Supplementary Fig. S1

Supplementary Fig. S1. Gating strategy in flow cytometry. (A) A classical gating strategy. (B) Identification of antigen-specific CD8(+) T cells: Triple coding, 2 configuration staining. The detection criteria were descried in METHODS.

Supplementary Fig. S2

Supplementary Fig. S2. Tumor mutational burden (TMB) score during treatment. TMB analysis using circulating tumor DNA derived from peripheral blood plasma. Summarized TMB score was analyzed during treatment (A) and between progressors (Prog) and non-progressors (Non-prog) (B). *p<0.05. Error bars represent \pm SD. All, all patients; Nivo, after nivolumab administrations; Pre, before treatment; RT, after radiotherapy.

Supplementary Table S1. Antibodies used in the highly multiplexed flow cytometric analysis for immune cell subset discrimination and phenotypic profiling.

Antibody target	Antibody target Fluorochrome		Vendor
TIGIT	BUV395 741182		BD Biosciences
CD25	BUV615	2A3	BD Biosciences
KLRG1	PerCP-eFluor™ 710	13F12F2	eBioscience™
PD-1	BV650	EH12	BD Biosciences
TIM-3	BV711	7D3	BD Biosciences
CD160	Alexa Fluor® 647	BY55	BD Biosciences
CD56	BUV563	NCAM16.2	BD Biosciences
CD4	BUV661	SK3	BD Biosciences
CD45RO	BUV737	UCHL1	BD Biosciences
CD27	BUV805	L128	BD Biosciences
CXCR5	BV480	RF8B2	BD Biosciences
CD8	BV510	RPA-T8	BioLegend
CD3	BV570	UCHT1	BioLegend
CD127	BV605	HIL-7R-M21	BD Biosciences
HLA-DR	HLA-DR APC-R700		BD Biosciences
CD39	APC/Fire 750	A1	BioLegend

No	HLA allele	Peptide sequence	Antigen	Ref	No	No HLA allele Peptide sequence Antigen		Antigen	Ref
			ТАА			ТАА			
1	HLA-A*02:01	PLFDFSWLSL	Bcl-2 208-217	#1	1	HLA-A*24:02	DYLQYVLQI	BCL-2A1	#25
2	HLA-A*02:01	WLSLKTLLSL	Bcl-2 214-223	#1	2	HLA-A*24:02	EYRALQLHL	Carbonic anhydrase CA9 219-227	#26
3	HLA-A*02:01	CLPSPSTPV	BMI1 271-279	#2	3	HLA-A*24:02	TYACFVSNL	Carcinogenic Embryonic Antigen (CEA) 652-660	#27
4	HLA-A*02:01	TLQDIVYKL	BMI1 74-82	#2	4	HLA-A*24:02	IYTWIEDHF	FOXM1 262-270	#28
5	HLA-A*02:01	YLSGANLNL	Carcinogenic Embryonic Antigen (CEA) 571-579	#3	5	HLA-A*24:02	EYILSLEEL	Glycipan 3	#29
6	HLA-A*02:01	YLNTVQPTCV	EGF-R 1138-1147	#4	6	HLA-A*24:02	TYLPTNASL	HER-2/neu 63-71	#30
7	HLA-A*02:01	TLADFDPRV	EphA2	#5	7	HLA-A*24:02	KYYLRVRPLL	KIF20A	#28, 31
8	HLA-A*02:01	LIAHNQVRQV	HER-2/neu (85–94)	#6	8	HLA-A*24:02	VYLRVRPLL	KIF20A 67-75	#28, 31
9	HLA-A*02:01	KIFGSLAFL	HER-2/neu 369-377	#7	9	HLA-A*24:02	EYLQLVFGI	MAGEA2 156-164	#32
10	HLA-A*02:01	KLMSSNSTDL	HSP105 234-243	#8	10	HLA-A*24:02	IMPKAGLLI	MAGE-A3	#33
11	HLA-A*02:01	GLYDGMEHL	MAGEA-10 254-262	#9	11	HLA-A*24:02	TFPDLESEF	MAGEA3 97-105	#33
12	HLA-A*02:01	FLWGPRALV	MAGEA3 271-279	#10	12	HLA-A*24:02	EYCPGGNLF	MELK 87-95 (93N)	#34
13	HLA-A*02:01	GVYDGREHTV	MAGE-A4 230-239	#11	13	HLA-A*24:02	DYLNEWGSRF	p-Cadherin	#35
14	HLA-A*02:01	LLFGLALIEV	MAGE-C2 191-200	#12	14	HLA-A*24:02	AYACNTSTL	Survivin 80-88	#36
15	HLA-A*02:01	VLPLTVAEV	Mesothelin 530–538	#13	15	HLA-A*24:02	VYGFVRACL	hTRT 461-469	#37
16	HLA-A*02:01	SLLFLLFSL	MSLN mesothelin	#13	16	HLA-A*24:02	SYRNEIAYL	TTK protein kinase 551-559	#38
17	HLA-A*02:01	YLFFYRKSV	hTERT 572-580	#14	17	HLA-A*24:02	RYCNLEGPPI	ULRC10/LY6K-177	#28
18	HLA-A*02:01	LLLLTVLTV	MUC-1 12-20	#15	18	HLA-A*24:02	SYGVLLWEI	VEGFR1-1084	#39
19	HLA-A*02:01	SLLMWITQV	NY-ESO-1 157-165	#16	19	HLA-A*24:02	RFVPDGNRI	VEGFR2-169	#39
20	HLA-A*02:01	SLPPPGTRV	p53 149-157	#17	20	HLA-A*24:02	CYTWNQMNL	WT1	#40
21	HLA-A*02:01	VLDGLDVLL	PRAME 100-108	#18	21	HLA-A*24:02	EYYELFVNI	DEPDC1-294	#28
22	HLA-A*02:01	LMLGEFLKL	Survivin 96-104	#19	22	HLA-A*24:02	KTVNELQNL	IMP3-508	#38
23	HLA-A*02:01	ILAKFLHWL	Telomerase 540-548	#20				Virus	
24	HLA-A*02:01	RMFPNAPYL	WT-1 126-134 (Wilms tumor)	#21	1	HLA-A*24:02	QYDPVAALF	pp65/CMV	#28
			Virus		2	HLA-A*24:02	VYALPLKML	pp65/CMV	#41
1	HLA-A*02:01	NLVPMVATV	pp65/CMV	#22	3	HLA-A*24:02	AYAQKIFKI	IE-1/CMV	#42
2	HLA-A*02:01	VLEETSVML	IE-1/CMV	#22	4	HLA-A*24:02	TYGPVFMSL	LMP2/EBV	#43
3	HLA-A*02:01	CLGGLLTMV	LMP-2A/EBV	#23	5	HLA-A*24:02	DYCNVLNKEF	BRLF1/EBV	#44
4	HLA-A*02:01	GILGFVFTL	MP/Influenza	#24	6	HLA-A*24:02	TYQWIIRNW	PB2/Influenza	#45

