OMTM, Volume 32

Supplemental information

Manufacture of CD22 CAR T cells following

positive versus negative selection results in distinct

cytokine secretion profiles and $\gamma\delta$ T cell output

Hannah W. Song, Mehdi Benzaoui, Alka Dwivedi, Sarah Underwood, Lipei Shao, Sooraj Achar, Vesna Posarac, Victoria A. Remley, Michaela Prochazkova, Yihua Cai, Ping Jin, Robert P. Somerville, David F. Stroncek, Grégoire Altan-Bonnet, Nirali N. Shah, Christopher D. Chien, Naomi Taylor, and Steven L. Highfill

Figure S1: CD4:CD8 ratio in CAR⁺ T cells. The ratio of CD4:CD8 cells was assessed after gating on viable CD3⁺CAR⁺ cells at days 4, 7, and 9 following positive and negative selection. ns, non-significant

Figure S2: Representative flow cytometry plots assessing T cell phenotype and activation markers. (A) Representative plots showing the gating of PD-1 and CD25 activation markers on $CD3^+$ T cells at day 9. (B) Representative plots showing CD45RA/CCR7 profiles distinguishing naïve/stem cell memory-like (N/SCM), central memory (CM), effector (E), and terminal effector (EFF) T cells at day 9. (C) The percentages of each subset were evaluated on gated CD3⁺ T cells at Day 9 and means \pm SEM (N=6) are shown.

Figure S3: Signature scores of activation and cytotoxicity pathways on negatively-selected and positively-selected T cells. Pathway analysis of gene expression data for activation and cytotoxicity pathways were assessed at days 2, 4, 7, and 9 of culture. Means \pm SEM (n=6 donors) are shown.

Figure S4. Dynamics of cytokine secretion by CD22 CART^{pos} and CART^{neg} in response to NALM6 leukemia. (A) Cytokine secretion by CD22 CART generated from 6 donors was evaluated following co-culture with NALM6 at a 1:1 effector/target (E:T) ratio. Cytokines were monitored at 1, 3, 6, 12, 18, 24, 30, 36, 42, 48, 60, and 72h timepoints on a TECAN EVO 100 robotic system. Raw Immunotron cytokine trajectories are shown; dotted lines represent the upper and lower limits of detection for each cytokine. (B) Cumulative variance explained for PCA on average cytokine secretion levels per sample; 3 components are sufficient to reach ~90% variance explained. (C) Loadings for the first 3 PCA components. (D) PCA1/PCA2 profiles of each sample following co-culture with NALM6 leukemia at a 1:1 and 1:5 E/T ratio. (E) Distances between positive and negative selections for each set of samples in PCA space. (F) PCA distances show considerable heterogeneity between donors, signifying that positive and negative selection had a greater impact on the cytokine secretion of cells derived from some donors over others.

Figure S5. CD4/CD8 ratios and the PD1⁺CD39⁺ phenotype of CD22 CART persisting in NALM6-bearing NSG mice vary as a function of donor. Following adoptive transfer of CD22 CART^{pos} and CART^{neg} from 3 donors (HD1, HD2, and Pt) into NSG mice with NALM6 leukemia, mice were sacrificed (day 10) and the phenotypes of human T cells in spleen and bone marrow were evaluated. The percentages of PD1⁺CD39⁺ T cells and their CD4/CD8 profiles were monitored by flow cytometry and a quantification of these cells are shown for each donor (n=4-7 mice per group).

Figure S6. Differential gene expression in CD22 CART^{pos} and CART^{neg}. Volcano plot representation of differential gene expression between CD22 CART^{pos} and CART^{neg} (day 7 of expansion). Fold changes of >2 and p<0.05 were considered significant (dotted lines). The identities of several differentially expressed transcripts are indicated.

Table S1: Flow cytometry reagents.

Marker	Conjugate	Catalog #	Clone	Dilution
CCR7	FITC	BD 561271	150503	1:100
CD3	APC-H7	BD 641397	SK7	1:100
CD3	BV650	BD 563999	SK7	1:100
CD4	BV605	BD 562658	RPA-T4	1:100
CD4	AF-700	BD 557922	RPA-T4	1:100
CD4	PerCP	BD 344624	SK3	1:100
CD8	FITC	BD 347313	SK1	1:100
CD8	BV-510	BD 563919	SK1	1:100
CD8	BV605	BD 300936	HIT8a	1:100
CD25	PE-Cy7	BD 557741	M-A251	1:100
CD45RA	BV421	BD 562885	HI100	1:100
CD45RO	BV605	BD 562791	UCHL1	1:100
CD62L	PE-Cy7	BD 565535	DREG56	1:100
LAG3	APC-R700	BD 565774	T47-530	1:100
PD-1	BV421	BD 562516	EH12.1	1:100
Protein L	Biotin	Pierce 29997	n/a	20:100
Streptavidin	FITC	Invitrogen S32354	n/a	1:100
TCRαβ	PE	Miltenyi 130-113-537	REA652	1:100
TCRVδ1	APC	Miltenyi 130-118-968	REA173	1:100
TCRVδ2	BV421	Miltenyi 130-111-015	REA771	1:100
Viability	Fixable Aqua Dead Cell Stain	Agilent L34966	n/a	1:100
Viability	LIVE/DEAD™ Fixable Near-IR Dead Cell Stain	Biolegend L34976A	n/a	1:100
Viability	7-AAD	BD 559925	n/a	3:100