	ICP0 LE	ICP0 HE	His-ICP0
Data Collection			
Unit-cell parameters (Å,	<i>a=b=</i> 96.60,	<i>a=b=</i> 95.91,	<i>a=b=</i> 95.15,
⁰)	<i>c</i> =75.33	<i>c</i> =74.53	<i>c</i> =76.72
Space group	$P4_{1}2_{1}2$	$P4_{1}2_{1}2$	$P4_{1}2_{1}2$
Resolution $(Å)^{\dagger}$	46.36-3.00 (3.18-3.00)	47.95-2.65 (2.78-2.65)	43.45-2.45 (2.55-2.45)
Wavelength (Å)	1.5895	1.0000	1.0000
Temperature (K)	100	100	100
Observed reflections	171,401	134,156	89,786
Unique reflections	7,423	10,603	14,026
†	13.1 (1.7)	14.6 (1.9)	13.1 (1.6)
Completeness $(\%)^{\dagger}$	98.0 (100)	100 (99.9)	99.9 (100)
Multiplicity [†]	23.1 (24.9)	12.7 (13.4)	6.4 (6.3)
$R_{ m merge}(\%)^{\dagger,\ddagger}$	27.6 (263.8)	12.3 (145.2)	11.3 (92.6)
$R_{ m meas}(\%)^{\dagger,\P}$	28.2 (269.3)	12.8 (150.7)	12.4 (101.2)
$R_{ m pim}(\%)^{\dagger,\P}$	5.8 (53.6)	3.6 (41.0)	4.8 (40.2)
$\operatorname{CC}_{1/2}^{\dagger,\parallel}$	0.997 (0.749)	0.999 (0.862)	0.998 (0.714)
DelAnom CC [#]	0.333	0.067	
Refinement			
Resolution $(Å)^{\dagger}$		34.73-2.65	43.45-2.45
Reflections (working/test) [†]		10,033/511	13,323/667
$R_{ m factor}$ / $R_{ m free}$ (%) ^{†,§}		21.8/28.8	19.2/25.4
No. of atoms (Protein/Iodide/water)		1,684/2/-	1,743/3/42
Model Quality			
R.m.s deviations			
Bond lengths (Å)		0.009	0.009
Bond angles (°)		1.136	0.991
Average <i>B</i> -factor (Å ²)			
All Atoms		71.2	44.8
Protein		71.2	44.8
Iodide		106.42	58.5
Water		-	42.2
Coordinate error			
(maximum likelihood) (Å)		0.35	0.34

Ramachandran Plot		
Most favored (%)	97.7	97.8
Additionally allowed (%)	2.3	2.2

Supplemental Table 1: Crystallographic data for ICP0.

⁺ Values in parenthesis are for the highest resolution shell.

 $R_{merge} = {}_{hkli} |I_i(hkl) - \langle I(hkl) \rangle | / {}_{hkli} |I_i(hkl), where I_i(hkl) is the intensity measured for the$ *i* $th reflection and <math>\langle I(hkl) \rangle$ is the average intensity of all reflections with indices hkl.

§ $R_{\text{factor}} = {}_{hkl} ||F_{\text{obs}}(hkl)| - |F_{\text{calc}}(hkl)|| / {}_{hkl} |F_{\text{obs}}(hkl)|$; Rfree is calculated in an identical manner using 5% of randomly selected reflections that were not included in the refinement.

¶ R_{meas} = redundancy-independent (multiplicity-weighted) $R_{\text{merge}}^{1,2}$. R_{pim} = precision-indicating (multiplicity-weighted) $R_{\text{merge}}^{3,4}$.

 $|| CC_{1/2}$ is the correlation coefficient of the mean intensities between two random half-sets of data^{5,6}.

DelAnom CC is the correlation coefficient between the Bijvoet differences $(I_{(hkl)} - I_{(-h-k-l)})$ from two random half-sets of data¹ and is used to estimate the anomalous signal strength.

