACCT, -10.352)(CATGAG, -6.379)(GTTCAC, -7.625)(AAATCGAG, -8.802)(GAGAGG, -7.059)(TTGAACC, -7.975)(AACCCGG, -11.472)(GTACG, -7.539)(CTACAAG, -7.025)(ACGGTACT, -10.012)(GTAAA, -6.119)(CTAGATC, -6.615)(AACGGAAC, -10.062)(CATATG, -5.309)(CTCATTC, -6.875)(GACTTAC, -7.952)(ATGGGG, -7.599)(GTCAGAT, -7.595)(ACGTCGTT, -0.222)(ATGGGG, -7.599)(GTAGTC, -7.035)(AGGTCGTT, -10.292)(CATATT, -6.189)(GTTATCC, -7.385)(AAGGACAT, -9.222)(CATCAT, -5.379)(ACCTGCT, -9.425)(AAGGAGC, -9.552)(GTAGCG, -7.779)(GTGTCAT, -7.905)(ACCTATGT, -8.732)(CTTTAC, -5.369)(TTTGTCC, -7.385)(AAGCATT, -0.222)(ACCGCG, -8.539)(CTCAAA, -7.975)(GAGTTATC, -7.962)(ACCGCG, -8.779)(TTAGTCC, -7.385)(AAGCTCT, -8.972)(GATCAT, -5.829)(GCTCAAA, -7.815)(AACTACC, -9.672)(CTACCG, -7.379)(GATCAAA, -7.815)(AACTACACC, -9.672)(CTACCG, -7.379)(GTCCAT, -7.855)(ACCTACC, -9.672)(CTACCG, -7.379)(GTCCATA, -8.815)(GACTAACC, -9.672)(GTAGC, -7.659)(CTCATCT, -7.455)(ACCTACC, -9.672)(CTACCG, -7.379)(GTCCATA, -7.855)(ACCTAACT, -8.682)(GTACC, -5.599)(CTCATCT, -7.455)(ACATACCC, -9.672)(CTACC, -5.699)(CTCATA, -7.855			
(CTTCAT, -5.929) (CATGCAA, -8.415) (GATTAAGC, -8.202) (TTGTCC, -7.049) (GTGTGATC, -7.365) (AAGCACCT, -10.352) (CTTGAG, -6.379) (GTTCAC, -7.625) (AAGCACCT, -10.352) (GAGAGG, -7.069) (TTGAACC, -7.975) (AATCGCGG, -11.472) (GTCACA, -6.119) (CTACAAG, -7.025) (ACGGTACT, -10.012) (GCTAAA, -6.119) (CTACAAG, -7.055) (AATTACC, -7.962) (TTGCGC, -7.350) (GTCAGT, -7.595) (ACGTACT, -9.222) (ATGGG, 7.766) (GTTAGTC, -7.355) (AGGACATT, -9.222) (CATAT, -6.189) (GTATACC, -7.955) (AGGACATT, -9.012) (CATGCG, -7.779) (GTGTCAT, -7.905) (ACCTACT, -8.32) (CATTAC, -5.369) (TTTGTCC, -8.525) (ATTACCC, -10.022) (ACGTCG, -8.539) (CGGTAAA, -7.975) (GAGTATAC, -7.962) (ACGCG, 8.779) (TTGTCC, -7.385) (AGGTACC, -9.292) (ATCGCG, -8.779) (GTACAG, -7.815) (AAGTACC, -9.292) (ATCGCG, -7.379) (GATAA, -8.215) (AAGGAC, -10.022) (ACTGCG, -7.379) (GTACAG, -7.135) (AAGTACC, -9.672) (ATCGCG, -8.79) (CTCACT, -7.385) (ACGTATAC, -7.962) (ATCGCG, -8.79)			
(TTGTCC, -7.049)(GTTGATC, -7.365)(AAGCACCT, -10.352)(CTTGAG, -6.379)(GTTCAC, -7.625)(AATCCGG, -8.802)(GAGAGG, -7.059)(TTGAACC, -7.975)(AATCCGG, -11.472)(GTACCG, -7.539)(CTACAAG, -7.025)(ACGGTAGT, -10.012)(GCTAAA, -6.119)(CTACATC, -6.615)(AACGGAAC, -10.062)(CATATG, -5.309)(CCTATTC, -6.6875)(AGGTCATT, -9.222)(ATGGGG, -7.869)(GTTAGC, -7.035)(AGGTCATT, -9.222)(CAGTTT, -6.189)(GTATGC, -7.035)(AGGTCATT, -9.012)(CATCAT, -5.979)(ACCTGCT, -9.425)(AGGACATT, -9.012)(CATCAT, -5.369)(GTTGTGT, -7.905)(ACCTATT, -8.732)(GTAGGG, -7.779)(GTCTAT, -7.975)(GACTTAC, -7.962)(ACGCGG, -8.539)(CGTAAA, -7.975)(GACTTAC, -7.962)(ACGCGG, -8.779)(TTGTGC, -8.215)(AGGTATC, -8.972)(ATCGCG, -7.379)(GAAGTCG, -8.485)(GAGTTAC, -7.952)(CTACCG, -7.379)(GCTCAAA, -7.815)(ACCTCACC, -9.672)(ACTGCT, -7.659)(CTCATCT, -7.435)(ACCTACT, -8.829)(GTGGTG, -7.689)(CTCATCT, -7.435)(ACCTAACT, -8.682)(GAAGG, -7.819)(GTTCCAT, -7.855)(ACCTAACT, -8.682)(GAAGG, -7.819)(GTTCCAT, -7.855)(ACGCATAT, -9.122)(CATACG, -6.339)(CCTAAAGG, -7.025)(AAGGCGC, -11.032)(CATTCG, -6.109)(GCTCAAA, -7.855)(ACGCACT, -10.222)(CATTCG, -6.869)(CTAAGTG, -7.025)(AAGCGACC, -10.122)(AACAGCA, -6.339)(CCCAAAA, -7.855)(AAGCCAAC, -10.122)(AACAGCA, -6.339)(CCCAAAA,	(TTCTCC, -6.739)	(GTTGATG, -7.515)	(AAAGGACC, -9.572)
(CTTGAG, -6.379) (GTTTCAC, -7.625) (AAATCGAG, -8.802) (GAGAGG, -7.669) (TTGAACG, -7.975) (AATCGCGG, -11.472) (GTACCG, -7.539) (CTACAAG, -7.025) (ACGGTAGT, -10.012) (GTAAA, -6.119) (CTAGATC, -6.615) (AACGGAAC, -10.062) (CATATG, -5.309) (CCTATTC, -6.875) (GATTTACC, -7.962) (ATGGGG, -7.669) (GTTAGTC, -7.035) (AGGTCATT, -9.222) (ATGGGG, -7.869) (GTATTGC, -7.055) (ACGTCATT, -9.012) (CAGTTT, -6.189) (GTATTGC, -7.965) (ACGACATT, -9.012) (CATTAC, -5.369) (TTTGTGC, -8.525) (ATACGCC, -10.022) (GTACGG, -7.779) (GTGTCAT, -7.975) (GAGTTATC, -8.972) (ACGTCG, -8.539) (CGTAAA, -7.975) (GAGTTATC, -8.972) (ACGTCG, -8.779) (TTGATCC, -7.385) (AGGTTATC, -8.972) (ACTACG, -7.379) (GAAGTCG, -8.485) (GACTAAC, -9.292) (CTAACG, -7.379) (GAAGTCG, -8.485) (GACTAAC, -9.672) (CTAACG, -7.659) (CTCATCT, -7.435) (AAGGTACC, -9.672) (CTAACG, -7.659) (CCAAAA, -7.815) (ACCTAACC, -8.682) (GATACG, -7.689) (CTCATCT, -7.435) (GATAAACG, -8.292) (GGAACG, -7	(CTTCAT, -5.929)	(CATGCAA, -8.415)	(GATTAAGC, -8.202)