Supplementary Table S2. A list of 56 epitopes restricted to HLA-A02:01 or HLA-A24:02, which included 46 TAAs and 10 virus antigens.

HLA-A*24:02

HLA, human leukocyte antigen; Ref, reference; TAA, tumor-associated antigen.

HLA-A*02:01

	ist treatment	2nd treatment	3rd treatment	4th treatment
P1	SOX	RAM + PTX		
P2	SOX	RAM + PTX		
P3	DS	SP	RAM + PTX	
P4	DS	XP + HER	RAM + nab-PTX	
P5	SP	RAM + nab-PTX		
P6	SP	SOX	RAM + PTX	
P7	SP	XP + HER	RAM + PTX	DS
P8	SOX	RAM + nab-PTX		
P9	SP	RAM + PTX		
P10	XP + HER	XELOX + HER	RAM + PTX	RAM + nab-PTX
P11	XP + HER	RAM + nab-PTX		
P12	DCS	RAM + nab-PTX		
P13	DCS	biweekly CPT-11	weekly PTX	
P14	SOX	PTX + RAM		
P15	XP + HER	RAM + nab-PTX		
P16	SOX	nab-PTX	RAM + nab-PTX	
P17	SOX	RAM + PTX		
P18	XP + HER	SP + HER	RAM + PTX	
P19	SP	RAM + nab-PTX		
P20	SP	RAM + PTX	LAK	

Supplementary Table S3. Summary of treatments administered prior to the treatment protocol of CIRCUIT trial.

Cases with italicized case number were survivors alive as of the data of confirmation of survival. CDDP, cisplatin; CPT-11, irinotecan; DTX, docetaxel; HER, trastuzumab; LAK, lymphokine activated killer; nab-PTX, nanoparticle albumin-bound paclitaxel; PTX, paclitaxel; RAM, ramucirumab; DCS, docetaxel + cisplatin + tegafur/gimeracil/oteracil; DS, docetaxel + tegafur/gimeracil/oteracil; SOX,

tegafur/gimeracil/oteracil + oxaliplatin; SP, tegafur/gimeracil/oteracil + cisplatin; XELOX, capecitabine + oxaliplatin; XP, capecitabine + cisplatin.

