## Urinary Vanin-1, Tubular Injury, and Graft Failure in Kidney Transplant Recipients SUPPLEMENTAL MATERIAL

## **Table of contents**

Supplementary Figure 1. Flow chart of the study population selectionPage 2Supplementary Table 1. STROBE Statement – Checklist of items that should bePage 3included in reports of cohort studies.Page 3

**Supplementary Table 2.** Prospective analysis of the association of 24h urinary Page 6 vanin-1 excretion with death-censored graft failure in which urinary vanin-1 below the detection limit was excluded.

**Supplementary Table 3.** Prospective analysis of the association of 24h urinary Page 7 vanin-1 excretion with death-censored graft failure in which 24h urinary vanin-1 excretion outside the 2.5<sup>th</sup>-97.5<sup>th</sup> percentile was excluded.

**Supplementary Table 4.** Prospective analysis of the association of 24h urinary Page 8 vanin-1 excretion with death-censored graft failure in which 24h urinary vanin-1 excretion outside the 5<sup>th</sup>-95<sup>th</sup> percentile was excluded.

**Supplementary Table 5.** Cox proportional-hazard regression analysis of the Page 9 associations of urinary vanin-1 excretion with graft failure using various transformations in adjusted Cox regression models.

**Supplementary Table 6.** Prospective analysis of the association of urinary Vanin- Page 10 1 concentration with death-censored graft failure in 656 kidney transplant recipients.

**Supplementary Table 7.** Prospective analysis of the association of urinary Vanin- Page 11 1/creatinine ratio with death-censored graft failure in 656 kidney transplant recipients.

Supplementary Figure 1. Flow chart of the study population selection



| lte                  | m No | Recommendation                                                                               | Page No                |
|----------------------|------|----------------------------------------------------------------------------------------------|------------------------|
| Title and abstract   | 1    | (a) Indicate the study's design with a commonly used term in the title or the abstract       | Title and Abstract     |
|                      |      | (b) Provide in the abstract an informative and balanced summary of what was done and         | Abstract               |
|                      |      | what was found                                                                               |                        |
| Introduction         |      |                                                                                              |                        |
| Background/rationale | 2    | Explain the scientific background and rationale for the investigation being reported         | Introduction par 1-4   |
| Objectives           | 3    | State specific objectives, including any prespecified hypotheses                             | Introduction par 4     |
| Methods              |      |                                                                                              |                        |
| Study design         | 4    | Present key elements of study design early in the paper                                      | Methods par 1          |
| Setting              | 5    | Describe the setting, locations, and relevant dates, including periods of recruitment,       | Methods par 1-3        |
|                      |      | exposure, follow-up, and data collection                                                     |                        |
| Participants         | 6    | (a) Give the eligibility criteria, and the sources and methods of selection of participants. | Methods par 1 and 2    |
|                      |      | Describe methods of follow-up                                                                |                        |
|                      |      | (b) For matched studies, give matching criteria and number of exposed and unexposed          | N/A                    |
| Variables            | 7    | Clearly define all outcomes, exposures, predictors, potential confounders, and effect        | Methods par 2 and 6    |
|                      |      | modifiers. Give diagnostic criteria, if applicable                                           |                        |
| Data sources/        | 8*   | For each variable of interest, give sources of data and details of methods of assessment     | Methods par 3 and 4    |
| measurement          |      | (measurement). Describe comparability of assessment methods if there is more than            |                        |
|                      |      | one group                                                                                    |                        |
| Bias                 | 9    | Describe any efforts to address potential sources of bias                                    | Methods par 5          |
| Study size           | 10   | Explain how the study size was arrived at                                                    | Supplementary figure 1 |
| Quantitative         | 11   | Explain how quantitative variables were handled in the analyses. If applicable, describe     | Methods par 5          |
| variables            |      | which groupings were chosen and why                                                          |                        |
| Statistical methods  | 12   | (a) Describe all statistical methods, including those used to control for confounding        | Methods par 5-7        |
|                      |      | (b) Describe any methods used to examine subgroups and interactions                          | Methods par 6          |