β- strand group	Residue N- Atom	Residue O- Atom	Distance (Å)
βG1	Y643	L747	2.96
	L644	V653	2.91
	I646	S651	3.01
	L653	L644	2.85
	M734	G738	2.83
	G738	M734	2.69
	M740	L732	2.84
	L741	V748	2.76
	D743	T746	2.79
	T746	D743	2.82
	V748	L741	2.95
βG2	D666	L684	2.98
	L668	V682	2.77
	I670	A680	2.92
	D672	N677	3.06
	G676	D672	2.84
	V682	L668	2.84
	L684	D666	2.88
βG3	H715	R759	2.99
	T717	R757	2.74
	R759	H715	2.87

Supplemental Table 2: Backbone hydrogen bond interactions in the β -strand regions of the ICP0 C-terminal dimer domain.

Subunit: AB	Subunit: CD	Distance
Residue/Atom	Residue/Atom	(Å)
A: S731/N	D: N739/OD1	2.8
A: W733/N	D: M740/O	2.84
A: G745/N	D: S650/OG	2.68
B: T735/N	C: N730/OD1	2.98
B: M740/N	C: S731/O	3.08
B: F742/N	C: W733/O	3.01
B: Q744/N	D: E674/OE2	2.87
B: N739/OD1	C: S739/N	2.8
B: M740/O	C: W733/N	2.84
B: S650/OG	C: G745/N	2.68
A: N730/OD1	D: T735/N	2.98
A: S731/O	D: M740/N	3.08
A: W733/O	D: F742/N	3.01
B: E764/OE2	D: Q744/N	2.87

Supplemental Table 3: Hydrogen bond interactions between subunits in the ICPO tetramer (dimer of dimers). Highlighted interactions occur between the β 6- β 7 strands.

Supplemental Figure 1: Crystals of ICPO. A) Visible light image and B) UV fluorescence image.

	733W				743D			747L					757R					767G						
ICP0 Human alphabernesvirus 1/1-776			DV					·		τÌ	V			ED	91		рцр	We				тр	h =	GKO
	SEVVING			GINIV		DQC						UA.			OL.			vv 3	GEC	2 GI			DE	and
ICP0_Chimpanzee_alphaherpesvirus/1-810	S EWN S	SLWMT	PV	GNM		DQC				ТL	. V (GA	LD	FH	SL	RSI	ЯΗР	ws	LEC	ק G	A P	ΑP	AG	DAP
ICP0_Human_alphaherpesvirus_2/1-833	S EWN S	SLWMT	ΡV	G NM	IL F	DQC	- -			ΤL	. V (GA	L D	FΗ	G L	RSI	RHP	ws	R EO	ם G	A P	ΑP	AG	D <mark>A</mark> P
ICP0_Macacine_alphaherpesvirus1/1-691	HO	LWMT	ΡV	GGM	IL F	DQC	- -			AL	. L (<mark>G</mark> GI	R S	FΗ	SL	DSI	RHP	wт	PGI	P A I	DP	ΡP	TR	GSG
ICP0_Cercopithecine_alphaherpesvirus_2/1-709	H(LWMT	ΡV	GGM	IL F	EQ C	- -			ΑL	. L (<mark>G</mark> GI	R S	FΗ	SL	DSI	RHP	wт	ΡA	EGI	D P			
ICP0_Papiine_alphaherpesvirus_2/1-713	HC	LWMT	ΡV	GGL	LF	DQC	- -			ΤL	. L (GG	R S	FΗ	SL	DSI	RHP	WТ	PDI	PA	G P	ΡS	AR	DAD
ICP0_Saimiriine_alphaherpesvirus_1/1-729	STVK	IT	- A	<mark>G</mark> A V	FF	ТРС	GR	SΕ	GΥ	'R L	R	GP	LV	ΑA	SK	NΑ·		ST	QVI	P A '	ΤQ	KL	SG	
ICP0_Ateline_alphaherpesvirus_1/1-773	EGLQN	IVTAS	ΡA	<mark>G</mark> A L	FF	APC	GΥ	ΡD	GΥ	Ľ L	G	G T I	ΜV	DA	RQ	GΤΙ	PGR	GS	AG	G <mark>A</mark>	ΤE	EΤ	AG	P <mark>A</mark> H

Supplemental Figure 2: Alignment of ICP0 CTD tetramer interface residues of unique herpesvirus species containing the CTD. The numbering is relative to the HSV-1 ICP0.

