
 
   
 

 
  1 1 
 

SUPPORTING INFORMATION TO 
An integrated technology for quantitative wide mutational scanning of 
human antibody Fab libraries 
 
Brian M. Petersen1‡, Monica B. Kirby1‡, Karson M. Chrispens1, Olivia M. Irvin1, Isabell K. 
Strawn1, Cyrus M. Haas1, Alexis M. Walker1, Zachary T. Baumer1, Sophia A. Ulmer1, Edgardo 
Ayala2, Emily R. Rhodes1, Jenna J. Guthmiller2, Paul J. Steiner1, Timothy A. Whitehead1, * 
 
1Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, 
CO, 80305, USA 
2Department of Immunology and Microbiology, University of Colorado Anschutz Medical 
Campus, Aurora, CO 80045 
 
‡ Authors contributed equally to this work 
 
This PDF file contains: 
Supplemental Note 1: Inferring biophysical parameters from sequencing data 
Extended Materials and Methods 
Extended Data Figures. S1 to S10 
 
 
  



 
   
 

 
  1 2 
 

SUPPLEMENTAL NOTE 1:  
1. INFERRING ANTIBODY-ANTIGEN BIOPHYSICAL PARAMETERS FROM SEQUENCING 

DATA: EXECUTIVE SUMMARY 
 
In deep mutational scanning, a population of mutational variants of a protein is passed through a 
selection or screen; this screen changes the underlying frequencies of each of these variants. Deep 
sequencing is used to count each variant in the population, which is used to infer the frequency of 
each variant in the population in a reference population and after the screen. This frequency change 
is converted to some score that, ideally, relates to the functional properties of the variant. This 
technical note describes our framework for inferring, from this processed sequence data, both 
dissociation constants and maximum fluorescence for antibody variants encoded in yeast displayed 
protein libraries screened by fluorescence activated cell sorting (FACS). 
 
In FACS, populations are screened by collecting cells with fluorescence above a certain gating 
fluorescent threshold, or between two fluorescent gating thresholds; cells sorted according to these 
fluorescent gates are said to be sorted into bins. A clonal population of cells will exhibit a mean 
fluorescence with a certain variance according to cell size, surface density of displayed proteins, 
or other factors. Thus, only a fraction of cells for each variant will exceed the fluorescence 
threshold needed for collection into a given bin. Furthermore, if the fraction of cells that are sorted 
into a bin is known, one can infer the likely mean fluorescence for a given variant at that labeling 
concentration. Finally, as described in further detail below, sequencing data and other experimental 
observables can be used to infer the fraction of cells collected by the gating strategy and thus the 
mean fluorescence of a variant for a given labeling concentration. Some of the descriptions below 
come in part from Kowalsky et al1, and Kowalsky et al2. 
 
We seek to infer variant-specific dissociation constants (Kd,i) using, for example, the Hill equation 
below:  
 

𝐹! = #𝐹"#$,! − 𝐹"!&%
[(]

*!,#+[(]
+ 𝐹"!&    (1) 

 
Here is the mean fluorescence of cells displaying variant i at a given labeling concentration [L], 
Fmax,i is the maximum fluorescence for the variant i, and  Fmin is cellular autofluorescence. 
 
Intuitively, if we can infer the mean fluorescence at different labeling concentrations ([L]), we can 
reconstruct isothermal titrations for each variant i (e.g. 𝐹! vs. [L]) to find a best fit Kd,i and Fmax,i 
using non-linear regression. An example from barcode ATGCACACATTTAAAGCTGT 
corresponding to variant 4A8 M59I is shown below in Fig Note S1.  
 
We can approach this inference problem by regression, as it allows for the quality of the model fit 
to the data using the chi squared metric while also giving robust methods for confidence interval 
testing. As will be shown, we can also use maximum likelihood estimation in a quantitatively 
identical way. However, we cannot regress on the reconstructed mean fluorescence, as error is not 
distributed uniformly in both directions. Instead, we regress on the vector of probabilities of 
sorting into each bin.  
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 Figure Note S1: Fluorescence reconstruction for barcode ATGCACACATTTAAAGCTGT at 10 
labeling concentrations.  
 
In summary, we label our population of antibody variants at different antigen concentrations and 
use FACS to sort these antibody variants into different bins. Sequencing of these populations 
allows us to reconstruct the likely mean fluorescence for a given labeling concentration by 
inferring the fraction of each variant that is present in a binned population. Summing over all 
labeling concentrations allows us to find the most likely parameter value for dissociation constants, 
the confidence interval associated with that parameter estimation, and the quality of the fit using 
weighted nonlinear regression.  
 

2. WHAT IS THE PROBABILITY OF A CELL COLLECTED ABOVE A CERTAIN FLUORESCENT 
THRESHOLD? 
 

Let’s call this fluorescence threshold a gating fluorescence (Fg) and ask for the probability that a 
given clone i exhibiting a mean fluorescence intensity (𝐹!) will be captured by this gate. A graph 
of this relationship is below:  
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Figure NoteS2: A theoretical frequency histogram for yeast cells isogenically expressing a clone 
i.  