441. 4

No.	Time-points	Number of Tcells (/µl)	Read count*	Clones detected**
	Pre	1,254	176,416	19,036
P1	RT	753	79,805	9,340
	Nivo	1,341	145,840	11,736
	Pre	1,537	95,004	5,695
P2	RT	590	110,225	7,616
	Nivo	486	151,817	10,846
	Pre	1,662	82,744	14,113
P3	RT	1,261	155,266	14,712
	Nivo	1,135	135,140	14,865
	Pre	1,736	128,091	29,428
P4	RT	1,414	163,078	25,169
	Nivo	740	148,483	20.388
	Pre	1.527	162.449	18.826
P5	RT	951	172,581	14.099
-	Nivo	933	199,660	17,414
	Pre	1.655	136.482	13.819
P6	RT	1.311	198,776	13.315
	Nivo	1 551	90 151	11 556
	Pre	1.537	190,299	22.150
P7	RT	2 559	177 283	15 672
	Nivo	1 645	213 904	24 269
	Pre	802	199,918	16.872
P8	RT	866	153 061	11 582
10	Nivo	715	160,001	12 388
	Pre	1 820	145 748	11 723
P9	RT	1,520	187 995	13 579
10	Nivo	1 701	124 525	8 903
	Pre	1 142	170 026	12 313
P10	RT	688	73 234	5.078
1 10	Nivo	1 018	148 645	9 878
	Pre	1 798	154 719	19.370
P11	RT	869	88 178	10,969
	Nivo	1 106	109 059	13 926
	Pre	938	190,391	17 392
P12	RT	682	154 430	12 064
=	Nivo	555	220.345	15 937
	Pre	2 901	141 057	27 821
P13	RT	1 728	115 057	10,061
	Nivo	1 631	88 628	8 327
	Pre	1 889	121 126	12 969
P14	RT	963	139 119	11 230
	Nivo	1 003	129 620	15 382
	Pre	1,686	67,061	17,153
P15	RT	1.728	133.858	18.429
	Nivo	1.125	146.390	19.982
	Pre	2.080	193.173	20.107
P16	RT	1.441	167 697	18,615
	Nivo	1.562	174.364	19.708
	Pre	1,279	82,554	9.868
P17	RT	1.138	164.487	15.120
	Nivo	1.192	125.863	14,995
	Pre	1,114	120.606	20,709
P18	RT	774	148 523	18.021
	Nivo	892	80,862	18,129
	Pre	1.027	164 485	21,588
P19	RT	726	231 327	23.541
	Nivo	1,095	181 699	22,006
	Pre	1 261	170 012	18 767
P20	RT	842	99 198	8 051
. 20	Nivo	844	135.481	10.619

Supplementary Table 54. The basic stat of the TCR repertoire analy	Supplementary	Table S4.	The basic stat of the	TCR re	pertoire	analysi
--	---------------	-----------	-----------------------	--------	----------	---------

Cases with italicized case number were survivors alive as of the data of confirmation of survival. *Read count (assigned reads): Number of reads in which TCR genes were aligned with reference sequences. **Clones detected (assigned reads): Number of reads with unique combination. TCR, T cell receptor.

No.	Time-points	ctDNA concentration (ng/µl)
	Pre	24.2
P1	RT	58.8
	Niur	50:0
	INIVO	51.2
	Pre	1.38
P2	RT	0.688
	Nivo	1 31
	Dra	1.01
	Pre	1.84
P3	RI	1.82
	Nivo	5.24
	Pre	2.62
D4	DT	1.32
P4	RI	1.74
	Nivo	3.26
	Pre	2.2
P5	RT	2.5
	Nivo	4.18
	NIVO	4.10
	Pre	2.84
P6	RT	2.84
	Nivo	6.8
	Dro	10.2
		10.2
P7	RT	13.3
	Nivo	25.2
	Pro	899.0
D0		0.500
PO	RI	0.954
	Nivo	1.16
	Pre	0.982
PQ	R T	1.52
15	Nitra	1.04
	INIVO	1.04
	Pre	8.36
P10	RT	8.14
	Nivo	10.6
	NIVO	10.0
	Pre	1.47
P11	RT	1.33
	Nivo	1.68
	Pro	2.2
D10		1.41
PIZ	RI	1.41
	Nivo	1.22
	Pre	1.62
P13	RT	22
1 10	Nivo	6.09
		0.00
	Pre	2.36
P14	RT	1.19
	Nivo	13
	Pro	1 00
DIC		1.33
P15	KI KI	1
	Nivo	0.21
	Pre	1.17
D16	DT	2.42
FIU		2.42
	NIVO	1.45
	Pre	2.82
P17	RT	2.06
	Nivo	2.06
		2.00
	Pre	0.8
P18	RT	1.07
	Nivo	1.07
	Pro	0.916
B (0	FIE DT	0.910
P19	RI	0.704
	Nivo	0.566
	Pre	1 69
D 20		1.03
P20	<u>κ</u> ι	1./3
	Nivo	2 18