Supplemental Figure 3: Alignment of full ICP0 CTD of HSV-1 strains and clinical isolates. The full ICP0 CTD of various HSV-1 strains and clinical isolates. The numbering is relative to the HSV-1 ICP0 KOS strain.

Supplemental Figure 4: Side chain hydrogen bond interaction between subunits (dashed lines). Subunit A helices (cyan), β -strands (magenta) and loops (gray). Subunit B helices (green), β -strands (tan) and loops (blue).

Supplemental Figure 5: Phased anomalous difference map (green mesh) contoured at 3 showing the positions of the iodide ions (gray spheres). The dashed lines indicated close contacts between 3.6-3.9 Å.

Supplemental Figure 6: Alphafold model of the monomeric ICP0 CTD. The Alphafold model of the ICP0 CTD is shown in ribbons, colored by the pLDDT (confidence): confident (cyan, 90 > pLDDT > 70), low (yellow, 70 > pLDDT > 50), and very low (orange, pLDDT < 50).

Supplemental Figure 7: The region of the Alphafold model of the monomeric ICP0 CTD with low or moderate confidence recapitulates the monomeric structure. The Alphafold model of the ICP0 CTD with pLDDT > 50 is shown in ribbons (cyan, 90 > pLDDT > 70 vs yellow, 70 > pLDDT > 50). A single chain of the ICP0 CTD is shown in silver.

Supplemental Figure 8: Alphafold model of the tetrameric ICP0 CTD compared to the solved structure. The Alphafold model of the ICP0 CTD tetramer is shown in ribbons on the left (**A and C**), while the crystal structure is shown on the right (**B and D**), colored by the chain. The dimeric interface, particularly the twisted β-strands, were modeled accurately (**A and B**). However, generally none of the strands comprising the stacked barrels were modeled (**C and D**).

Supplemental Figure 9: Confidence of the Alphafold model of the tetrameric ICP0 CTD. The Alphafold model of the ICP0 CTD is shown in ribbons, colored by the pLDDT (confidence): confident (cyan, 90 > pLDDT > 70), low (yellow, 70 > pLDDT > 50), and very low (orange, pLDDT < 50).

Supplemental Figure 10: A model of SUMO binding anti-parallel to ICPO at SLS5. A folded subdomain containing SLS5 is shown in silver ribbons, while SUMO is represented by gold ribbons.

Supplemental Figure 11: A model of SUMO binding parallel to ICPO at SLS7. A folded subdomain containing SLS7 is shown in silver ribbons, while SUMO is represented by gold ribbons.

REFERENCES

1. Evans PR. An introduction to data reduction: space-group determination, scaling and intensity statistics. *Acta Crystallogr D Biol Crystallogr*. Apr 2011;67(Pt 4):282-92. doi:10.1107/S090744491003982X

2. Evans P. Scaling and assessment of data quality. *Acta Crystallogr D Biol Crystallogr*. Jan 2006;62(Pt 1):72-82. doi:10.1107/S0907444905036693

3. Diederichs K, Karplus PA. Improved R-factors for diffraction data analysis in macromolecular crystallography. *Nat Struct Biol*. Apr 1997;4(4):269-75. doi:10.1038/nsb0497-269

4. Weiss MS. Global indicators of X-ray data quality. *Journal of Applied Crystallography*. 2001;34:130-135. doi:10.1107/S0021889800018227

5. Karplus PA, Diederichs K. Linking crystallographic model and data quality. *Science*. May 25 2012;336(6084):1030-3. doi:10.1126/science.1218231

6. Evans P. Biochemistry. Resolving some old problems in protein crystallography. *Science*. May 25 2012;336(6084):986-7. doi:10.1126/science.1222162