 
Since fluorescence measurements of clonal population of displaying cells are log-normally 
distributed in flow cytometry3,4, the probability can be calculated by regular statistical calculations:  
 

𝑃#𝐹! , 𝜎% =
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The other variable, 𝜎, represents the natural log of the standard deviation of the log-normal 
distribution from a clonal population of cells. ‘erf’ is the error function used to numerically 
integrate a Gaussian probability distribution. Equation (2) is the fundamental equation that allows 
us to apply statistical calculations to derive dissociation constants.   
 

3. WE CAN FIND THE PROBABILITY OF A CELL COLLECTED BETWEEN TWO FLUORESCENT 
THRESHOLDS. 

 
Assume we have a square gate set up with the lower bound some Fg2 and the upper bound Fg. 
Keeping the same definitions as above, we can rewrite a similar equation as (2) for the probability 
above Fg2:  
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Writing the probability of that cell landing between the two gates becomes:  
 

𝑃#𝐹! , 𝜎% = 𝑃#𝐹! , 𝜎% − 𝑃#𝐹! , 𝜎%   (4)  
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Thus, the probability pijk that a given cell displaying variant i can be captured in bin j at labeling 
concentration k is given by the following expression:  
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Note that if we have two bins with a shared boundary, we can write the sum of the two probability 
distributions as:  

𝑝!34 + 𝑝!3+,4 = 𝑃#𝐹! , 𝜎% + 𝑃#𝐹! , 𝜎% =
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4. WHAT DO THESE PROBABILITIES LOOK LIKE IN PRACTICE?   

 
For a typical monovalent binding experiment, one labels yeast cells displaying a binding protein 
with a fluorescently conjugated ligand. We have found that 𝜎 for phycoerythrin (SAPE) labeled 
populations range from 0.9-1.05 2. Let’s assume a 𝜎 = 1.02 for this example. We find that many 
protein-ligand interactions we consider in lab to be well fit by a Hill equation with no cooperativity:  
 

𝐹! = #𝐹"#$,! − 𝐹"!&%
[(])

*!,#+[(])
+ 𝐹"!&    (1) 

 
For the phycoerythrin (SAPE) labeled populations we usually consider, a typical value of 𝐹"!& 
representing cell autofluorescence is 350 MFI in our experimental set-up using a Sony SH800 cell 
sorted with a 488 nm laser and compensation for fluorescein. The two protein-specific terms are 
the max fluorescence (Fmax,i) and the dissociation constant Kd,i for the interaction. These will be 
variant-specific. For reasonably expressed and well-behaved proteins our Fmax,i is typically in the 
50,000 MFI range. Let’s nondimensionalize the ligand concentration so we can remove one 
variable.  

𝐹! = #𝐹"#$,! − 𝐹"!&%
[+]
-!

,+ [+]-!

+ 𝐹"!&    (8) 

 
Table NoteS1 reports the resulting probability lookup table:  

[𝐿]
𝐾!
	 𝐹! 	 𝑝!34 (Fg = 

2000) 
𝑝!34 (Fg = 
5000) 

𝑝!34 (Fg = 
10000) 

𝑝!34 (Fg = 
25000) 

0 350 .01 <.001 <.001 <.001 
0.1 4860 .64 .30 .11 .02 
0.2 8625 .82 .51 .26 .06 
0.3 11800 .89 .63 .36 .11 
0.4 14500 .92 .70 .44 .15 
0.5 16900 .94 .75 .50 .19 
1 25200 .97 .86 .65 .31 
5 41725 >.99 .94 .81 .50 
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This table shows that the large standard deviation resulting from square gating gives useful 
probabilities at many different gating fluorescence values representing different dissociation 
constants and/or max fluorescence values.  

 
5. WE CAN INFER THE PROBABILITY USING FREQUENCY DATA 
 

Our observable for deep sequencing experiments is a set of read counts for variant i in each bin j 
and for each labeling concentration k (let’s call these read counts rijk). Additionally, we have the 
reference read counts we can observe for variant i (let’s call this rir). We can directly convert 
observables to probabilities of sorting into a given bin j by comparing these read counts to those 
from the reference population. The reference population is critically important given that the  
comparison is the probability of being captured by a gate relative to the condition of no gate. 
Therefore, your reference population must be identical except for the fluorescence gate you sort 
at.  

 
We write the probability as the number of cells of variant i collected in the jth bin and kth labeling 
concentration (xijk) relative to the number of cells of variant i in the reference population (xir):  

 
𝑝!34 =

$#'(
$#.

       (9)  
 
The frequency of variant i (fijk, fir) is just the number of counts observed divided by all counts, so 
we can write:  

 

𝑝!34 = ∅

.#'(
∑# .#'(

.#.
∑# .#.

      (10)  

 
Here ∅ is the total fraction of cells collected in the sorting bin relative to the reference population, 
and the frequency of each variant has been converted to experimental observables derived from 
deep sequencing. Equation (10) is the second fundamental equation because it states that the 
probability pijk (set by Fmax,i and Kd,i) we observe for a given labeling concentration k and bin j are 
a function of the observables from the deep sequencing experiment. 
 

6. SOURCES OF NOISE IN RECONSTRUCTING FLUORESCENCE FROM EXPERIMENTAL 
OBSERVABLES 

 
A major challenge for sequence-function reconstruction experiments comes from determining the 
appropriate confidence level set for each experimental measurement. This is important as low and 
high values of pijk give large uncertainties in the measurement of 𝐹!4 (see Fig Note S3 below). 
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Figure Note S3: Mean fluorescence of variant as a function of pijk - the probability of sorting into 
a bin above some Fg = 30,000 MFI. Low and high observed probabilities result in large,  one-
tailed uncertainties in the value of the mean fluorescence. 
 