(CTTGAG, -6.379) (GTTTCAC, -7.625) (AAATCGAG, -8.802) (GAGAGG, -7.669) (TTGAACG, -7.975) (AATCGCGG, -11.472) (GTACCG, -7.539) (CTACAAG, -7.025) (ACGGTAGT, -10.012) (GTAAA, -6.119) (CTAGATC, -6.615) (AACGGAAC, -10.062) (CATATG, -5.309) (CCTATTC, -6.875) (GATTTACC, -7.962) (ATGGGG, -7.669) (GTTAGTC, -7.035) (AGGTCATT, -9.222) (ATGGGG, -7.869) (GTATTGC, -7.055) (ACGTCATT, -9.012) (CAGTTT, -6.189) (GTATTGC, -7.965) (ACGACATT, -9.012) (CATTAC, -5.369) (TTTGTGC, -8.525) (ATACGCC, -10.022) (GTACGG, -7.779) (GTGTCAT, -7.975) (GAGTTATC, -8.972) (ACGTCG, -8.539) (CGTAAA, -7.975) (GAGTTATC, -8.972) (ACGTCG, -8.779) (TTGATCC, -7.385) (AGGTTATC, -8.972) (ACTACG, -7.379) (GAAGTCG, -8.485) (GACTAAC, -9.292) (CTAACG, -7.379) (GAAGTCG, -8.485) (GACTAAC, -9.672) (CTAACG, -7.659) (CTCATCT, -7.435) (AAGGTACC, -9.672) (CTAACG, -7.659) (CCAAAA, -7.815) (ACCTAACC, -8.682) (GATACG, -7.689) (CTCATCT, -7.435) (GATAAACG, -8.292) (GGAACG, -7	(TTGTCC, -7.049)	(GTTGATC, -7.365)	(AAGCACCT, -10.352)
(GAGAGG, -7.069)(TTGAACC, -7.975)(AATCGCGG, -11.472)(GTACCG, -7.539)(CTACAAG, -7.025)(ACGGTAGT, -10.012)(GCTAAA, -6.119)(CTAGATC, -6.615)(AACGGAC, -10.062)(CATATG, -5.309)(CCTATTC, -6.875)(GATTACC, -7.962)(TTCCAC, -7.599)(GCTAGAT, -7.595)(ACGTACAT, -9.222)(ATGGGG, -7.869)(GTATGTC, -7.355)(AGGACATT, -9.012)(CATCAT, -5.979)(ACCTGCT, -9.425)(AGGAGAGC, -9.552)(GTAGTG, -7.790)(GTGTCAT, -7.905)(ACCTATGT, -8.732)(CTTTAC, -5.369)(TTTGTGC, -8.525)(ATTACCC, -10.022)(ACGTCG, -8.539)(CGGTAAA, -7.975)(GAGTTAAC, -7.962)(ATCGCG, -8.539)(CGCTAAA, -7.975)(GAGTTAC, -7.962)(ATCGCG, -8.539)(CGCTAAA, -7.975)(GAGTTAC, -7.962)(ATCGCG, -8.539)(CGCTAAA, -7.975)(GAGTTAC, -7.962)(ATCGCG, -7.379)(GAAGTCG, -8.485)(AAGTCACC, -9.292)(CTACCG, -7.379)(CTACAC, -8.815)(AAGGTACG, -9.292)(CTACCG, -7.379)(CTACTC, -7.485)(ACATCACC, -9.672)(GAGTGT, -7.659)(CTCACT, -7.435)(GACTAAT, -9.412)(GTGGTG, -7.689)(CTCACT, -7.455)(ACCTAACT, -8.682)(GAACG, -7.819)(GTTCCT, -7.455)(ACCGACA, -8.292)(GTATC, -6.109)(GTTCCT, -7.855)(ACCGACA, -10.292)(CATTCG, -6.869)(CTAAAGT, -6.835)(AACGCACA, -10.292)(CATTCG, -6.869)(CTAAAGT, -7.055)(AACGCACA, -10.122)(AACAC, -5.759)(CAAATCG, -7.95)(AAACGCACA, -10.122)(AACACG, -7.329)(CTGCTAT, -7.6	(CTTGAG, -6.379)		(AAATCGAG, -8.802)
(GTACCG, -7.539)(CTACAAG, -7.025)(ACGGTAGT, -10.012)(GCTAAA, -6.119)(CTACATC, -6.615)(AACGGAAC, -10.062)(CATATG, -5.309)(CCTATTC, -6.875)(AACGTACAT, -9.22)(ATGGGG, -7.869)(GTAATC, -7.035)(ACGTACAT, -9.22)(CATCAT, -6.189)(GTATTG, -7.585)(ACGACATT, -9.012)(CATCAT, -5.979)(ACCTGCT, -9.425)(AGGACATT, -9.012)(CATCAT, -5.979)(ACCTGCT, -9.425)(AGGACATG, -8.732)(GTAGCG, -7.779)(GTGTCAT, -7.905)(ACCTATGT, -8.732)(CTTAC, -5.369)(TTTGTGC, -8.525)(ATTACGCC, -10.022)(ACGTCG, -8.539)(CGGTAAA, -7.975)(GAGTATAC, -7.962)(ATGCGG, -8.779)(TTAGTCG, -7.385)(ACCTATCT, -8.972)(GATGAT, -5.829)(GCTCAAA, -8.215)(AAGGTACC, -9.292)(CTACCG, -7.379)(TTCGTCC, -8.955)(ACGTATAC, -7.852)(ACGCGT, -7.659)(CCAAGAA, -7.815)(ACCTACT, -7.455)(GAGACG, -7.819)(TTCCTC, -8.995)(ACCTAACT, -8.682)(GAACT, -5.099)(GTCCCT, -7.435)(AACGACC, -10.122)(AACTACC, -6.109)(GCTATAG, -6.835)(AACGAACT, -10.122)(AACTAC, -5.759)(CTAATG, -7.795)(AACCAAC, -10.122)(AACTAC, -5.759)(CTAATG, -7.795)(AACCAAC, -10.122)(AACTAC, -5.759)(CTAATG, -7.795)(AACCAAC, -10.122)(AACTAC, -5.759)(CTAATG, -7.795)(AACCAAC, -10.122)(AACTAC, -5.759)(CCATATG, -7.955)(AGCGACT, -9.012)(CATTG, -6.089)(CTAATG, -7.795)(AACACGAC, -10.122)(AACTAC, -5.759)(CAAATGC, -7.			