**Supplementary Table 1.** STROBE Statement – Checklist of items that should be included in reports of cohort studies.

|                  |     | (c) Explain how missing data were addressed                                                                                                                                                       | Methods par 8                           |
|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                  |     | (d) If applicable, explain how loss to follow-up was addressed                                                                                                                                    | N/A                                     |
|                  |     | ( <u>e</u> ) Describe any sensitivity analyses                                                                                                                                                    | Methods par 7                           |
| Results          |     |                                                                                                                                                                                                   |                                         |
| Participants     | 13* | (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed | Supplementary Figure 1                  |
|                  |     | (b) Give reasons for non-participation at each stage                                                                                                                                              | Supplementary Figure 1                  |
|                  |     | (c) Consider use of a flow diagram                                                                                                                                                                | Supplementary Figure 1                  |
| Descriptive data | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social) and                                                                                                             | Results par 1                           |
|                  |     | information on exposures and potential confounders                                                                                                                                                | Table 1                                 |
|                  |     | (b) Indicate number of participants with missing data for each variable of interest                                                                                                               | Footnotes tables                        |
|                  |     | (c) Summarise follow-up time (eg, average and total amount)                                                                                                                                       | Results par 3                           |
| Outcome data     | 15* | Report numbers of outcome events or summary measures over time                                                                                                                                    | Results par 3                           |
| Main results     | 16  | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and                                                                                                               | Table 2, Supplementary Table            |
|                  |     | their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included                                                                          | 3-7                                     |
|                  |     | (b) Report category boundaries when continuous variables were categorized                                                                                                                         | Table 2, Supplementary Table 3, 4, 6, 7 |
|                  |     | (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period                                                                                  | N/A                                     |
| Other analyses   | 17  | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                                                    | Results par 4                           |

| Discussion        |    |                                                                                        |                    |
|-------------------|----|----------------------------------------------------------------------------------------|--------------------|
| Key results       | 18 | Summarise key results with reference to study objectives                               | Discussion par 1   |
| Limitations       | 19 | Discuss limitations of the study, taking into account sources of potential bias or     | Discussion par 5   |
|                   |    | imprecision. Discuss both direction and magnitude of any potential bias                |                    |
| Interpretation    | 20 | Give a cautious overall interpretation of results considering objectives, limitations, | Discussion par 2-5 |
|                   |    | multiplicity of analyses, results from similar studies, and other relevant evidence    |                    |
| Generalisability  | 21 | Discuss the generalisability (external validity) of the study results                  | Discussion par 5   |
| Other information |    |                                                                                        |                    |
| Funding           | 22 | Give the source of funding and the role of the funders for the present study and, if   | Funding section    |
|                   |    | applicable, for the original study on which the present article is based               |                    |

|          | Tertile 1 | Tertile 2        |         | Tertile 3        |         | Continuous (Per doubling) |         |
|----------|-----------|------------------|---------|------------------|---------|---------------------------|---------|
|          | N = 214   | N = 214          |         | N = 214          | N = 214 |                           | U,      |
|          | < 82.8    | 83 – 247 pmol/   | ′24h    | > 247 pmol       | /24h    |                           |         |
|          | pmol/24h  |                  |         |                  |         |                           |         |
| n events | 26        | 35               |         | 32               |         | 93                        |         |
| Model    |           | HR (95%CI)       | p-value | HR (95%CI)       | p-value | HR (95%CI)                | p-value |
| Crude    | Ref       | 1.42 (0.85-2.35) | 0.2     | 1.21 (0.72-2.04) | 0.5     | 1.08 (0.93-0.97)          | 0.2     |
| Model 1  | Ref       | 1.49 (0.89-2.49) | 0.1     | 1.25 (0.74-2.10) | 0.4     | 1.09 (0.97-1.21)          | 0.1     |
| Model 2  | Ref       | 1.13 (0.67-1.89) | 0.6     | 1.05 (0.62-1.77) | 0.9     | 1.06 (0.94-1.19)          | 0.4     |
| Model 3  | Ref       | 0.91 (0.54-1.53) | 0.7     | 0.75 (0.44-1.29) | 0.3     | 0.97 (0.85-1.10)          | 0.6     |
| Model 4  | Ref       | 0.90 (0.53-1.52) | 0.7     | 0.74 (0.43-1.27) | 0.3     | 0.98 (0.87-1.12)          | 0.8     |

**Supplementary Table 2.** Prospective analysis of the association of 24h urinary vanin-1 excretion with death-censored graft failure in which urinary vanin-1 below the detection limit were excluded.