  
For parameter inference it is important to identify and quantify sources of noise in the fluorescence 
reconstruction. Intrinsic noise comes in the act of sorting discrete cells, preparing amplicons from 
yeast cells by PCR, and sequencing discrete nucleic sequences. Extrinsic noise results from the 
efficiency of the overall process of cell sorting and recovery.  
 
We have previously shown5 that deep sequencing read counts from FACS data can be evaluated 
according to Poisson probability distributions. We have previously determined the propagation of 
errors for Poisson noise in the counts of the reference and selected populations6. Although this is 
an underestimate of error because population bottlenecks occur during cell sorting, outgrowth, and 
amplicon prep leading to overdispersion, we find empirically that Poisson noise is a reasonable 
approximation for well-designed experiments. By propagation of errors, we can determine the 
variance associated with the value of 𝑝!34: 

𝜎5!34,!&67!&8!9- = 𝜎7!34- :5!34
:7!34

-
+ 𝜎7!7-

:5!34
:7!7

-
   (11) 

We can approximate the Poisson noise as  
 

𝜎7!34- = 𝑟!34; 	𝜎7!7- = 𝑟!7    (12) 
 
 

𝜎5!34,!&67!&8!9- = 𝑟!34(∅

%
∑# .#'(
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)- + 𝑥!7(−∅
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𝜎5!34,!&67!&8!9- = 5#'(&
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The other source of error is extrinsic relating to error rate in the sorting itself – what is the 
probability of a mis-sorting event? This appears to be 2% in our experimental set-up, but we expect 
that this error rate may vary.  

𝜎5!34,;$67!&8!9- = (0.02)-    (15) 
 
In the experiments presented in Figures 4 and 5 of the main text, we included Fab nonbinders to 
measure this error directly from the sequencing data. For these experiments, these values were 
observed to be 0.014, close to the values used in the initial experiment.  
 
Taken together by propagation of error, we end up with the following result for the uncertainty 
associated with probability:   
 

𝜎5!34 = :𝜎5!34,;$67!&8!9- + 𝑝!34-(
,
7#'(

+ ,
7#.
)    (16) 

 
 

7. PARAMETER ESTIMATION USING MAXIMUM LIKELIHOOD ESTIMATION 
 

The log likelihood framework states that the parameter set most likely to fit a given set of data 
occurs with maximization of the summation of the log probabilities of each experimental 
measurement:  
 

𝐿𝐿!(𝐾<,! , 𝐹"#$,!) = 	(∑34 𝑙𝑜𝑔𝑃#𝑀𝑜𝑑𝑒𝑙!34%)   (17) 
  
Here, Modelijk is the model probability (given parameters 𝐾<,! , 𝐹"#$,!) of a variant i being sorted 
into bin j at labeling concentration k. We must assume some probability distribution – given the 
sources of noise and the fact that reference and sorted counts are typically >10, a Gaussian 
probability distribution is justifiable here. Expanding terms, we can write: 
 

𝐿𝐿!(𝐾<,! , 𝐹"#$,!) = 	(∑34 𝑙𝑜𝑔𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑃𝐷𝐹#𝑀𝑜𝑑𝑒𝑙!34%)  (18) 
 
Expanding the Gaussian probability distribution and removing constant terms, we arrive at:  
 
 

𝐿𝐿!(𝐾<,! , 𝐹"#$,!) = 	 ∑34 − ,
-
(5#'(0=><;.#'(

1#'(
)-   (19) 

 
Note that maximizing this expression is equivalent to minimizing the weighted sum of square 
errors or the chi squared metric. The algorithm changes the probabilities of Modelijk by changing 
parameters in the Hill function, and we use off-the-shelf optimization software to find the 
minimization of the function. 

−𝐿𝐿!(𝐾<,! , 𝐹"#$,!) = 	∑34 (5#'(0=><;.#'(
1#'(

)-   (20) 
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8. CONFIDENCE INTERVALS USING MAXIMUM LIKELIHOOD ESTIMATION 
 
Using a MLE framework that minimizes the chi squared metric (𝜒"!&- ) results in the simplification 
of confidence interval measurements. As such, we follow standard approaches7,8 for determining 
95% confidence intervals using the critical value of the F distribution statistic (F0.05) using the 
following equation:  
 

?&

?0#1
& ≤ &0-

&0,
(1 +	 &

&0,
𝐹@.@B	(𝑛 − 1, 𝑛))    (21) 

 
Where n is the number of experimental data points (here, the number of bins used for MLE), and 
𝜒- is the chi squared metric for given parameter values of Kdi and Fmaxi.   
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Extended Materials and Methods 

Plasmids 

All plasmids were constructed using either NEBuilder HiFi DNA Assembly Master Mix (New 
England Biolabs) for Gibson assembly9, by Golden Gate assembly10,11, using a Q5 Site-Directed 
Mutagenesis Kit (New England Biolabs), or by nicking mutagenesis12,13. Synthetic DNA was 
ordered either as gBlocks or eBlocks (IDT). A complete list of plasmids, libraries, gene blocks, 
and primers are located Supporting File 1.  

pMBK046, the old 4A8 Fab YSD vector, was constructed by Golden Gate assembly with plasmids 
pMBK008 and pMBK027 and gene blocks 7 & 8. pMBK047-pMBK228, the 4A8 Fab YSD library 
plasmids, were generated by combinatorial nicking mutagenesis12 with pMBK046 as the template 
and primers 142 and 328-339 and isolated by Sanger sequencing (Genewiz) of individual colonies.  