(GCTAAA, -6.119)(CTAGATC, -6.615)(AACGGAAC, -10.062)(CATATG, -5.309)(CCTATTC, -6.875)(GATTACC, -7.962)(TTGCAC, -7.599)(GTAGTC, -7.055)(ACGTACAT, -9.222)(ATGGGG, -7.869)(GTAGTC, -7.055)(AGGTCAT, -9.122)(CAGTTT, -6.189)(GTATTGC, -7.355)(AGGAACT, -9.012)(CATCAT, -5.979)(ACCTGCT, -9.425)(AGGAACG, -9.552)(GTTAGCG, -7.779)(GTGTCAT, -7.905)(ACCTATGT, -8.732)(CTTTAC, -5.369)(TTTGTGC, -8.525)(ATTACC, -7.962)(ACGTCG, -8.539)(CGGTAAA, -7.975)(GAGTTAAC, -7.962)(ACGTGG, -8.539)(CGGTAAA, -7.975)(GAGTTACC, -1.0022)(ACGGCG, -8.779)(TTAGTCC, -7.385)(AGCTTTC, -8.972)(GATGAT, -5.829)(GCTCAAA, 8.215)(AAGGTACC, -9.292)(CTAACT, -7.659)(CCCAAAA, -7.815)(ACATCACC, -9.672)(CTAACT, -5.599)(TTCCTCC, -8.995)(ACCTAACT, -9.412)(GGGAG, -7.819)(GTTCCAT, -7.435)(GATAACG, -8.292)(GATATC, -5.09)(GTTCCAT, -7.855)(ACCGAAT, -9.412)(GTAGTC, -6.109)(GCTAAGT, -7.025)(AACGGAT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.255)(AACGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.255)(AACGGACT, -10.292)(AACTAC, -5.759)(CCAATGG, -7.795)(AACGGCTT, -11.282)(AACTAC, -5.759)(CCAATGG, -7.025)(AACGGAC, -9.622)(AACTAC, -5.759)(CCAATGG, -7.025)(AACGGAC, -9.622)(CGGAAA, -7.329)(CTGCTAT, -7.655)(AGGTGATT, -9.012)(ATTCG, -7.329)(CTGCATT, -7.65			
(CATATG, -5.309)(CCTATTC, -6.875)(GATTTACC, -7.962)(TTGCAC, -7.599)(GTCAGAT, -7.595)(ACGTACAT, -9.222)(ATGGGG, -7.869)(GTAGTC, -7.035)(AGGTCAT, -9.022)(CATTT, -6.189)(GTATTCC, -7.585)(AGGACATT, -9.012)(CATCAT, -5.979)(ACCTGCT, -9.425)(AGGAGAGC, -9.552)(GTAGCG, -7.779)(GTGTCAT, -7.905)(ACCTATGT, -8.732)(CTTTAC, -5.369)(TTTGTGC, -8.525)(ATTACGCC, -10.022)(ACCGCG, -8.539)(CGGTAAA, -7.975)(GAGTTAC, -7.962)(ATCGCG, -8.779)(TTAGTCC, -7.385)(AGCTTTC, -8.972)(GATGAT, -5.829)(CGCTCAAA, -8.215)(AAGGTACC, -9.292)(CTACCG, -7.379)(GAAGTGC, -8.485)(GAGTTATG, -7.852)(ACTCCT, -7.659)(CCAACAA, -7.815)(ACGCTAAT, -9.412)(GTGGTG, -7.669)(CTCATCT, -7.435)(ACGCTAAT, -9.412)(GTAGTC, -5.009)(GTCCAT, -7.855)(ACCTAACT, -8.682)(GAAGT, -5.009)(GTCCAT, -7.855)(ACCGAC, -10.292)(CATTCC, -6.869)(CTAAGTG, -7.025)(AAGGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.025)(AACGCAT, -10.292)(CATTCG, -5.759)(CAAATCG, -7.755)(AACGCAC, -0.0122)(ACTACC, -5.759)(CAAATCG, -7.055)(AACGCACT, -10.122)(AACAC, -5.759)(CAAATCG, -7.055)(AACGGACT, -9.012)(ACTACC, -5.759)(CAAATCG, -7.055)(AACGGACT, -9.012)(ATACGC, -7.329)(CTGCTAT, -7.855)(AACGGACT, -9.012)(CTGTAT, -5.929)(GTGACT, -7.905)(AATGCCA, -9.062)(CATTCT, -5.929)(GTTTCG, -7.			
(TTGCAC, -7.599)(GTCAGAT, -7.595)(ACGTACAT, -9.222)(ATGGGG, -7.869)(GTTAGTC, -7.035)(AGGTCGTT, -10.292)(CAGTTT, -6.189)(GTATGC, -7.585)(AGGACATT, -9.012)(CATCAT, -5.979)(ACCTGCT, -9.425)(AGGACATT, -9.012)(CTTAC, -5.369)(TTTGTGC, -8.525)(ACCTATGT, -8.732)(CTTTAC, -5.369)(TTTGTGC, -8.525)(ATTACGCC, -10.022)(ACGGCG, -8.539)(CGGTAAA, -7.975)(GAGTTAAC, -7.962)(ATCGCG, -8.779)(TTGTGCC, -7.385)(AGGTTATC, -8.972)(GATGAT, -5.829)(GCTCAAA, 8.215)(AAGGTACC, -9.292)(CTACCG, -7.379)(GAAGTCG, -8.485)(GAGTTATG, -7.852)(ACTGCT, -7.659)(CCAAGAA, -7.815)(ACATCACC, -9.672)(CTAACT, -5.599)(TTCGTCC, -8.995)(ACCTAACT, -8.682)(GATATC, -5.009)(GTTCCAT, -7.855)(ACCTAACT, -8.682)(GATATC, -5.009)(GTTCCT, -8.645)(AAGGGGCG, -11.032)(CTAGCG, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(CATCGC, -6.639)(CCTAAAC, -7.95)(AACGGACT, -10.22)(AACAAC, -6.039)(GCCTAAA, -7.885)(AACGGACT, -10.122)(AACAC, -5.759)(CAAATCG, -7.795)(AAAGGCAC, -8.782)(ATACGC, -7.329)(CTGCTAT, -7.655)(AGGTGATT, -9.012)(GTGAT, -6.089)(CCACTAG, -7.025)(AACGGAC, -9.622)(CGTGAA, -7.329)(GTGTTT, -7.855)(AGCTGATT, -9.062)(CATTCT, -5.929)(GTTTCG, -7.905)(AGTAACCT, -8.922)			
(ATGGGG, -7.869)(GTTAGTC, -7.035)(AGGTCGTT, -10.292)(CAGTTT, -6.189)(GTATTGC, -7.585)(AGGACATT, -9.012)(CATCAT, -5.979)(ACCTGCT, -9.425)(AGGAAGC, -9.552)(GTAGCG, -7.779)(GTGTCAT, -7.905)(ACCTATGT, -8.732)(CTTTAC, -5.369)(TTTGTCC, -8.525)(ATTACGCC, -10.022)(ACGTCG, -8.539)(CGGTAAA, -7.975)(GAGTTAAC, -7.962)(ATCGCG, -8.779)(TTAGTCC, -7.385)(AGCTTTC, -8.972)(GATGAT, -5.829)(GCTCAAA, -8.215)(AAGGTACC, -9.292)(CTACCG, -7.379)(CCAAGAA, -7.815)(ACATCACC, -9.672)(ACTGCT, -7.659)(CCAAGAA, -7.815)(ACATCACC, -9.672)(CTAACT, -5.599)(TTCGTCC, -8.995)(ACCTAAT, -9.412)(GGGAACG, -7.819)(GTTCCAT, -7.435)(GATAAACG, -8.292)(GGAACG, -7.819)(GTTCCAT, -7.855)(ACCTAACT, -8.682)(GATATC, -5.09)(GTTCATA, -6.835)(AACGACG, -11.032)(CATCG, -6.109)(GCTAAAG, -7.25)(AACGACT, -10.122)(AACTAC, -5.759)(CCAAATGG, -7.795)(AACGACC, -10.122)(AACTAC, -5.759)(CCAAATCG, -7.795)(AAAGGACC, -8.782)(AACTAC, -5.759)(CCAAATCG, -7.795)(AAAGGAC, -9.012)(ATACGC, -7.329)(CTGCTAT, -7.655)(ACGTGATT, -9.012)(ATACG, -7.329)(CTGCTAT, -7.855)(ACGGCAT, -9.622)(CGGAA, -1.329)(CTGCTAT, -7.855)(ACGTGCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAGCT, -8.922)		· · ·	
