
S-1 Supplementary methods951

S-1.1 Other methods implemented in the condiments package to test equality952

of distributions.953

These methods were found to be less e�cient in initial benchmarking, but are implemented in case users954

wish to apply them.955

S-1.1.1 Multivariate case: The two-sample kernel test956

Mean maximum discrepancy. The two-sample kernel test was defined by Gretton et al. [37] and957

relies on the mean maximum discrepancy (MMD). Considering a kernel function958

k : Rd ⇥ Rd ! R
(x, y) 7! k(x, y)

the MMD is then defined as
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For a properly defined kernel, we have MMD
2(P1,P2, k) = 0 i.i.f. P1 = P2.959

Unbiased statistic. Following Gretton et al. [37], we define the unbiased MMD statistic:960
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Linear statistic for faster computations. While the MMD
2 o↵ers fast convergence, it can be961

burdensome to compute when m and n get large. Gretton et al. [37] propose a linear statistic in the case962

m = n. We can extend this in the general setting by just sampling a fixed fraction of the terms of each963

sum. This lowers kernel computation costs drastically.964

Null distribution of the statistic. For some kernels, theMMD
2
u follows some theoretical inequalities965

under the null that allows one to define rejection regions. However, this is not always the case. Therefore,966

in practice, we instead rely on permutations to compute a null distribution for the test statistic. Under967

the null, Xi and Yj are from the same distribution so they can be swapped in the sums. We can therefore968

generate an empirical distribution and use it to define rejection regions.969

S-1.1.2 Multivariate case: Optimal transport970

We consider the Wasserstein distance [44, 45], also known as earth’s mover distance, between the two971

distributions, estimated using the samples X and Y. We can generate a null distribution for this metric972

by permuting observations in the combined X and Y datasets, thereby obtaining a valid test for H0 :973

P1 = P2. This works in any number of dimensions, but is limited to the two-sample case.974

S-1.1.3 No confounding975

Some settings allow for proper experimental design, such that there is no confounding and each batch976

contains cells from each condition. In such cases, we propose two additional methods.977

distinct [46] is a statistical testing method that uses permutation to compare distributions and relies978

on the existence of multiple batches.979

We also implemented a version of the topologyTest that is run on each batch separately, using any of980

the previously mentioned statistical testing methods. The p-values can then either be combined via Stouf-981

fer’s Z-score method [41], or each batch can be analyzed separately to identify potential normalization982

problems or interesting biological results.983
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S-1.2 Mutinomial test984

We consider a set of categories arbitrarily numbered from 1 to C. Additionally, we consider a null
distribution C0, defined on 1 to C by a vector of probabilities p = {pc}Cc=1. Then, given a set of n
i.i.d. realizations (c1, . . . , cn) of a random variable C, we can test the null hypothesis H0 : C ⇠ C0 or,
equivalently, H0 : P(C = c) = pc, 8c 2 {1, . . . , C} as follows. Under the null, PH0(ci) = pci and the
associated p-value of the multinomial test can be defined as:

P (x,p) =
X

y2{1,...,C}n:PH0 (y)PH0 (x)

PH0(y).

It verifies: 8↵ 2 [0 : 1],PH0(P (x,p)  ↵)  ↵.985

S-1.3 Case studies: Pre-processing.986

TGF-�. The two conditions are normalized separately using SCTransform [47] and then integrated987

using Seurat [20]. The reduced-dimensional representation is computed using UMAP [28] on the top 50988

principal components (PC). The imbalance score is computed with parameters k = 20 and smooth = 40.989

The trajectory is estimated using slingshot. The topologyTest is run with 100 permutations with the990

Kolmogorov-Smirnov test and default threshold of .01. The progressionTest is run with defaults. All991

genes with at least 2 reads in 15 cells are kept. The smoothers are fitted for each gene using 7 knots,992

as recommended by the evaluateK function. Gene set enrichment analysis is done using the fgsea [32]993

package on the GO Biological Process ontology sets.994

Fibrosis. The reduced-dimensional coordinates were obtained from the original publication. The im-995

balance score is computed with parameters k = 20 ans smooth = 30 and the topologyTest is run996

with the default parameters. The trajectories are estimated using slingshot. The progressionTest and997

fateSelectionTest are run with defaults. All genes with at least 2 reads in 30 cells are kept. The998

smoothers are fitted for each gene using 6 knots, as recommended by the evaluateK function.999