The mini-mutagenesis shuttle vectors for the 4A8/CC12.1/COV2-2489 library: pMBK231, 
pMBK233, pMBK234, pMBK235, pMBK236, pMBK237, pMBK248 were generated by golden 
gate assembly of the antibodies corresponding VH and VL gene fragments with pBMP103-UMI 
and pBDP and were sequence confirmed by Oxford nanopore sequencing (Plasmidsaurus). 

The isogenic yeast display Fab plasmids were constructed by yeast homologous recombination. 
The sequence verified shuttle vector(s) (pMBK231 – pMBK248, pMBK317 - pMBK318, 
pMBK341 - pMBK342) and the yeast display plasmids pBMP103 for kappa antibodies and 
pMBK275 for lambda antibodies were separately digested with NotI-HF and bands corresponding 
to the antibody Fab or yeast vector backbone were fractionated on an agarose gel and extracted 
using Macherey-Nagel NucleoSpin® Gel and PCR Clean-up kit (740609.50). The purified DNA 
was mixed in a 2:1 molar ratio of Fab insert to yeast display backbone and co-transformed into 
chemically competent EBY100.  

The Fab shuttle vectors with kanamycin (pBMP101 and pMBK272) and chloramphenicol 
(pMMP_kappa and pMMP_lambda) antibiotic resistance genes were constructed using either 
gBlocks or eBlocks (IDT) and Gibson Assembly using NEBuilder HiFi DNA Assembly Master 
Mix.  

The lambda mRFP yeast surface display plasmid, pYSD_lambda_mRFP, was constructed by first 
digesting pYSD_kappa_mRFP with PacI and NotI-HF to remove the kappa light chain segment 
and next the lambda light chain e-block was cloned in by Gibson Assembly using NEBuilder HiFi 
DNA Assembly Master Mix. 
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Construction of Fab libraries 

To generate libraries L001, L002, L003, L024, and L029, combinatorial mutagenesis was 
performed exactly as previously described12,14 using the mini-mutagenesis plasmids pMBK234, 
pMBK235, pMBK236, pMBK237, pMBK233, pMBK248, pMBK317, and pMBK318, as the 
parental plasmid DNA templates and the mutagenic oligos 137, 139, 142, 145, 146, 153, 332-339, 
347-356, 375-376, and 456-459, (IDT) containing degenerate codons that encode either for the 
mature antibody residue or the UCA residue.  

To construct libraries OMIL004, OMIL006, OMIL011, and OMIL0012 for 319-345, 222-1C06, 
1G01, and 1G04, targeted site-saturation mutagenesis was performed by the method of Bloom15. 
Template linear PCR products were made using primers OMI1009 and OMI1011 which amplify 
the VH-BDP-VL region of plasmids OMI0014, OMI0016, OMI0020, and OMI0021. 25 μL of 2x 
Q5 Master Mix, 2.5 μL of 10 μM OMI1009, 2.5 μL of 10 μM OMI1011, 1.2 μL of 5 ng/μL of the 
template plasmid were combined with 18.8 μL of water. Each of the PCR reactions were run on a 
thermocycler at the following settings: 

1. 98 °C for 30 s. 

2. 98 °C for 10 s. 

3. 72 °C for 56 s. 

4. Repeat steps 2 and 3 for 24 additional cycles. 

PCR products were then purified over agarose gels using a NucleoSpin® Gel and PCR Clean-up 
kit (Macherey-Nagel, 740609.50). These products were used as templates for the forward and 
reverse fragmenting reactions prepared as described15 with the following modifications: 2x Q5 
Master Mix was substituted for 2x KOD Hot Start Master Mix, OMI1009 was used as the outer 
forward primer, OMI0011 was used as the outer reverse primer, and mutagenic oligos tiling the 
VH and VL CDRs were used for the forward and reverse pools. The reactions were run for 10 cycles 
of the above thermal cycler program. The products from this reaction were used as templates for 
the joining reaction. The joining reaction was prepared as described in Bloom with the same 
modifications from the fragmenting reactions. Additionally, the joining reaction volume was 
scaled from 30 μL to 50 μL to increase product yield. The joining reaction was cycled using the 
above program for 20 total cycles. The products from this reaction were gel purified over agarose 
gels using a NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel, 740609.50). 