(CAGTTT, -6.189)(GTATTGC, -7.585)(AGGACATT, -9.012)(CATCAT, -5.979)(ACCTGCT, -9.425)(AGAGAAGC, -9.552)(GTACG, -7.779)(GTGTCAT, -7.905)(ACCTATGT, -8.732)(CTTTAC, -5.369)(TTTGTGC, -8.525)(ACTATACGC, -10.022)(ACGTCG, -8.539)(CGGTAAA, -7.975)(GAGTTAAC, -7.962)(ATCGCG, -8.779)(TTAGTCC, -7.385)(AGCTATTC, -8.972)(GATGAT, -5.829)(GCTCAAA, -8.215)(AAGGTACC, -9.292)(CTACCG, -7.379)(GAAGAGC, -8.485)(GAGTTATG, -7.852)(ACTGCT, -7.659)(CCAAGAA, -7.815)(ACATCACC, -9.672)(CTAACT, -5.599)(TTCGTCC, -8.995)(ACGCTAAT, -9.412)(GGGAAGG, -7.819)(GTTCCAT, -7.855)(ACCTAACT, -8.682)(GATATC, -5.009)(GTTCCAT, -7.855)(ACGGACT, -10.292)(CATTCG, -6.109)(GCTAAGG, -6.835)(AAGGGACT, -10.292)(CATCG, -6.869)(CTAAGTG, -7.25)(AACGGCGTT, -11.282)(AACTAC, -5.759)(CCAAATCG, -7.795)(AAATGTCC, -8.782)(AACTAC, -5.759)(CCAATCG, -7.955)(AACGGACT, -10.122)(AACTAC, -5.759)(CCAATCG, -7.795)(AAATGTCC, -8.782)(ATACGC, -7.329)(CTGCTT, -7.655)(AGCTGATT, -9.012)(GTGAT, -6.089)(CCACATCG, -7.025)(AACAGGAC, -9.622)(CGGAAA, -7.329)(GTGACTT, -7.855)(ACGTGCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAGCT, -8.922)			
(CATCAT, -5.979)(ACCTGCT, -9.425)(AGAGAAGC, -9.552)(GTAGCG, -7.779)(GTGTCAT, -7.905)(ACCTATGT, -8.732)(CTTTAC, -5.369)(TTTGTGC, -8.525)(ATTACGCC, -10.022)(ACGTCG, -8.539)(CGGTAAA, -7.975)(GAGTTAAC, -7.962)(ATGCGG, -8.779)(TTAGTCC, -7.385)(AGCTTTC, -8.972)(GATGAT, -5.829)(GCTCAAA, -8.215)(AAGGTACC, -9.292)(CTACCG, -7.379)(GAAGTCG, -8.485)(GAGTTATG, -7.852)(ACTGCT, -7.659)(CCAAGAA, -7.815)(ACATCACC, -9.672)(CTAACT, -5.599)(TTCGTCC, -8.995)(ACGCTAAT, -9.412)(GGAAGG, -7.819)(GTTCCAT, -7.435)(GATAAACG, -8.292)(GAATAC, -5.009)(GTTCCCT, -7.435)(AACGAACT, -9.682)(GATATC, -5.009)(GTTCCCT, -8.645)(AAGGGGG, -11.032)(GTAGTC, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(ACATACG, -6.39)(CCTAAAT, -7.885)(AAGCCAAC, -10.122)(ACAAAC, -6.039)(GCCTAAA, -7.865)(AAGCCAAC, -10.122)(AACTAC, -5.759)(CTAGTT, -7.655)(AGGGGATT, -9.02)(GTGAT, -6.089)(CTAATCG, -7.025)(AAAAGCCAC, -10.122)(AACTAC, -5.759)(CAAATCG, -7.025)(AAAAGCCAC, -9.622)(GTGAA, -7.329)(CTGCTAT, -7.855)(AGTGTCAT, -9.062)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGTGTCAT, -8.922)	(ATGGGG, -7.869)	(GTTAGTC, -7.035)	(AGGTCGTT, -10.292)
(GTAGCG, -7.779)(GTGTCAT, -7.905)(ACCTATGT, -8.732)(CTTTAC, -5.369)(TTTGTGC, -8.525)(ATTACGCC, -10.022)(ACGTCG, -8.539)(CGGTAAA, -7.975)(GAGTTAAC, -7.962)(ATCGCG, -8.779)(TTAGTCC, -7.385)(AGCTTTTC, -8.972)(GATGAT, -5.829)(GCTCAAA, -8.215)(AAGGTACC, -9.292)(CTACCG, -7.379)(GAAGTCG, -8.485)(GAGTTATG, -7.852)(ACTGCT, -7.659)(CCAAGAA, -7.815)(ACATCACC, -9.672)(CTAACT, -5.599)(TTCGTCC, -8.995)(ACGCTAAT, -9.412)(GTGGTG, -7.689)(CTCATCT, -7.435)(GATAAACG, -8.292)(GAAGT, -5.009)(GTTCCAT, -7.855)(ACCTAACT, -8.682)(GATATC, -5.019)(GCTATAG, -6.835)(AAGGGGC, -11.032)(CATTCG, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.025)(AAGGTGAT, -11.282)(AACTAC, -5.759)(CCAAATCG, -7.795)(AAATGTCC, -8.782)(ATACGC, -7.329)(CTGCATT, -7.655)(AGGTATT, -9.012)(GTGAT, -6.089)(CAAGTAG, -7.025)(AACAGGAC, -9.622)(CGGAAA, -7.329)(GTGATT, -7.855)(AGCTACT, -9.062)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGTAACC, -8.922)	(CAGTTT, -6.189)	(GTATTGC, -7.585)	(AGGACATT, -9.012)
(CTTTAC, -5.369)(TTTGTGC, -8.525)(ATTACGCC, -10.022)(ACGTCG, -8.539)(CGGTAAA, -7.975)(GAGTTAAC, -7.962)(ATCGCG, -8.779)(TTAGTCC, -7.385)(AGCTTTC, -8.972)(GATGAT, -5.829)(GCTCAAA, -8.215)(AAGGTACC, -9.292)(CTACCG, -7.379)(GAAGTCG, -8.485)(GAGTTATG, -7.852)(ACTGCT, -7.659)(CCAAGAA, -7.815)(ACACCACC, -9.672)(CTAACT, -5.599)(TTCGTCC, -8.995)(ACGCTAAT, -9.412)(GGAACG, -7.819)(GTTCCAT, -7.435)(GAATAACG, -8.292)(GATATC, -5.009)(GTTCCCT, -8.645)(AGAGTGCG, -11.032)(GTAGTC, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.025)(AACGGCAT, -11.282)(AACTAC, -5.759)(CAAATCG, -7.795)(AACGCAAC, -10.122)(AACTAC, -5.759)(CAAATCG, -7.795)(AAGGTGCT, -8.782)(ATCGC, -7.329)(CTGCTAT, -7.655)(AGGTGATT, -9.012)(GTGAAA, -7.329)(CTGACTT, -7.855)(ACGGACT, -9.622)(CGGAAA, -7.329)(GTGACTT, -7.855)(AACGGACT, -9.022)(CATTCT, -5.929)(GTTTTCG, -7.905)(AACAGCAC, -9.622)	(CATCAT, -5.979)	(ACCTGCT, -9.425)	(AGAGAAGC, -9.552)
(CTTTAC, -5.369)(TTTGTGC, -8.525)(ATTACGCC, -10.022)(ACGTCG, -8.539)(CGGTAAA, -7.975)(GAGTTAAC, -7.962)(ATCGCG, -8.779)(TTAGTCC, -7.385)(AGCTTTC, -8.972)(GATGAT, -5.829)(GCTCAAA, -8.215)(AAGGTACC, -9.292)(CTACCG, -7.379)(GAAGTCG, -8.485)(GAGTTATG, -7.852)(ACTGCT, -7.659)(CCAAGAA, -7.815)(ACACCACC, -9.672)(CTAACT, -5.599)(TTCGTCC, -8.995)(ACGCTAAT, -9.412)(GGAACG, -7.819)(GTTCCAT, -7.435)(GAATAACG, -8.292)(GATATC, -5.009)(GTTCCCT, -8.645)(AGAGTGCG, -11.032)(GTAGTC, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.025)(AACGGCAT, -11.282)(AACTAC, -5.759)(CAAATCG, -7.795)(AACGCAAC, -10.122)(AACTAC, -5.759)(CAAATCG, -7.795)(AAGGTGCT, -8.782)(ATCGC, -7.329)(CTGCTAT, -7.655)(AGGTGATT, -9.012)(GTGAAA, -7.329)(CTGACTT, -7.855)(ACGGACT, -9.622)(CGGAAA, -7.329)(GTGACTT, -7.855)(AACGGACT, -9.022)(CATTCT, -5.929)(GTTTTCG, -7.905)(AACAGCAC, -9.622)	(GTAGCG, -7.779)	(GTGTCAT, -7.905)	(ACCTATGT, -8.732)