Of 656 kidney transplant recipients, 14 of them had urinary vanin-1 below the detection limit, leaving 642 kidney transplant recipients for Cox proportional-hazard regression analyses. Death-censored graft failure was defined as the need for re-transplantation or (re-)initiation of dialysis. Model 1 was adjusted for age, sex, and body surface area. Model 2 was further adjusted for the estimated glomerular filtration rate based on the creatinine-based CKD-EPI formula. Model 3 was further adjusted for 24-hour urinary protein excretion. Model 4 was further adjusted for the use of proliferation inhibitors. 95% CI, 95% confidence interval; HR, hazard ratio.

|          | Tertile 1     | Tertile 1Tertile 2Tertile 3 |         | Continuous (Per     | doubling) |                  |                    |
|----------|---------------|-----------------------------|---------|---------------------|-----------|------------------|--------------------|
|          | N = 208       | N = 207                     |         | N = 20 <sup>°</sup> | N = 207   |                  | <i>ao ao mang)</i> |
|          | < 79 pmol/24h | 79 – 239 pmol/24h           |         | > 239 pmol/24h      |           |                  |                    |
| n events | 26            | 33                          |         | 31                  |           | 90               |                    |
| Model    |               | HR (95%CI)                  | p-value | HR (95%CI)          | p-value   | HR (95%CI)       | p-value            |
| Crude    | Ref           | 1.34 (0.80-2.24)            | 0.3     | 1.17 (0.69-1.98)    | 0.6       | 1.08 (0.96-1.22) | 0.2                |
| Model 1  | Ref           | 1.43 (0.85-2.40)            | 0.2     | 1.21 (0.71-2.05)    | 0.5       | 1.09 (0.96-1.22) | 0.2                |
| Model 2  | Ref           | 1.10 (0.65-1.85)            | 0.7     | 1.01 (0.60-1.71)    | 1.0       | 1.04 (0.92-1.18) | 0.6                |
| Model 3  | Ref           | 0.92 (0.54-1.57)            | 0.8     | 0.76 (0.44-1.30)    | 0.3       | 0.96 (0.84-1.10) | 0.6                |
| Model 4  | Ref           | 0.91 (0.54-1.56)            | 0.7     | 0.74 (0.43-1.28)    | 0.3       | 0.98 (0.86-1.12) | 0.8                |

**Supplementary Table 3.** Prospective analysis of the association of 24h urinary vanin-1 excretion with death-censored graft failure in which 24h urinary vanin-1 excretion outside the 2.5<sup>th</sup>-97.5<sup>th</sup> percentile were excluded.

Of 656 kidney transplant recipients, 17 of them had urinary vanin-1 below the 2.5<sup>th</sup> percentile, and another 17 had urinary vanin-1 above the 97.5<sup>th</sup> percentile, leaving 622 kidney transplant recipients for Cox proportional-hazard regression analyses. Death-censored graft failure was defined as the need for re-transplantation or (re-)initiation of dialysis. Model 1 was adjusted for age, sex, and body surface area. Model 2 was further adjusted for the estimated glomerular filtration rate based on the creatinine-based CKD-EPI formula. Model 3 was further adjusted for 24-hour urinary protein excretion. Model 4 was further adjusted for the use of proliferation inhibitors. 95% CI, 95% confidence interval; HR, hazard ratio.