L030, the UCA_2-17 forward trajectory library was generated following oligo pool mutagenesis16 
with a fast anneal step performed with the oligo pool listed in Supporting File 1. The molar ratio 
of template DNA to oligonucleotides was adjusted to 10:1.   
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1 µg of plasmid libraries in a reaction volume of 20 µL in rCutSmart buffer were separately 
digested with 20 units of NotI-HF (NEB) for 1 hour at 37 °C. In parallel, 2-5 µg of pBMP103-
UMI or pMBK275-UMI library in a reaction volume of 20 µL in rCutSmart buffer was also 
digested with 20 units of NotI-HF for 1 hour at 37 °C. The digested DNA was fractionated on a 1 
(w/v) % agarose gel. Bands corresponding to the VH-BDP-VL region of the antibodies (1.8 kB) 
and the yeast surface display vector backbone for the UMI library (6.4 kB) were extracted using 
Macherey-Nagel’s NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel, 740609.50).  

The yeast surface display and barcoded mutagenic antibody library (L006 4A8/CC12.1/COV2-
2489) was generated using Gibson Assembly with the gel extracted components in a 2:1 molar 
ratio of antibody library insert to pBMP103-UMI yeast surface display vector. Each of the antibody 
combinatorial libraries contained 64 variants and were mixed in an equimolar amount for the 
Gibson Assembly reaction9 using the NEBuilder HiFi DNA Assembly master mix following the 
manufacturer’s protocol. A column clean-up was performed to remove residual buffer and 
enzymes and approx. 25% of the cleaned reaction product was transformed into homemade 
chemically competent E. coli Mach1. The next day, 11,000 transformants were observed from the 
transformation dilution plate and the entire library was harvested and miniprepped. 

The barcoded yeast surface display libraries for the S1/HA mixed antigen sort were generated by 
Gibson assembly of the gel extracted components in a 2:1 molar ratio of antibody library insert to 
yeast surface display vector for the kappa and lambda antibody libraries separately. L024 and L029 
were assembled with L018 library and L030, OMIL004, OMIL006, OMIL011, and OMIL0012 
were assembled with pBMP103-UMI library in a total reaction volume of 20 µL. Both Gibson 
Assembly reactions were incubated for 4 hours at 50 °C and the reaction products were cleaned 
and concentrated to 6 µL with a Monarch DNA & PCR Cleanup Kit (NEB). The entire 6 µL 
product was transformed via electroporation into TransforMAX cells (Lucigen, EC300110) and 
incubated at 37 °C overnight. A dilution plate was used to assess the transformation efficiencies 
and the transformants were bottlenecked to 2,000 lambda variants and approximately 8,000 kappa 
variants. The bottlenecked libraries were grown up in 50mL SOB + kanamycin overnight at 37 °C. 
The next day the libraries were miniprepped and pooled together and 6 different 4A8 barcoded 
plasmids were also spiked into the library pool. 5 µg of plasmid DNA was transformed into 
chemically competent EBY100 in parallel reactions for the biological replicate libraries.  

Barcode-variant pairing  

Barcodes were paired with VH and VL variants through Oxford nanopore sequencing or by short 
read sequencing of short read amplicons prepared by intramolecular ligation of barcode UMI in 
proximity to the CDR3 of either the VH or VL. Oxford nanopore sequencing (Plasmidsaurus) was 
performed on individual plasmids. Short-read amplicons were sequenced on an Illumina MiSeq 
with 2x250 bp paired end reads (Rush University Sequencing Core).  

The optimized intramolecular ligation procedures were performed in a reaction volume of 100 μL 
with 1 μg of plasmid library, 400 U of T4 DNA ligase (1 μL of 400 U/μL), and 1X T4 DNA ligase 
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buffer (NEB; catalog # B0202S). Also added to the reaction were either 30 U of BbsI (3 μL of 10 
U/μL) (NEB; catalog # R0539L) - for the intramolecular ligation of barcode to VL - or 30 U of 
PaqCI (3 μL of 10 U/μL) plus 3 μL PaqCI activator (diluted from 20 μM stock 1:4 in 1X T4 DNA 
ligase buffer) (NEB; catalog # R0745L) - for ligation of barcode to VH. The reaction was subjected 
to 60 cycles of 37 °C for one minute followed by 16 °C for one minute, and then a final incubation 
of 37 °C for 5 minutes. Exonuclease III was added to each reaction (1 μL of a 1:10 dilution made 
in 1X rCutSmart buffer from 100 U/μL stock) (NEB; catalog # M0206L) followed by incubation 
at 37 °C for 30 minutes. We performed electrophoresis on the reactions on 1% (w/v) agarose gels 
in 1X TAE and gel extracted (Macherey-Nagel, catalog # 740609.50) the bands corresponding to 
intramolecular ligated products for the VH-barcode and VL-barcode pairing.  

Amplicons were prepared by first performing a PCR using primers 428 - 431 to amplify the 
barcode and gene sequence (UMI-VL: 428 &  430; UMI-VH: 429 & 431) and append Illumina 
TruSeq small RNA compatible sequences. 10 ng of gel extracted input DNA was amplified in a 
25 μL total reaction with Phusion High-Fidelity Polymerase with reaction components following 
the manufacturers recommended protocol. The PCR thermocycler program progressed for 12 
cycles. After the first PCR was completed, a shrimp alkaline phosphatase (rSAP) clean-up step 
was performed according to the manufacturer’s instructions on 10 μL of PCR product. 1 μL of 
rSAP cleaned DNA was used as the input for the seconod PCR, which amplifies the amplicon 
further and appends unique 6-bp TruSeq small RNA barcodes and Illumina sequencing adapters. 
The second PCR was performed using Phusion High-Fidelity Polymerase with reaction 
components following the manufacturers recommended protocol for 14 cycles with a 25 μL total 
reaction volume. After the second PCR, the amplicons were cleaned with Ampure XP beads 
(Beckman Coulter, A63880) following the manufacturer’s instructions. Each dsDNA PCR product 
was quantified using Quant-IT PicoGreen (Invitrogen, P11495) and pooled for deep sequencing. 