(ACGTCG, -8.539)(CGGTAAA, -7.975)(GAGTTAAC, -7.962)(ATCGCG, -8.779)(TTAGTCC, -7.385)(AGCTTTTC, -8.972)(GATGAT, -5.829)(GCTCAAA, -8.215)(AAGGTACC, -9.292)(CTACCG, -7.379)(GAAGTCG, -8.485)(GAGTTATG, -7.852)(ACTGCT, -7.659)(CCAAGAA, -7.815)(ACACTACC, -9.672)(CTAACT, -5.599)(TTCGTCC, -8.995)(ACCTAACT, -9.412)(GGAACG, -7.819)(CTCATCT, -7.435)(GAATAACG, -8.292)(GAATATC, -5.009)(GTTCCCT, -8.645)(ACGTAACT, -8.682)(GAAGTC, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(CATTCG, -6.869)(CTCAAAT, -7.855)(AACGGCTT, -11.282)(AACTAC, -5.759)(CAAATCG, -7.795)(AAAGGCAAC, -10.122)(AACTAC, -5.759)(CAAATCG, -7.795)(AAAGGCAAC, -10.122)(AACTAC, -5.759)(CAAATCG, -7.795)(AACGGACT, -9.622)(CGGAAA, -7.329)(CTGCTAT, -7.855)(AGGTGATT, -9.012)(GTGAT, -6.089)(CAAATCG, -7.905)(AACGACC, -9.622)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGGTGCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)			
(ATCGCG, -8.779)(TTAGTCC, -7.385)(AGCTTTTC, -8.972)(GATGAT, -5.829)(GCTCAAA, -8.215)(AAGGTACC, -9.292)(CTACCG, -7.379)(GAAGTCG, -8.485)(GAGTTATG, -7.852)(ACTGCT, -7.659)(CCAAGAA, -7.815)(ACATCACC, -9.672)(CTAACT, -5.599)(TTCGTCC, -8.995)(ACGCTAAT, -9.412)(GTGGTG, -7.689)(CTCATCT, -7.435)(GATAAACG, -8.292)(GGAACG, -7.819)(GTTCCAT, -7.855)(ACCTAACT, -8.682)(GATATC, -5.009)(GTTCCCT, -8.645)(AGAGGGCG, -11.032)(GTAGTC, -6.109)(GCTAAG, -6.835)(AACGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.025)(AACGCAAC, -10.122)(AACTAC, -5.759)(CAAATCG, -7.795)(AAAGGCAC, -9.622)(ATACGC, -7.329)(CTGCTAT, -7.855)(ACGTGATT, -9.012)(GTGAA, -7.329)(GTGACTT, -7.855)(AGGTCCT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)			
(GATGAT, -5.829)(GCTCAAA, -8.215)(AAGGTACC, -9.292)(CTACCG, -7.379)(GAAGTCG, -8.485)(GAGTTATG, -7.852)(ACTGCT, -7.659)(CCAAGAA, -7.815)(ACATCACC, -9.672)(CTAACT, -5.599)(TTCGTCC, -8.995)(ACGCTAAT, -9.412)(GTGGTG, -7.689)(CTCATCT, -7.435)(GATAAACG, -8.292)(GGAACG, -7.819)(GTTCCAT, -7.855)(ACCTAACT, -8.682)(GATATC, -5.009)(GTTCCCT, -8.645)(AAGGTGCG, -11.032)(GTAGTC, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.255)(AACGCCAA, -10.122)(AACTAC, -5.759)(CAAATCG, -7.795)(AAAGGTACT, -9.012)(GTGAT, -6.089)(CTAGTAT, -7.655)(AGGTGATT, -9.012)(GTGAA, -7.329)(CTGCATT, -7.855)(AGGTCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)			
(CTACCG, -7.379)(GAAGTCG, -8.485)(GAGTTATG, -7.852)(ACTGCT, -7.659)(CCAAGAA, -7.815)(ACATCACC, -9.672)(CTAACT, -5.599)(TTCGTCC, -8.995)(ACGCTAAT, -9.412)(GTGGTG, -7.689)(CTCATCT, -7.435)(GATAAACG, -8.292)(GGAACG, -7.819)(GTTCCAT, -7.855)(ACCTAACT, -8.682)(GATATC, -5.009)(GTTCCCT, -8.645)(AGAGTGCG, -11.032)(GTAGTC, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.255)(AACGCGTT, -11.282)(AGAAC, -6.039)(GCCTATA, -7.855)(AAGCCAAC, -10.122)(AACTAC, -5.759)(CAAGTG, -7.795)(AAAGGTGC, -8.782)(GTTGAT, -6.089)(CAAGTAG, -7.025)(AACAGGAC, -9.012)(GTGAA, -7.329)(GTGACTT, -7.855)(AGGTGCT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)			
(ACTGCT, -7.659)(CCAAGAA, -7.815)(ACATCACC, -9.672)(CTAACT, -5.599)(TTCGTCC, -8.995)(ACGCTAAT, -9.412)(GTGGTG, -7.689)(CTCATCT, -7.435)(GATAAACG, -8.292)(GGAACG, -7.819)(GTTCCAT, -7.855)(ACCTAACT, -8.682)(GATATC, -5.009)(GTTCCCT, -8.645)(AGAGTGCG, -11.032)(GTAGTC, -6.109)(GCTATAG, -6.835)(AACGGCGT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.025)(AACGCGTT, -11.282)(AGAAAC, -6.039)(GCCTAAA, -7.885)(AAGCCAAC, -10.122)(AACTACC, -5.759)(CAAATCG, -7.795)(AAATGTCC, -8.782)(ATACGC, -7.329)(CTGACTT, -7.655)(ACGGTATT, -9.012)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGGTGCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)			
(CTAACT, -5.599)(TTCGTCC, -8.995)(ACGCTAAT, -9.412)(GTGGTG, -7.689)(CTCATCT, -7.435)(GATAAACG, -8.292)(GGAACG, -7.819)(GTTCCAT, -7.855)(ACCTAACT, -8.682)(GATATC, -5.009)(GTTCCCT, -8.645)(AGAGTGCG, -11.032)(GTAGTC, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.025)(AACGGCAT, -11.282)(AGAAAC, -6.039)(GCCTAAA, -7.885)(AACGCCAAC, -10.122)(AACTAC, -5.759)(CAAATCG, -7.795)(AAATGTCC, -8.782)(ATACGC, -7.329)(CTGCTAT, -7.655)(ACGGTATT, -9.012)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGGTGCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)			
(GTGGTG, -7.689)(CTCATCT, -7.435)(GATAAACG, -8.292)(GGAACG, -7.819)(GTTCCAT, -7.855)(ACCTAACT, -8.682)(GATATC, -5.009)(GTTCCCT, -8.645)(AGAGTGCG, -11.032)(GTAGTC, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.025)(AACGGCAT, -11.282)(AGAAAC, -6.039)(GCCTAAA, -7.885)(AAGCCAAC, -10.122)(AACTAC, -5.759)(CAAATCG, -7.795)(AAAGGTCC, -8.782)(GTTGAT, -6.089)(CTGACTA, -7.655)(AGGTGATT, -9.012)(GGTAAA, -7.329)(GTGACTT, -7.855)(AGGTGCAT, -9.622)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)			