TCCD. We follow the workflow of the original publication. The dataset is first filtered using the cell1000

type assignments from the original publication to only retains cells labelled as hepatocytes. The count1001

matrix is scaled using Seurat [20] and reduced-dimensional coordinates are computed using UMAP [28]1002

on the top 30 PCs. The imbalance score is computed with default k and smooth = 5. The trajectory is1003

estimated using slingshot. The topologyTest is run with 100 permutations with the Kolmogorov-Smirnov1004

test and default threshold of .01. The progressionTest is run with defaults. All genes with at least 31005

reads in 10 cells are kept. The smoothers are fitted for each gene using 7 knots, as recommended by the1006

evaluateK function.1007

KRAS. The reduced-dimensional coordinates were obtained from the original publication, using Zinb-1008

wave [48]. The imbalance score is run with defaults and the topologyTest is run with 100 permutations1009

with the classifier test and default threshold of .01. The trajectories are estimated using slingshot with pa-1010

rameters reweight = FALSE and reassign = FALSE. The progressionTest and fateSelectionTest1011

are run with defaults. All genes with at least 5 reads in 10 cells are kept. The smoothers are fitted for1012

each gene using 6 knots, as recommended by the evaluateK function.1013
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S-1.4 Runtimes1014

We use the TGF-� dataset to compute runtimes as a function of the number of cells. The number of1015

genes is only a factor in Step 3, and can be naively parallelized.1016

We randomly sample cells, by spatial Id and condition, with n 2 {100, 200, 500, 1000, 2000, 5000, 9268},1017

10 times, and we compute the runtimes of each step, varying the number of knots in Step 3.1018

S-1.5 Statistical validity and properties of the p-values of Step 31019

Statistical validity of the p-values : To assess the statistical validity of the p-values produced by1020

the conditionTest, we generate p-values under the null. To do so, we use the TGFB dataset, but we1021

randomly assign each cell to a condition A or B that we use as input to the fitGam function. We then1022

run the conditionTest, testing against varying levels of log-fold-change cut-o↵s. Results are presented1023

in the corresponding supplementary results section.1024

Controlling the false discovery rate : To assess how the false discovery rate is controlled via1025

Benjamini-Hochberg correction [24], we generate a new simulated dataset. We first use fitGAM on all1026

genes of the TGF-� dataset, using only the 5, 027 cells from the control condition, and extract the fitted1027

negative binomial distribution. We then sample from that distribution, using the pseudotimes of the1028

original cells as inputs. For half of the cells, and for genes among the top 1,000 most associated with1029

pseudotime via the associationTest, we amplify the association by multiplying the coe�cients sjlc (see1030

Equation 11) by a factor of 2, meaning that we create a log-fold-change e↵ect of 2 for those genes.1031

We then reran fitGAM on this simulated dataset, followed by the conditionTest testing against1032

varying log-fold-change cut-o↵s. This entire procedure was repeated 10 times. Results are presented in1033

the corresponding supplementary results section.1034

S-2 Supplementary Results1035

S-2.1 Examples1036
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Figure S1: Illustrating the first two steps of the condiments workflow with several scenarios. (a) The
examples are all built on a similar wild-type backbone, i.e., two lineages that slowly diverge in the
absence of knocking out. Cells either originate from a wild-type (WT, blue) or a knock-out (KO, orange)
condition. In (b), the knock-out has no e↵ect, all three tests fail to reject their null hypothesis. In
(c), the knock-out partly blocks di↵erentiation along Lineage 2, meaning that fewer cells develop along
that lineage. In this case, while the topologyTest fails to reject the null, we have both di↵erential
progression along Lineage 2 and di↵erential fate selection. In (d), the knock-out speeds development, so
there are more orange cells toward the end of both lineages. This leads to both di↵erential progression
and fate selection. In (e), the knock-out modifies the intermediate stage for Lineage 1 and changes where
the lineages bifurcates; based on the topologyTest, we fit one trajectory per condition. However, the
skeleton structure is unchanged, so there is a mapping between the two trajectories and we can still test
for di↵erential progression and fate selection. In both cases, we fail to reject the null. Finally, in (f), the
knock-out fully disrupts the developmental process: all cells in the knock-out condition progress along a
new lineage. Here, we fit separate trajectories and these cannot be reconciled easily, so we cannot proceed
to Steps 2 and 3.