For optimization of the protocol above, three individual plasmids were sequenced by Oxford 
nanopore. These plasmids were then mixed in pre-defined ratios and different amplicon prep 
conditions were applied. These differences include: the polymerase used, the number of PCR 
cycles, and the type of PCR clean-up between the first and second PCRs. The three polymerases 
used were Phusion High-Fidelity DNA polymerase (NEB, M0530), Q5 polymerase in a 2X Master 
Mix (NEB, M0492), and KAPA polymerase (Roche, 7958927001) and each PCR reaction 
components and thermocycler program were performed according to the manufacturer’s 
instruction.  

Amplicon Preparation and Deep Sequencing 

1e6 – 4e6 sorted yeast cells from each collected population were miniprepped according to 
Medina-Cucurella & Whitehead17 using Zymoprep Yeast Plasmid Miniprep kits in either 
individual Eppendorf tubes (D2004) or 96-well plate format (D2007) and plasmid DNA was eluted 
in 30 μL nuclease free water. 15 μL of eluted plasmid DNA was further purified with exonuclease 
I and lambda exonuclease. The UMI region of the purified DNA was amplified using 25 PCR 
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cycles with Illumina TruSeq small RNA primers following Kowalsky et al. ‘Method B’1 using 
Phusion High-Fidelity DNA polymerase in a 50 μL total reaction. 5 μL of the PCR product was 
size verified on a 1% (w/v) agarose gel and the remaining 45 μL was cleaned with Ampure XP 
beads (Beckman Coulter, A63880) following the manufacturer’s instructions. Each dsDNA PCR 
product was quantified using Quant-IT PicoGreen (Invitrogen, P11495) and pooled in equimolar 
amounts for deep sequencing. The sorted UMI’s were sequenced on either an Illumina MiSeq 
(4A8/CC12.1/COV2-2489 sort) or NovaSeq6000 (S1/HA sorts) by Rush University with single 
end reads.  

Data Processing 

Sequencing files were processed using the custom Python code accessible on GitHub 
(https://github.com/WhiteheadGroup/MAGMA-seq). The code contains three primary modules 
used in this work referred to as haplotyping, scanning, and parameter estimation. Haplotyping 
takes input sequencing files from internally ligated yeast display plasmids and creates a barcode-
to-variant map. Scanning reads input sequencing files for sorted yeast populations for which only 
barcode sequences are processed, counts, and matches the barcodes to a variant specified in the 
previously generated barcode-to-variant map, and integrates this with sorting conditions for final 
output. Finally, the parameter estimation module performs maximum likelihood estimation (MLE) 
on each variant contained in the output to generate parameter estimates for KD and Fmax with 95% 
confidence intervals determined from reduced chi squared. See the “config” folder on Github for 
exact parameters used for generating each of the datasets used in this work. 

For each of the sequencing processing modules (haplotyping and scanning), FASTQ files and 
processing parameters are entered into a config file (see README and example config files on 
GitHub repository). Necessary packages including Biopython, NumPy, and SciPy can be easily 
installed into a conda virtual environment with the included YAML file. The code is highly 
efficient and parallelizable (using the multiprocessing library) and can run on datasets containing 
millions of sequences in under an hour on our hardware (Alpine supercomputing cluster (CU 
Research Computing) x86_64 AMD Milan CPU with 32MB L3 Cache (utilizing 8 cores), 3.75 
GB RAM/core). 

Sequence merging and filtering 

We adapted the software from Haas et al. 202118 for merging paired end reads at all the pertinent 
amplicon lengths. Sequences are then filtered based on the sequence agreement within overlap 
regions (see Haas et al. 2021 for algorithm details) as well as overall minimum quality scores 
across the full amplicon, gene, and barcode regions. Barcodes and genes are extracted from these 
successfully merged reads assuming a fixed location within the amplicon. Sequences are then 
collapsed and counted based on unique barcode and gene combinations and gene sequences are 
matched to a set of possible wild-type sequences based on Hamming distance. Amino acid 
mutations are then determined based on the chosen wild-type sequence. Variant frequencies are 
calculated by considering the genotypes represented in the dataset, ignoring barcodes. 
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A six-letter sequence motif (CGGCGG) occurring within the COV2-2489 antibody VH gene 
causes a precipitous drop in quality scores of all base calls downstream from this previously 
known motif19 on the reverse read (Figure S5). This drop in quality score required a different 
haplotyping protocol for this antibody library where paired reads were not merged. This is 
justifiable as the mutations encoded in our library all exist on the high quality forward read, and 
the barcodes are located on the reverse read upstream of the quality drop. We identified reads 
from this antibody by matching the read to an unmutated region at the beginning of the sequence 
(VH positions 1-31), filtered the individual forward reads based on quality (dropping reads with 
overall minimum quality <Q10), and then paired the associated barcode from the reverse read 
based on index. The resulting data was passed into the following haplotyping step identical to the 
other merged reads. 