(GGAACG, -7.819)(GTTCCAT, -7.855)(ACCTAACT, -8.682)(GATATC, -5.009)(GTTCCCT, -8.645)(AGAGTGCG, -11.032)(GTAGTC, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.025)(AACGCCAT, -11.282)(AGAAAC, -6.039)(GCCTAAA, -7.885)(AACGCCAAC, -10.122)(AACTAC, -5.759)(CAATCG, -7.795)(AAATGTCC, -8.782)(ATACGC, -7.329)(CTGCTAT, -7.655)(AGGTGATT, -9.012)(GTGAAA, -7.329)(CTGCACT, -7.855)(AGGTGCAT, -9.622)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGGTGCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)	(CTAACT, -5.599)	(TTCGTCC, -8.995)	(ACGCTAAT, -9.412)
(GGAACG, -7.819)(GTTCCAT, -7.855)(ACCTAACT, -8.682)(GATATC, -5.009)(GTTCCCT, -8.645)(AGAGTGCG, -11.032)(GTAGTC, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.025)(AACGCCAT, -11.282)(AGAAAC, -6.039)(GCCTAAA, -7.885)(AACGCCAAC, -10.122)(AACTAC, -5.759)(CAATCG, -7.795)(AAATGTCC, -8.782)(ATACGC, -7.329)(CTGCTAT, -7.655)(AGGTGATT, -9.012)(GTGAAA, -7.329)(CTGCACT, -7.855)(AGGTGCAT, -9.622)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGGTGCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)	(GTGGTG, -7.689)	(CTCATCT, -7.435)	(GATAAACG, -8.292)
(GATATC, -5.009)(GTTCCCT, -8.645)(AGAGTGCG, -11.032)(GTAGTC, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.025)(AACGCGTT, -11.282)(AGAAAC, -6.039)(GCCTAAA, -7.885)(AAGCCAAC, -10.122)(AACTAC, -5.759)(CAAATCG, -7.795)(AAATGTCC, -8.782)(ATACGC, -7.329)(CTGCTAT, -7.655)(AGGTGATT, -9.012)(GTTGAT, -6.089)(CAAGTAG, -7.025)(AACAGGAC, -9.622)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGTGTCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)	(GGAACG, -7.819)	(GTTCCAT, -7.855)	(ACCTAACT, -8.682)
(GTAGTC, -6.109)(GCTATAG, -6.835)(AACGGACT, -10.292)(CATTCG, -6.869)(CTAAGTG, -7.025)(AACGCGTT, -11.282)(AGAAAC, -6.039)(GCCTAAA, -7.885)(AAGCCAAC, -10.122)(AACTAC, -5.759)(CAAATCG, -7.795)(AAATGTCC, -8.782)(ATACGC, -7.329)(CTGCTAT, -7.655)(AGGTGATT, -9.012)(GTTGAT, -6.089)(CAAGTAG, -7.025)(AACAGGAC, -9.622)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGTGTCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)			
(CATTCG, -6.869)(CTAAGTG, -7.025)(AACGCGTT, -11.282)(AGAAAC, -6.039)(GCCTAAA, -7.885)(AAGCCAAC, -10.122)(AACTAC, -5.759)(CAAATCG, -7.795)(AAATGTCC, -8.782)(ATACGC, -7.329)(CTGCTAT, -7.655)(AGGTGATT, -9.012)(GTTGAT, -6.089)(CAAGTAG, -7.025)(AACAGGAC, -9.622)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGTGTCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)			
(AGAAAC, -6.039)(GCCTAAA, -7.885)(AAGCCAAC, -10.122)(AACTAC, -5.759)(CAAATCG, -7.795)(AAATGTCC, -8.782)(ATACGC, -7.329)(CTGCTAT, -7.655)(AGGTGATT, -9.012)(GTTGAT, -6.089)(CAAGTAG, -7.025)(AACAGGAC, -9.622)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGTGTCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)			
(AACTAC, -5.759)(CAAATCG, -7.795)(AAATGTCC, -8.782)(ATACGC, -7.329)(CTGCTAT, -7.655)(AGGTGATT, -9.012)(GTTGAT, -6.089)(CAAGTAG, -7.025)(AACAGGAC, -9.622)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGTGTCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)			
(ATACGC, -7.329)(CTGCTAT, -7.655)(AGGTGATT, -9.012)(GTTGAT, -6.089)(CAAGTAG, -7.025)(AACAGGAC, -9.622)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGTGTCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)			
(GTTGAT, -6.089)(CAAGTAG, -7.025)(AACAGGAC, -9.622)(CGGAAA, -7.329)(GTGACTT, -7.855)(AGTGTCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)			
(CGGAAA, -7.329)(GTGACTT, -7.855)(AGTGTCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)	(ATACGC, -7.329)	(CTGCTAT, -7.655)	(AGGTGATT, -9.012)
(CGGAAA, -7.329)(GTGACTT, -7.855)(AGTGTCAT, -9.062)(CATTCT, -5.929)(GTTTTCG, -7.905)(AGTAAGCT, -8.922)	(GTTGAT, -6.089)	(CAAGTAG, -7.025)	(AACAGGAC, -9.622)
(CATTCT, -5.929) (GTTTTCG, -7.905) (AGTAAGCT, -8.922)			
(MIGGG, 0.337) (GIGARG, 7.403) (ARAGUCC, -9.372)			
	(1110000, 0.000)	(010/////07/	(1111100100, 3.3/2)

(GTACGG, -7.539)	(GTGATTC, -7.365)	(AGGATGAT, -8.752)
(GAACAT, -6.089)	(CTTGCTT, -8.195)	(AACCTGCG, -11.292)
(CTAGCG, -7.619)	(GCTAGAA, -7.625)	(AGGACAAC, -9.622)
(GACAAT, -6.089)	(CGTCACT, -9.025)	(AGCCTGAG, -10.542)
(GGTAAC, -6.369)	(CTAAGTC, -6.875)	(AGGACAAT, -9.012)
(CAACTT, -6.189)	(GTAAACC, -7.295)	(ACCCTAAT, -8.682)
(TTCCCG, -8.169)	(CGTGTAA, -8.025)	(AACCTTCT, -8.962)
(GATTAG, -5.109)	(AACGTAG, -7.855)	(AGCTGAAT, -9.252)
(GATTTC, -5.549)	(CGTTTTG, -8.055)	(AAACCCGG, -11.002)
(GCACTG, -7.929)	(CAAGTTC, -7.465)	(AAATGACG, -9.112)
(GACACG, -7.869)	(CCTAGTT, -7.365)	(AGGTGAAT, -9.012)
(GAAAAC, -5.809)	(AGGTTCG, -8.975)	(AGTCTCAA, -8.872)
(TTGCGT, -8.269)	(CGACTAA, -7.715)	(AGACGCCT, -11.372)

Table 6: The 6-, 7-, and 8-nt handle sequences and their NUPACK 3.0⁵² computed kcal/mol energies. Either the handle or complementary handle sequence from the above was appended to the 3' end of the top- or bottom-staple strand sequence with a TT linker. The majority of megastructures formed in this study used permutations of the 32 7-nt handle sequences, versus the 256 6-, 7-, and 8-nt handle sequences which were used to determine growth and spontaneous nucleation using ribbons.