|          | Tertile 1 | Tertile 2        |         | Tertile 3        |                | Continuous (Per doubling) |         |
|----------|-----------|------------------|---------|------------------|----------------|---------------------------|---------|
|          | N = 197   | N = 197          |         | N = 19           | 6              |                           |         |
|          | < 84.3    | 84.3 – 230 pmo   | l/24h   | > 230 pmol       | > 230 pmol/24h |                           |         |
|          | pmol/24h  |                  |         |                  |                |                           |         |
| n events | 25        | 33               |         | 27               |                | 85                        |         |
| Model    |           | HR (95%CI)       | p-value | HR (95%CI)       | p-value        | HR (95%CI)                | p-value |
| Crude    | Ref       | 1.38 (0.82-2.32) | 0.2     | 1.06 (0.61-1.83) | 0.8            | 1.05 (0.92-1.21)          | 0.5     |
| Model 1  | Ref       | 1.47 (0.87-2.47) | 02      | 1.10 (0.63-1.90) | 0.7            | 1.06 (93-1.21)            | 0.4     |
| Model 2  | Ref       | 1.10 (0.65-1.87) | 0.7     | 0.90 (1.11-1.56) | 0.7            | 1.00 (0.87-1.15)          | 1.0     |
| Model 3  | Ref       | 0.92 (0.54-1.58) | 0.8     | 0.68 (0.39-1.19) | 0.2            | 0.93 (0.80-1.07)          | 0.3     |
| Model 4  | Ref       | 0.92 (0.54-1.57) | 0.7     | 0.67 (0.38-1.19) | 0.2            | 0.95 (0.82-1.10)          | 0.5     |

**Supplementary Table 4.** Prospective analysis of the association of 24h urinary vanin-1 excretion with death-censored graft failure in which 24h urinary vanin-1 excretion outside the 5<sup>th</sup>-95<sup>th</sup> percentile were excluded.

Of 656 kidney transplant recipients, 33 of them had urinary vanin-1 below the 5<sup>th</sup> percentile, and another 33 had urinary vanin-1 above the 95<sup>th</sup> percentile, leaving 590 kidney transplant recipients for Cox proportional-hazard regression analyses. Death-censored graft failure was defined as the need for re-transplantation or (re-)initiation of dialysis. Model 1 was adjusted for age, sex, and body surface area. Model 2 was further adjusted for the estimated glomerular filtration rate based on the creatinine-based CKD-EPI formula. Model 3 was further adjusted for 24-hour urinary protein excretion. Model 4 was further adjusted for the use of proliferation inhibitors. 95% CI, 95% confidence interval; HR, hazard ratio.

**Supplementary Table 5.** Cox proportional-hazard regression analysis of the associations of urinary vanin-1 excretion with graft failure using various transformations in adjusted Cox regression models.

| Transformation                         | Graft failure      |         |  |  |
|----------------------------------------|--------------------|---------|--|--|
|                                        | $n_{event}=79/656$ |         |  |  |
|                                        | HR (95% CI)        | p-value |  |  |
| Standardized urinary vanin-1 excretion | 1.00 (1.00-1.00)   | 0.7     |  |  |
| Square root urinary vanin-1 excretion  | 0.99 (0.96-1.02)   | 0.5     |  |  |
| 1/Urinary vanin-1 excretion            | 1.24 (0.62-2.47)   | 0.5     |  |  |

Models were adjusted for age, sex, body surface area, estimated glomerular filtration rate based on creatinine-based CKD-EPI formula, 24-hour urinary protein excretion, and the use of proliferation inhibitor. 95% CI, 95% confidence interval; HR, hazard ratio.