Supplementary Table S5. Concentration of ctDNA.

Cases with italicized case number were survivors alive as of the data of confirmation of survival. ctDNA, circulating tumor DNA.

,	Antigen		MELK 87-95	p-Cadherin	DEPDC1-294	pp65/CMV	IE-1/CMV	hTERT 572-580	PRAME 100-108	pp65/CMV	IE-1/CMV	MP/Influenza
Peptic	de sequence	Э	EYCPGGNLF	DYLNEWGSRF	EYYELFVNI	QYDPVAALF	AYAQKIFKI	YLFFYRKSV	VLDGLDVLL	NLVPMVATV	VLEETSVML	GILGFVFTL
	P2	Pre								3.74 (244)		
	(73)	RT							0.0035 (5)	6.44 (9125)	0.0057 (8)	
	(PD)	Nivo								10.8 (13094)		
	P3	Pre				0.031 (43)						
	(83)	RT				0.039 (27)						
	(PD)	Nivo				0.056 (54)						
	P4	Pre				0.0021 (4)	0.0054 (10)					
	(95)	RT					0.011 (10)					
	(PD)	Nivo										
	P6	Pre					0.0036 (19)					
	(158)	RT	0.0032 (13)				0.0056 (23)					
	(PD)	Nivo	0.0068 (28)				0.0046 (19)					
Prog	P7	Pre				0.28 (450)						
	(167)	RT				0.42 (447)						
	(PD)	Nivo				0.61 (955)						
	P8	Pre		0.0033.(4)		0.01 (000)						
	(174)	RT		0.0000 (4)								
	(PD)	Niwo		0.0051 (10)								
	(FD) P0	Bro		0.0031(10)		0.0077 (22)	0.74 (2277)				· · · · · · · · · · · · · · · · · · ·	
	(202)	DT				0.095 (16)	0.29 (52)					
	(202)	Nine				0.064 (200)	0.20 (32)					
	(PD)	NIVO				0.064 (200)	0.68 (2119)			1 47 (6476)		0.0042 (10)
	(000)	Pie								1.47 (0470)		0.0045 (19)
	(290)	RI					-			1.29 (2232)		0.0045 (8)
	(PD)	NIVO								1.24 (1900)		
	P11 (222)	Pre					-					
	(303)	RI					-					
	(SD)	Nivo				0.0035 (12)						
	P12	Pre					0.001 (4)				-	
	(330)	RI										
	(SD)	Nivo										
	P13	Pre					0.0018 (12)	0.002 (13)		0.46 (3025)		0.0027 (18)
	(342)	RI				0.0012 (6)	0.0017 (8)	0.00085 (4)		0.25 (1189)	-	0.0023 (11)
	(SD)	Nivo					0.0034 (13)	0.0038 (15)		0.30 (1133)		0.0016 (6)
	P14	Pre	0.0049 (14)				-					
	(435)	RT	0.019 (10)									
	(PR)	Nivo	0.009 (17)									
	P15	Pre				0.057 (73)	2.7 (3489)					
Non-prog	(651)	RT				0.089 (83)	2.5 (2356)					
	(CR)	Nivo				0.051 (31)	1.69 (1050)					
	P17	Pre								0.073 (156)		
	(1111)	RT								0.15 (198)		
	(SD)	Nivo								0.037 (68)	l	
	P18	Pre					0.004 (7)				l	ļ
	(1118)	RT			0.0078 (7)							
	(CR)	Nivo										
	P19	Pre					0.05 (106)					
	(1160)	RT	0.014 (13)	0.024 (22)			0.12 (111)					
	(CR)	Nivo	0.015 (7)				0.23 (105)					
	P20	Pre	0.0058 (9)				0.011 (17)					
	(1489)	RT										
	(PR)	Nivo					0.0059 (7)					

Supplementary Table S6. Frequency and cell count of TAA- and virus-specific CD8(+) T cells.