9-nt,	x128	10-nt,	x 100
5 110,		10 110,	
(CAGCTACGA, (TAATAGCAC,	-11.862) -9.932)	(CTAGTCGACC, (TATTCATACG,	-12.404) -10.688)
(CAAAGTTTC,	-9.318)	(CGCACATAAT,	-11.814)
(CACATCAAC,	-10.258)	(CCTGATCCTC,	-12.244)
(TAACATCCC,	-10.812)	(TATGAAACAC,	-10.948)
(CGCATAAAA,	-10.118)	(CCCTAGACCC,	-13.014)
(TTTAAAAAA,	-7.328)	(TAACATGGGA,	-12.462)
(AATTCAAAC,	-8.868)	(CTTTTCTGCA,	-11.828)
(TTGTCATTC, (ATCAAAATC,	-9.618) -8.608)	(TTGACCAATG, (CAATATCGCA,	-11.534) -11.778)
(TTTTCAACT,	-9.218)	(TAAATACATT,	-9.168)
(CAAGACCCT,	-11.228)	(TAATCAACGT,	-11.618)
(ATGGCCTTT,	-11.278)	(ATTACTCCCG,	-12.054)
(ATTGTGCCT,	-11.328)	(ATACCATCGG,	-12.104)
(TCGAATCTG,	-10.802)	(GACTAGCCGT,	-13.294)
(TAACCAAAG,	-10.072)	(TACGCCTAAA,	-12.488)
(TCATCCATG,	-10.672)	(CCCGTTTGAT,	-12.644)
(CGTTTTCAA, (CATGAAACG,	-10.158) -10.538)	(GGCTAACAAT, (CTCCGATGTT,	-11.434) -12.384)
(CCAGACTTC,	-10.738)	(TCACATTTGC,	-12.258)
(CAGCATTCT,	-10.678)	(CAATTTGATC,	-10.034)
(CGACCGTAT,	-11.618)	(CAACCAGTTG,	-12.124)
(CAGGTCTGT,	-11.278)	(TTGCAATAAC,	-10.764)
(TTTTCTCCG,	-10.688)	(CAGTCTGCCC,	-13.894)
(ACACTTCAT,	-9.988)	(TTTCGTATTC,	-10.394)
(AACATTCGT,	-10.428)	(TGGACCACTT,	-12.818)
(TACAAAAGC, (CCTTAGCTC,	-10.472) -10.648)	(CATTGAGCTC, (TTGAATTTAA,	-11.954) -8.884)
(CGGGATATC,	-10.638)	(TATCCACGTT,	-12.458)
(TGAATTTCC,	-9.672)	(CTCTCCTGAC,	-12.244)
(CTACCAGCT,	-11.188)	(ACGTTAACAC,	-11.684)
(ACTTTCACC,	-10.548)	(AACTCTTGAC,	-11.214)
(CGCTTACGT,	-12.118)	(GACCCGATCA,	-13.348)
(TCTCAGACC,	-11.312)	(ACCTACAACC,	-12.034)
(TATTCAATC, (TGCGTAAAC,	-8.872) -11.222)	(TCCTTTACCC, (CACGTATCAC,	-12.168) -11.924)
(TTTGATTTT,	-8.378)	(ACAAATGCAC,	-12.074)
(GCGTTCAAT,	-11.278)	(CTGGAGGCCC,	-14.684)
(AATCTTACA,	-8.782)	(ATCTTCAAAC,	-10.374)
(ATCCACCAG,	-11.278)	(CACATCAGCT,	-12.494)
(TAACCCTTC,	-10.762)	(CACCAATTTC,	-11.134)
(AAACGATCC,	-10.728)	(ACATTCAAAC,	-10.684)
(CCTCTCACA, (TCATACACC,	-11.242) -10.502)	(CAGAACTCGT, (ATGCTCAATT,	-12.384) -11.154)
(TTTTGCACAT,	-10.658)	(TAACCAACTC,	-11.738)
(ACAACATCG,	-10.928)	(CGTGCAGATA,	-13.198)
(CGTTCTCAA,	-10.738)	(TCTACAGAGC,	-12.198)
(CCATACCAC,	-10.768)	(CGGACTATCC,	-12.404)
(TGCAAATTT,	-9.872)	(GCGTTCAAAT,	-12.204)
(TAATTCTTT,	-8.472)	(CACGAGAAAC,	-12.154)
(ACTGGACCT,	-11.618) -10.618)	(TAAAAGACGG, (TATTTGTGGA,	-12.018) -11.622)
(GGTACTCAC, (CATCCAGGT,	-11.278)	(TACATTTCCC,	-11.738)
(ACAATATTC,	-8.328)	(CTGTCGTCCT,	-13.224)
(TACATTTCG,	-10.302)	(CGACTACCCT,	-12.894)
(AGGGTCACC,	-12.228)	(AACCAAAATC,	-10.634)
(ACCACATTC,	-10.598)	(AAAGGCGTTT,	-12.644)
(TAACTTGAT,	-9.362)	(CGACTATGCA,	-12.618)
(GAGGAGGTC,	-11.428) -10.822)	(CAATTCCATC,	-10.874) -12.068)
(TGTTTACCG, (AACAAACAA,	-9.528)	(TACTTTGTCG, (AATTACGTTT,	-10.184)
(AATTACACG,	-9.758)	(AAAAACAAAC,	-10.054)
(TAGTCCAAC,	-10.812)	(ATTCCCTTGG,	-12.154)
(GAGATCTCG,	-10.658)	(CCAGTACCCT,	-12.714)

(AAGCAACTC,	-10.788)	(CCGTCTTTCA,	-12.608)
(GTTCTTGCA,	-11.062)	(TAATTTCAAA,	-9.568)
(ACATTACAT,	-8.868)	(TCGTACTACC,	-12.118)
(TAAAATTTC,	-8.242)	(CAAGCCATTT,	-11.864)
(CTTTACACT,	-9.268)	(CGGTATCTCC,	-12.404)
			,
(TCGAAACTT,	-10.562)	(AAAACTGTCA,	-11.138)
(AACAACGTT,	-10.688)	(ACCTTAGACG,	-12.054)
(TATTATTCC,	-8.542)	(TCTAAGCAAC,	-11.618)
(CTCTGTAGC,	-10.698)	(CTTTAACACT,	-10.194)
(TAACAAATC,	-9.132)	(AGAAAAAAAT,	-9.134)
(TCAACTTCT,	-10.122)	(TTCCAATTCA,	-10.998)
(TTAACATGC,	-9.838)	(ATCAAAAATT,	-9.184)
(CACAATTCT,	-9.598)	(GGAGACTTCC,	-12.354)
(GACTAGGTG,	-10.458)	(CGTTTTTGCA,	-12.578)
(CCATCTTCC,	-10.738)	(CTGACCGGAC,	-13.834)
(TACAAATTA,	-9.045)	(AACTTGCAAC,	-12.024)
(GTAGGATCG,	-10.638)	(TCGCGATTAA,	-12.638)
(CCCCGAGGA,	-13.532)	(AACAAAATGC,	-11.184)
(CCCGGAACC,	-13.118)	(GTATCAAAAT,	-9.254)
(ACGTACAAC,	-10.758)	(CAGTAGCTCC,	-12.464)
(CCCTCTTCA,	-11.192)	(CCACCATTTG,	-12.124)
(TTCATGACA,	-10.122)	(TTTGACAAAC,	-10.804)
(CAGATCCCA,	-11.242)	(TCATTTTTCA,	-10.482)
(TATTCTTCC,	-9.662)	(CTGGATGACC,	-12.554)
(CTACGGACT,	-11.128)	(TCCTTTTCAC,	-11.658)
(AACATACTC,	-9.168)	(CACTACATCC,	-11.434)
(CTAAGAGCC,	-10.648)	(CATTGTCCAT,	-11.414)
(CGCCAATTT,	-11.378)	(CTTGCCAGAT,	-12.444)