S-2.2 Runtimes1037

Step 3 is indeed by far the slowest of all, followed by Step 1. However, note that both Step 1 and 3 can1038

be fully parallelized and can therefore take advantage of multiple cores. Step 3 scales in the number of1039

genes, which can be o↵set with parallelization, but also with the number of parameters to estimate.1040

S-4



Figure S2: TGF-� dataset: runtimes. We compute the runtimes of each step, with 10 repeats, and by
downsampling the dataset. Step 1 and 3 are the longest, but they can be parallelized.

S-2.3 Simulations for Step 21041
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Figure S3: Simulation example. Regulator networks for the (a) two-lineage, (b) three-lineage, and (c)

five-lineage trajectories.
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Figure S4: Sensitivity of Step 2 to incorrect trajectory inference. The p-value associated with the pro-
gressionTest (y-axis, normal scale and log-scale) are displayed for increasing levels of noise on pseudotime
estimation (x-axis) and lineage assignment (color). For each noise level, we do 100 repetitions and plot
the median p-value.

Figure S5: Sensitivity of Step 2 to incorrect decision at Step 1. The receiver operating characteris-
tic (ROC) curves are displayed when performing either the fateSelectionTest (left panel) or the
progressionTest (right panel), downstream of the following two choices after Step 1: fitting a com-
mon trajectory (in red) and a separate trajectory per condition (in blue). Results are similar, although
the fateSelectionTest is more impacted
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Figure S6: Simulated dataset of the fourth type Reduced-dimensional representation of a dataset with five
lineages and 3 conditions, such as the one in Fig. 2d, using the third and fourth dimensions to show that
the lineages do separate when more dimensions are considered.

Figure S7: Results on the third type of simulated dataset. For all values of m 2 {.5, .8, .9, .95, 1}, we
generate null datasets with two lineages and three conditions and we compute the adjusted p-values of all
tests that can handle 3 conditions. The distributions of p-values are then displayed. m = 1 is negative (no
e↵ect), while m < 1 is positive (some e↵ect) with smaller values (toward the left) representing stronger
e↵ect.
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S-2.4 Statistical validity and properties of the p-values of Step 31042

To be valid, under the null, the empirical distribution of the J p-values pj should verify the following, for1043

all p 2 {0 : 1},1044

PJ
j=1 1pjp

J
 p.

We see below that this is true for all log-fold cut-o↵s. As expected, the test is more and more1045

conservative as we increase the log-fold-change, ranging from mildly conservative for a log-fold-change of1046

zero, to very conservative for a log-fold-change of 2.1047

Figure S8: conditionTest under the null. Comparison of the distribution of p-values resulting from
running the conditionTest for various log-fold-change cut-o↵s (Thresh in log scale), to the nominal
uniform distribution.

We then focused on false discovery rate control. We adjusted the p-values from the conditionTest1048

via BH-correction and computed the false discovery rate at varying levels of nominal control. We see that,1049

when testing against a null of no change (log-fold-change of 0), conditionTest with BH-correction does1050

not properly control the FDR at any level. On the other hand, when testing against a log-fold-change1051

threshold of log(1.2) or greater, we control the nominal false discovery rate at appropriate levels for all1052

values.1053
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Figure S9: conditionTest and FDR control. Comparison of the true and nominal rates of false discov-
eries.