Haplotyping: pairing a barcode barcode with Fab variant 

For each barcode, we make a variant call by comparing all observed barcode-genotype pairings. 
We first apply a mutation filter (variants with more than 10 mutations from the assigned wild-
type are removed). We then apply the count filter and a frequency filter (see config for filtering 
values used). Additionally, options are available for removing all silent mutations and/or all 
mutations not encoded in the mutagenic library. From the remaining possible pairings, we divide 
the observed read counts by the variant frequency and select the variant with the maximum of 
these values. This method appropriately weights lower observed counts of rarer variants. The 
raw pairing data as well as the processed barcode-to-variant map are output to CSV files for 
analysis. 

After barcode maps have been made for VH and VL segments, we merge the two maps based on 
identical barcodes and output the resulting pairings as a CSV file. A final check is performed 
where barcodes that pair to heavy and light chains from distinct antibodies are removed from the 
map, resulting in a barcode-to-variant map. 

Scanning 

The scanning module matches sequenced barcodes from sorted libraries to barcodes in the map 
produced by the haplotyping module. It is designed to process single reads only (alternatively, 
forward reads from paired-end sequencing runs can be used). As described previously, barcodes 
are identified based on fixed location within the read. As a default, barcodes are filtered based on 
adherence to the template sequence of mixed bases; this option can be turned off. Each barcode 
is matched to an identical barcode in the barcode-to-variant map and the number of times each 
barcode is seen is summed. Information entered by the user in “limit.csv” including high and low 
bin limits (Hj and Gj, respectively), and number of cells sorted and collected in each bin (Nk and 
Njk, respectively) are matched with concentration and bin names to generate the CSV file 
needed for the next parameter estimation step. Note that the concentration and bin names in the 
“limit.csv” must match the identifiers from the scanning barcodes config file. For example, a bin 
named “top25” at concentration “5nM” should be identified in the config file as 
“conc5nM_bintop25”.  
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Scan barcode outputs information for each of the concentrations and bins analyzed as well as an 
overall output in two forms: (1) “_combined.csv” records the counts by barcode and (2) 
“_collapsed.csv” records the counts collapsed by antibody variant. Both the combined and 
collapsed CSV files are ready for input into the parameter estimation module assuming a proper 
“limit.csv” was specified. For each bin and concentration, the percentage of barcodes that 
matched to a variant in the map is recorded. With our conservatively filtered maps, these 
percentages tend to range between 50-70% read matching. Far lower percentages usually 
indicate low efficiency of haplotyping.  

Parameter estimation 

The parameter estimation module generates maximum likelihood estimates for Fmax and KD for 
each barcoded variant. Parameter estimation requires that the data be supplied in the format of 
the scan barcode output (see examples/scan_output.csv for example) where each row specifies a 
single observation of a variant labeled at a given concentration and collected at a given bin. 
Additionally, a few global parameters must be entered by the user. First, sigma defines the width 
of the lognormal distribution that represents the possible fluorescence range for a given variant. 
We have found that this value is somewhat independent of the variant and label concentration. In 
our testing, these values range from 0.90-1.02. Second, “B” represents the variant-independent 
cell autofluorescence, which can be determined by reading fluorescence values of Fab-
expressing yeast cells without binding partner. We find that this value should fall in the range of 
290-350 RFU (in PE channel) using our equipment (Sony SH800, yeast cells, 488 nm laser with 
compensation for PE/AlexaFluor488 fluorophores). 

To achieve accurate estimates for weak binders and poorly expressed Fabs (high KD or low Fmax) 
a few modifications to the MLE algorithm were necessary. First, manual curation was used to 
remove bins that had poor sequencing coverage or that had inferred probabilities that were 
inconsistent with the other datasets. For the data represented in Figure 2 and 3, the two bins 
affected were at the 25 nM labeling concentrations. The MLE algorithm first performs parameter 
estimation using all remaining top 25% bins. The maximum likelihood estimates were analyzed 
and variants with calculated KD that exceeded 1μM or Fmax that fell under 12,000 RFU were 
removed. For these variants, MLE was performed again by concatenating top 25% and next 25% 
bins into a single top 50% bin at each concentration using the joint probability estimate using 
equation (7). For the mixed antigen sorts represented in Figures 4 and 5, 2-7 variants were 
assessed by combining both bins for 25 and 50 nM labeling concentrations. Additionally, all 
anti-S1 probabilities pijk were multiplied by 0.64 to correct for cell sorter efficiency in this 
experiment.  
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Extended Data Figures 