|          | Tertile 1     | Tertile 2        |         | Tertile 3        |         | Continuous (Per doubling) |         |
|----------|---------------|------------------|---------|------------------|---------|---------------------------|---------|
|          | N = 219       | N = 219          |         | N = 213          | N = 218 |                           | U,      |
|          | < 32.3 pmol/L | 32.3 – 109.3 pm  | ol/L    | > 109.3 pmol/L   |         |                           |         |
| n events | 23            | 37               |         | 34               |         | 94                        |         |
| Model    |               | HR (95%CI)       | p-value | HR (95%CI)       | p-value | HR (95%CI)                | p-value |
| Crude    | Ref           | 1.73 (1.02-2.90) | 0.040   | 1.50 (0.88-2.56) | 0.1     | 1.11 (1.00-1.22)          | 0.044   |
| Model 1  | Ref           | 1.85 (1.09-3.13) | 0.022   | 1.53 (0.89-2.61) | 0.1     | 1.11 (1.01-1.22)          | 0.039   |
| Model 2  | Ref           | 1.33 (0.78-2.25) | 0.3     | 1.16 (0.68-1.98) | 0.6     | 1.05 (0.94-1.18)          | 0.4     |
| Model 3  | Ref           | 1.09 (0.63-1.87) | 0.8     | 0.85 (0.49-1.47) | 0.6     | 0.98 (0.87-1.09)          | 0.7     |
| Model 4  | Ref           | 0.98 (0.54-1.75) | 0.9     | 0.71 (0.39-1.30) | 0.3     | 0.97 (0.87-1.09)          | 0.6     |

**Supplementary Table 6.** Prospective analysis of the association of urinary Vanin-1 concentration with death-censored graft failure in 656 kidney transplant recipients.

Cox proportional-hazard regression analyses were performed to assess the association of urinary vanin-1 concentration with the risk of deathcensored graft failure (the need for re-transplantation or (re-)initiation of dialysis). Model 1 was adjusted for age, sex, and body surface area. Model 2 was further adjusted for the estimated glomerular filtration rate based on the creatinine-based CKD-EPI formula. Model 3 was further adjusted for 24-hour urinary protein excretion. Model 4 was further adjusted for the use of proliferation inhibitors. 95% CI, 95% confidence interval; HR, hazard ratio.

| <b>Supplementary Table 7.</b> Prospective analysis of the association of urinary | Vanin-1/creatinine ratio with death-censored graft failure in 656 kidney |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| transplant recipients.                                                           |                                                                          |

|          | Tertile 1 | Tertile 2         |         | Tertile 3        |         | Continuous (Per doubling) |         |
|----------|-----------|-------------------|---------|------------------|---------|---------------------------|---------|
|          | N = 219   | N = 219           |         | N = 21           | N = 218 |                           | Ċ,      |
|          | < 7.21    | 7.21 – 21.78 pmol | /mmol   | > 21.78 pmol     | /mmol   |                           |         |
|          | pmol/mmol |                   |         |                  |         |                           |         |
| n events | 21        | 41                |         | 32               |         | 94                        |         |
| Model    |           | HR (95%CI)        | p-value | HR (95%CI)       | p-value | HR (95%CI)                | p-value |
| Crude    | Ref       | 2.11 (1.25-3.57)  | 0.005   | 1.65 (0.95-2.86) | 0.078   | 1.11 (1.01-1.23)          | 0.039   |
| Model 1  | Ref       | 2.24 (1.32-3.81)  | 0.003   | 1.74 (1.00-3.03) | 0.051   | 1.12 (1.01-1.24)          | 0.025   |
| Model 2  | Ref       | 1.53 (0.89-2.60)  | 0.1     | 1.44 (0.82-2.52) | 0.2     | 1.07 (0.95-1.20)          | 0.3     |
| Model 3  | Ref       | 1.19 (0.69-2.05)  | 0.5     | 1.03 (0.58-1.83) | 0.9     | 0.99 (0.88-1.11)          | 0.8     |
| Model 4  | Ref       | 1.11 (0.61-2.03)  | 0.7     | 0.96 (0.51-1.83) | 0.9     | 0.99 (0.88-1.11)          | 0.8     |

Cox proportional-hazard regression analyses were performed to assess the association of urinary vanin-1/creatinine ratio with the risk of deathcensored graft failure (the need for re-transplantation or (re-)initiation of dialysis). Model 1 was adjusted for age, sex, and body surface area. Model 2 was further adjusted for the estimated glomerular filtration rate based on the creatinine-based CKD-EPI formula. Model 3 was further adjusted for 24-hour urinary protein excretion. Model 4 was further adjusted for the use of proliferation inhibitors. 95% CI, 95% confidence interval; HR, hazard ratio.