S-2.5 TGF-B1054

Figure S10: TGF-� dataset: TGF-� receptors. We fit smoothers for the two TGF-� receptors, TGFBR1

and TGFBR2. Those two genes are more highly expressed in the TGF-� condition.
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Table S1: Gene Set Enrichment Analysis. We perform a gene set enrichment analysis on all 10,100 genes
expressed in the Fibrosis dataset, using the test statisic from the patternTest and fgsea [32]. We adjust
for multiple testing by controlling the false discovery rate at the 5% level

pathway pvalue adjusted pvalue

Biological Adhesion 0.00002 0.0174885
Cell Population Proliferation 0.00002 0.0174885

Defense Response 0.00002 0.0174885
Negative Regulation Of Multicellular Organismal Process 0.00002 0.0174885

Anatomical Structure Formation Involved In Morphogenesis 0.00004 0.0174885
Animal Organ Morphogenesis 0.00004 0.0174885

Cell Activation 0.00004 0.0174885
Epithelium Development 0.00004 0.0174885

Reproduction 0.00004 0.0174885
Cell Cell Adhesion 0.00006 0.0196746

Locomotion 0.00006 0.0196746
Regulation Of Immune System Process 0.00006 0.0196746

Cell Migration 0.00008 0.0224853
Multi Organism Process 0.00008 0.0224853

Response To Corticosteroid 0.00010 0.0262328
Positive Regulation Of Immune System Process 0.00012 0.0277759

Tube Development 0.00012 0.0277759
Tube Morphogenesis 0.00016 0.0349771

Regulation Of Proteolysis 0.00020 0.0414202
Regulation Of Peptidase Activity 0.00024 0.0465036

Response To Organic Cyclic Compound 0.00026 0.0465036
Response To Oxygen Containing Compound 0.00026 0.0465036

Regulation Of Multicellular Organismal Development 0.00028 0.0479034

S-2.6 Fibrosis1055
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Figure S11: Fibrosis dataset: fitting separate trajectories. One trajectory is fitted per condition, using
Slingshot. The absence of any cells from SCGB3A2+ in the control leads to an inappropriate shrinkage
of the lineages (green curves) towards the AT1 cells.
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Figure S12: Fibrosis dataset: Di↵erential gene expression. The tradeSeq gene expression model is fitted
using the trajectory computed with slingshot. Di↵erential expression between lineages is assessed using
the patternTest. The four genes mentioned in the original paper all display di↵erences between the two
lineages, but none between the conditions (a-d). After adjusting the p-values to control the FDR at a
nominal level of 5%, we display genes in both conditions using a pseudocolor image (e).
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S-2.7 TCDD1056

Nault et al. [10] collected a dataset of 16, 015 single nuclei to assess the hepatic e↵ects of 2,3,7,8-1057

tetrachlorodibenzo-p-dioxin or TCDD. In particular, they focused on the e↵ect of TCDD on the 9, 9511058

hepatocytes cells along the central-portal axis. This dataset is not a developmental dataset per se but still1059

exhibits continuous changes along a spatial axis, demonstrating the versatility of the trajectory inference1060

framework in general, and of the condiments workflow in particular.1061

Fig. S13a shows a reduced-dimensional representation of the dataset, with cells labelled according to1062

treatment/control condition, while Fig. S13b shows the same plot colored by cell type, as derived by the1063

authors of the original publication. The cells are aligned in a continuum, from central to mid-central and1064

then mid-portal and portal. The imbalance score shows some spatial pattern (Fig. S13c). However, the1065

nominal p-value associated with the topologyTest is .07. We therefore fail to reject the null and we infer1066

a common trajectory using slingshot on the spatial clusters. This results in a single-lineage trajectory1067

that respects the ordering of the spatial clusters (Fig. S13d). Note that, since the trajectory reflects a1068

spatial continuum rather than a temporal one, the start of the trajectory is arbitrary. However, inverting1069

the start and end clusters amounts to an a�ne transformation of the pseudotimes for all the cells. Step1070

2 and 3 are fully invariant to this transformation, so we can pick the Central cluster as the start of the1071

trajectory.1072

Figure S13: TCDD dataset: Di↵erential topology and di↵erential progression. After normalization and
projection on a reduced-dimensional space, the cells can be represented, colored either by treatment
label (a) or cell type (b). Using the treatment label and the reduced-dimensional coordinates, an imbal-
ance score is computed and displayed (c). The diffTopoTest rejects the null and separate trajectories
are fitted for each condition (d). After mapping the lineages, there is also di↵erential progression: the
pseudotime distribution along the trajectory are not identical (e) and we indeed reject the null using the
diffProgressionTest.