(CTGTTACCC,	-10.718)	(TAACGACATC,	-11.968)
(GCCTGTACC,	-11.958)	(TTAATTCACA,	-9.878)
(CCGTTAACT,	-10.548)	(ATGCAAACAT,	-11.464)
(ATCATTCAT,	-8.888)	(GTCGGGTTCT,	-13.334)
(CTAAGCCCT,	-11.138)	(TACAATTACC,	-10.618)
(CTTTTGCGT,	-11.378)	(AGTTGAAGCA,	-12.218)
(TACTTCCAC,	-10.812)	(TCGATTTTCA,	-11.502)
(TCGATTCCA,	-11.415)	(AATCATTTAA,	-8.764)
(TAATGTTGC,	-10.522)		
(CCCCAACTT,	-11.488)		
(AACTTCACC,	-10.548)		
(ATCACTGCA,	-11.342)		
(CCATCCTCA,	-11.242)		
(AATTGCTCC,	-10.788)		
(CAGTACCCC,	-11.558)		
(ACTTCAAAC,	-9.708)		
(CTCACAACT,	-10.438)		
(TTCGACATC,	-10.638)		
(ATACCTTTT,	-8.768)		
(ACGGCTAAT,	-11.178)		
	-9.958)		
(ACTTCGTAA,	,		
(CTACCCTGG,	-11.398)		
(TAACGAATT,	-9.802)		
(TAATTCCAG,	-9.812)		
(AAGATTTTC,	-8.558)		
(TTTCCTTTC,	-9.518)		
(CTAAGGCTC,	-10.648)		
(ACTTTAACC,	-9.378)		
(ACTCCTCTG,	-10.968)		
(TCTTATGGC,	-10.692)		
(TATATTGCA,	-9.595)		
(CTGGAGTCA,	-11.242)		
(TTTTTAACA,	-8.322)		
(CACCACTTT,	-10.698)		
(AATCAACAC,	-9.758)		
(CCTTCTCAG,	-10.578)		
1			

Table 7: The 9- and 10-nt handle sequences and their NUPACK 3.0⁵² computed kcal/mol energies. Either the handle or complementary handle sequence from the above was appended to the 3' end of the top- or

bottom-staple strand sequence with no linker. These handle sequences were used to initially determine the viability of such length handle sequences for controlling nucleation of megastructures, as shown in Fig. S6.

original nanocube strands	modified nanocube strand
STAAGTTGAAGTAGGAAGCTTTTTCTAGCCATAGCATCGACACTACGACCTGCTTTTCGACAC SGACTGCATTCTGGACAGTAACTGCGTTTAACTACGTGCTCCCCAACATAAGTGACGTCCTCASCAG ITGAAAATTATCTCGATAAGCAGAAGGACCTGTATAACTGGCAAGAGACAAGGCCGCTTCAGAA	CATAGAAATTAATTCACAGGACCTGCGAATCCTCGTTTTtttttGGAGTCACAGATTGG
AGATAGCCGGACCGTATTAATGCCGCGCCAACGGTTTCCCGGACCTAGTGCTCTATCAAGCCTA TCTATGAAACCATTCTCGGGTCGAGCGGGCACTGTTGTGACCTACGAGAGCGATAGATGT TCCCCCGGGAATAGCTCACGGCGACTACCTATGATTGGTTAAAGCCTCCTGGGAATTAAT TCCGCCGGAATAGCTCCACGGCGACTCACGTATGCACCCATTCACTGCGGATATAC XGGATGCCAAGGTCCATGGGATTCACCACGCGCGCATACCCCATTCACTGCTGATTTCCACCAC YGGGATGCAGGTCCATGCAAGCTCCTAAGCTCGTATGCACGCAGTCGCAGCGC	complementary handle sequence
TTTAGAATGCAGTCCGTGTCGAAAAGCATAGACACTCG TTTTAGACTTGAGGTCGTATTTT TTTTAGGCTCAGGTCCTATTT TTTTTGGCGCGGCTTCCTATTTT TTTTTGGGCGGGCTCCCTATTTT TTTTTTCGAAGCACTATGTTTT	CCAATCTGTGACTCCA
TTTCTTCAACTTACCTGCTGGGGGCGTGGCCTTGGCGTGCGGGTTT TTTTTGGGGCGCGTGGTTAGAAAAGCATTAATTCTCTTGCTAAAC TTTTGGTCGATGCTATGGCAATGAAGCATCATATAGGTCCGGGTCA TTTTCGGAGCTATCCTTTTT TTTTGGGCGCTTCAGTTATATTTT	
TTTTTTCCGTAGGAAACCGTTTT TTTTCTGTGAGCATTTTCAATTTT AGATATATTCGCGCGGAACATATGGAGAAGTTTGCCACCTGTCGTTTTT JACAGTGACATCCCATGGAATGGGTATGCGGCTTTT	
CATTCATACGCGGAGGTGTCAGGGTGTATACGAGTTTT TTTGCGCTGCCTATAGCGCTTTT TTTGCTGACATTAGTTCGCTTTT TTTCTTGGAGGCTCGACTTTT	

Table 8 Oligos for the nanocube, as adapted from as previously published³⁷. The complementary 16-nt handle sequence was appended to the 6HB bottom staple strands so that nanocubes could be bound to the megastructures to create patterns.

Supplementary references

- 53. Xin, Y., Shen, B., Kostiainen, M.A., Grundmeier, G., Castro, M., Linko, V. & Keller, A. Scaling Up DNA Origami Lattice Assembly. *Chemistry* 27, 8564–8571 (2021).
- 54. Giovampaola, C.D. & Engheta, N. Digital metamaterials. Nat. Mater. 13, 1115–1121 (2014).
- 55. Hartman, N.C. & Groves, J.T. Signaling clusters in the cell membrane. *Curr. Opin. Cell. Biol.* 23, 370–376 (2011).
- Ben Zion, M.Y., He, X., Maass, C.C., Sha, R., Seeman, N.C. & Chaikin, P.M. Self-assembled three-dimensional chiral colloidal architecture. *Science* 358, 633–636 (2017).
- Chatterjee, G., Dalchau, N., Muscat, R. *et al.* A spatially localized architecture for fast and modular DNA computing. *Nature Nanotech.* 12, 920–927 (2017).
- 58. Ponnuswamy, N. *et al.* Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. *Nat. Commun.* **8**, 15654 (2017).
- 59. Gerling, T. *et al*, Sequence-programmable covalent bonding of designed DNA assemblies, *Sci Adv*.4, eaau1157. (2018).