 
Extended Data Figure 1 | Schematic of assembly strategy with shuttle vector and yeast 
display mutations. a. Yeast display plasmid map highlighting most of the relevant genes (shown 
is kappa only; the lambda map is otherwise identical). The gene segments are not drawn to scale. 
b. Two-step cloning strategy for assembling barcoded Fab libraries. Along with a bidirectional 
promoter (BDP) plasmid, any VH-VL pair or library is assembled by Golden Gate into a minimal 
3.6 kB mutagenesis plasmid containing a CamR selection marker, a high copy number ORI, and 
regions of homology to the CH1 and light chain sequence. There are small mutagenesis destination 
plasmids for both human kappa and lambda light chains. After mutagenesis, antibody mutant 
libraries are assembled by the method of Gibson with a yeast surface display plasmid containing a 
unique UMI. This final plasmid is identical to that in panel a. c. Summary of mutations in the yeast 
display vector. The major missense change is S5Q on CH1 necessary for encoding a PaqCI 
restriction site near the CDR H3 for short read sequencing pairing of UMI to the VH gene. We also 
removed the light chain 6x Histidine epitope tag and replaced it with a V5 epitope tag 
(GKPIPNPLLGLDST) to be able to measure binding to antigens that may be His-tagged with an 
anti-His conjugated fluorophore. Unique PaqCI and BbsI sites are necessary for UMI-Fab pairing 
by short read sequencing; antibody sequences encoding these sites are not compatible with the 
short read sequencing protocol. 
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Extended Data Figure 2 | Yeast surface display titrations. Isogenic yeast surface titrations for 
antibodies reported in main text Figure 1c. Error bars represent 1 s.d. of 2 measurements. The 
curve fit shown is a Hill equation where the Hill coefficient is constrained to unity.   
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Extended Data Figure 3 | Intramolecular Ligation Products. Intramolecular ligation (IML) 
reaction products from 1 µg of barcoded 4A8/CC12.1/COV2-2489 Fab library (lanes 6-9) were 
separated by a 1% (w/v) agarose gel. Lanes 2-4 show individual controls reactions without ligase. 
The ligation product from BbsI is 1.8 kB, while that from PaqCI is 6.4 kB. In these reactions, the 
UMI is paired to the VL with BbsI intramolecular ligation and to the VH with PaqCI. Biological 
replicates (Rep1, Rep2) were performed, yielding reproducible band sizes and intensities.  
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Extended Data Figure 4 | Optimization of PCR amplicon preparation for barcode-Fab 
haplotyping. Three isogenic plasmids (one CC12.1 variant, two 4A8 variants) were mixed at 
different molar ratios and the intramolecular ligation for the VL chain and amplicon protocols were 
performed in triplicate (n=3). We varied the following parameters: polymerase, number of PCR 
cycles, and PCR clean-up method (rSAP (New England Biolabs) or column cleanup). Amplicons 
were deep sequenced on the same MiSeq flow cell, and observed frequencies of pairing were 
extracted. True frequencies of correct pairing (freqtrue) were obtained for the lowest abundant 
variant using the following equation:  
 

𝑓𝑟𝑒𝑞67D; =
E7;F)230E

,0E
       (22) 

 
Here, 𝑓𝑟𝑒𝑞>G8 is the observed frequency by deep sequencing and f is the fraction of the lowest 
abundant variant. As this fraction goes to zero the true frequency is identical to the observed 
frequency. True frequencies and p-values from paired, one-tailed t-tests are reported. We also 
report true frequencies and p-values of performing the intramolecular ligation separately on 
individual plasmids (IML control). The protocol chosen for barcode-Fab haplotyping is 
highlighted in green.   
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Extended Data Figure 5 | Repeated ‘CGGCGG’ motif in COV2-2489 sequences causes drop 
in quality at nucleotide 147 on VH reverse read. Average quality score vs. sequence position for 
4A8 & CC12.1 antibodies (orange) compared to COV2-2489 (blue). The inset shows the 
nucleotide sequence adjacent to the drop in quality score.  
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Extended Data Figure 6 | Cytograms from first sort with S1 and 4A8/CC12.1/COV2-2489 
Antibodies. Cytograms showing sorting gates for first demonstration of the method with mixed 
Abs against S1. Cells were first gated for yeast cells, single cells, and cells displaying Fabs before 
being gated and sorted for the top 25% and next 25% bins.  
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Extended Data Figure 7 | MLE KD estimation for grouped barcodes with 95% 
confidence intervals. (Top row) Histograms of MLE KD estimates for each 
barcode. (Bottom row) 95% confidence intervals for each barcode (blue) and from 
barcodes collapsed by variant (orange)  
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Extended Data Figure 8 | MLE sensitivity analysis of global parameters. MLE 
calculated ∆Gbinding values, relative to a 1 mM reference state, for 4A8 and 
CC12.1 data with different values of σ, the width of the isogenic lognormal 
distribution (Equation (2)) (a) and extrinsic error (Equation (15))  (b) with 95% 
confidence intervals for outliers (outliers defined as >0.3 kcal/mol MAE). Data 
were filtered to remove low counts and non-converged values.  
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Extended Data Figure 9 | Cytograms from YL008 mixed antigen sort with S1 and HA. 
Cytograms showing sorting gates for mixed antibody, mixed antigen sort. 
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Extended Data Figure 10 | Potential development trajectory for SARS-CoV-2 antibody 2-7. 
(a) Sampling of 6 of the 30 potential intermediates between the UCA and mature 2-7. The affinity 
of each variant is shown as ΔΔG (kcal/mol) relative to the mature 2-7 antibody. Mature 2-7 has an 
inferred Kd of 9.6 nM and the UCA a Kd of 255 nM. (b) LASSO regression one body weights for 
ΔΔG for the five VL mutations. Weights in kcal/mol are shown relative to the mature 2-7 Ab. The 
E52D mutation is energetically unfavorable and unlikely to have appeared except in conjunction 
with the N55K mutation.  
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