The densities of the treatment and control pseudotime distributions di↵er greatly visually (Fig. S13e),1073

with the TCDD density heavily skewed toward the start of the trajectory. Indeed, the progressionTest1074

has a nominal p-value  2.2 ⇥ 10�16. This coincides with the finding of the original publication which1075

highlighted the periportal hepatotoxicity of TCDD.1076

The ability of the progressionTest to correctly find large-scale changes in the spatial distribution1077

of cells between conditions underscores why we favor fitting a common trajectory. Indeed, the p-value of1078
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Figure S14: TCDD dataset: Di↵erential expression. The tradeSeq gene expression model is fitted using
the trajectory computed with slingshot. Di↵erential expression between conditions is assessed using the
conditionTest and genes are ranked according to the test statistics. The genes with the highest (a),
second highest (b), and smallest (c) test statistics are displayed. After adjusting the p-values to control
the FDR at a nominal level of 5%, we display genes in both conditions using a pseudocolor image (d).

the topologyTest in Step 1 is rather small and would have been below .05 if we had not conducted a1079

test against a threshold. However, testing against a threshold and thus fitting a common trajectory does1080

not stop the workflow from finding large-scale di↵erences between conditions in Step 2 and results in a1081

more stable estimate of the trajectory.1082

After gene filtering, we test 8, 027 genes for spatial di↵erential expression between conditions and we1083

find 2, 114 DE genes when controlling the FDR at a nominal level of 5%. The genes with the largest,1084

second largest, and smallest test statistics are displayed in Fig.S14a-c. Similarly to Nault et al. [10], we1085

obtain a list of zonal genes from Halpern et al. [49]. The proportion of zonal genes among the DE genes1086

is twice their proportion among non-DE genes.1087

S-2.8 KRAS1088

KRAS dataset1089

Xue et al. [27] studied the impact of KRAS(G12C) inhibitors at the single-cell level on three models1090

of KRAS(G12C) lung cancers. Specifically, they examined how various cell populations react to these1091

inhibitors and how some cells can return in proliferation mode shortly after the end of the treatment.1092

Here, we want to investigate how the three cancer models (H358, H2122, and SW1573) di↵er in their1093

response to the KRAS(G12C) inhibitors.1094

We use the reduced-dimensional representation from the original paper to display the 10, 177 cells from1095

the various types (Fig S15a). Using the cancer type labels and the reduced-dimensional coordinates, an1096

imbalance score can be computed (Fig S15b); some regions clearly show an imbalance. This is further1097

confirmed by the topologyTest, with p-value smaller than 2.2⇥10�16. We therefore do not fit a common1098

trajectory to all cancer types (Fig S15c).1099

Note that this does not necessarily imply that the trajectory of reaction to the KRAS(G12C) inhibitors1100

is di↵erent between cancer types. Indeed, this may also reflect strong batch e↵ects between conditions,1101

which the normalization scheme was unable to fully remove when integrating the three cancer types in1102

S-15



Figure S15: KRAS dataset: Di↵erential topology, di↵erential progression, and di↵erential fate selec-

tion. Using the reduced-dimensional representation of the original publication (t-SNE), the cells can
be colored by cancer type (a.). Using the cancer type label and the reduced-dimensional coordinates,
an imbalance score is computed and displayed (b). The topologyTest rejects the null hypothesis of a
common trajectory, we thus fit one trajectory per condition (c). However, the skeleton graphs have the
same structure (d), so we can progress to the next steps in the condiments workflow. There is di↵erential
progression (e) and we indeed reject the null of identical pseudotime distributions along the trajectory
using the progressionTest. Similarly, there is di↵erential fate selection (f) and we reject the null of
identical weight distributions along the trajectory using the fateSelectionTest. Here, we summarize
the distributions by looking at the average weight for each lineage in each condition, which already shows
some clear di↵erences.

one common reduced-dimensional representation. Thus, it is not really possible to draw a biological1103

conclusion at this first step. However, this does mean that a separate trajectory should be fitted to each1104

condition.1105

Here, the trajectories, although di↵erent, are similar enough that we can still use an underlying1106

common skeleton (Fig S15d). Indeed, we keep the tree structure derived by computing the minimum1107

spanning tree (MST) on the clusters using all cells. This way, it is possible to derive a one-to-one mapping1108

between the lineages of the three trajectories and we respect the assumptions detailed in Section 1.2 that1109

are necessary for the progressionTest and fateSelectionTest.1110

Using this common mapping, we can then proceed to the progressionTest. At the global trajectory1111

level, the nominal p-value is smaller than 2.2⇥10�16, showing clear di↵erential progression. At the lineage1112

level, all three lineages show strong di↵erential progression, with p-values of 2.2 ⇥ 10�16, 1.2 ⇥ 10�12,1113

and 1.2 ⇥ 10�14, respectively. The density plots for the pseudotime distributions at the single-lineage1114

level (Fig S15e) indicate that the di↵erential progression is driven by a group of cells from cancer type1115

H2122A. This matches the top left part of the reduced-dimensional plot, the region where cells exit the1116

initial inhibition stage to enter the reactivation stage. The second lineage also shows a di↵erence between1117

H2122A and the two other models. The pseudotime distribution is heavily skewed toward earlier points1118

in that model compared to the other two. Lineage 2 represents di↵erential progression to a drug-induced1119

state. In Lineage 3, it is the SW1573A model that displays more di↵erential progression.1120

The fateSelectionTest also has a p-value smaller than 2.2 ⇥ 10�16. Although all pairwise com-1121

parisons are significant, the test statistics are much higher for the Lineage 2 vs. 1 and Lineage 2 vs. 31122
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comparisons. This again suggests that one model di↵erentiates less into the drug-induced path, com-1123

pared to the other two. Since the weights have to sum to 1, the 3-dimensional distribution can be fully1124

summarized by any two components. Fig S16 shows clear di↵erences in distributions but visually inter-1125

preting di↵erent 2D distributions is still challenging. A simpler way to compare the distributions is to1126

look at the average weight in each condition for each lineage (Fig S15f). This ignores the correlation1127

between lineages but still allows for some interpretation. We can see in particular that Lineages 1 and 31128

have greater weights for H2122A than for the other two conditions, which is consistent with the di↵erent1129

pairwise statistics.1130

With the mapped trajectories, we can also perform gene-level analysis using the conditionTest.1131

When comparing genes across all lineages and conditions, we find 363 di↵erentially expressed genes when1132

controlling the FDR at nominal level 5%. We show the genes with the highest, second highest, and1133

smallest test statistics in Fig. S17a-c. Displaying these global patterns across all three lineages and all1134

three conditions makes it hard to interpret. We therefore focus on the first (and longest) lineage. In that1135

lineage, we find 366 DE genes and we show their expression patterns along Lineage 1 in all three cancer1136

models in Fig. S17d.1137

Figure S16: KRAS dataset: Di↵erential fate selection.
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Figure S17: KRAS dataset: Di↵erential expression. The tradeSeq gene expression model is fitted using
the trajectory computed with slingshot. Di↵erential expression between conditions is assessed using the
conditionTest and genes are ranked according to the test statistics. The genes with the highest (a),
second highest (b), and smallest (c) test statistics are displayed. Focusing on the first lineage, we select
all di↵erentially expressed genes in that lineage after adjusting the p-values to control the FDR at a
nominal level of 5%. We display the genes for all three conditions using a pseudocolor image (d) along
this first lineage.
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