Cases with italicized case number were survivors alive as of the data of confirmation of survival. Overall survival for each patient is shown below the patient's identification number and best overall response for each patient is also shown below overall survival. HLA, human leukocyte antigen; Prog, progressors; Non-prog, non-progressors; TAA, tumor-associated antigen.

References for Supplementary Table S2.

- 1. Andersen MH, Svane IM, Kvistborg P, et al. Immunogenicity of bcl-2 in patients with cancer. *Blood* 2005;105:728-34.
- Yong AS, Stephens N, Weber G, et al. Improved outcome following allogeneic stem cell transplantation in chronic myeloid leukemia is associated with higher expression of bmi-1 and immune responses to bmi-1 protein. *Leukemia* 2011;25:629-37.
- 3. Liu KJ, Wang CC, Chen LT, et al. Generation of carcinoembryonic antigen (cea)-specific t-cell responses in hla-a*0201 and hla-a*2402 late-stage colorectal cancer patients after vaccination with dendritic cells loaded with cea peptides. *Clin Cancer Res* 2004;10:2645-51.
- Schuler PJ, Boeckers P, Engers R, et al. Egfr-specific t cell frequencies correlate with egfr expression in head and neck squamous cell carcinoma. *J Transl Med* 2011;9:168.
- 5. Hatano M, Eguchi J, Tatsumi T, et al. Epha2 as a glioma-associated antigen: A novel target for glioma vaccines. *Neoplasia* 2005;7:717-22.
- Voutsas IF, Anastasopoulou EA, Tzonis P, et al. Unraveling the role of preexisting immunity in prostate cancer patients vaccinated with a her-2/neu hybrid peptide. *J Immunother Cancer* 2016;4:75.
- 7. Kono K, Rongcun Y, Charo J, et al. Identification of her2/neu-derived peptide epitopes recognized by gastric cancer-specific cytotoxic t lymphocytes. *Int J Cancer* 1998;78:202-8.
- 8. Sawada Y, Komori H, Tsunoda Y, et al. Identification of hla-a2 or hla-a24-restricted ctl epitopes for potential hsp105-targeted immunotherapy in colorectal cancer. *Oncol Rep* 2014;31:1051-8.
- 9. Huang LQ, Brasseur F, Serrano A, et al. Cytolytic t lymphocytes recognize an antigen encoded by mage-a10 on a human melanoma. *J Immunol* 1999;162:6849-54.
- Chinnasamy N, Wargo JA, Yu Z, et al. A tcr targeting the hla-a*0201-restricted epitope of mage-a3 recognizes multiple epitopes of the mage-a antigen superfamily in several types of cancer. *J Immunol* 2011;186:685-96.
- 11. Duffour MT, Chaux P, Lurquin C, et al. A mage-a4 peptide presented by hla-a2 is recognized by cytolytic t lymphocytes. *Eur J Immunol* 1999;29:3329-37.
- Zhou G, Sprengers D, Boor PPC, et al. Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating t cells in hepatocellular carcinomas. *Gastroenterology* 2017;153:1107-1119.e10.
- Laheru D, Lutz E, Burke J, et al. Allogeneic granulocyte macrophage colony-stimulating factorsecreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: A pilot study of safety, feasibility, and immune activation. *Clin Cancer Res* 2008;14:1455-63.
- 14. Bolonaki I, Kotsakis A, Papadimitraki E, et al. Vaccination of patients with advanced non-

small-cell lung cancer with an optimized cryptic human telomerase reverse transcriptase peptide. *J Clin Oncol* 2007;25:2727-34.

- 15. Correa I, Plunkett T, Coleman J, et al. Responses of human t cells to peptides flanking the tandem repeat and overlapping the signal sequence of muc1. *Int J Cancer* 2005;115:760-8.
- 16. Purbhoo MA, Sutton DH, Brewer JE, et al. Quantifying and imaging ny-eso-1/lage-1-derived epitopes on tumor cells using high affinity t cell receptors. *J Immunol* 2006;176:7308-16.
- 17. Svane IM, Pedersen AE, Nikolajsen K, et al. Alterations in p53-specific t cells and other lymphocyte subsets in breast cancer patients during vaccination with p53-peptide loaded dendritic cells and low-dose interleukin-2. *Vaccine* 2008;26:4716-24.
- Rezvani K, Yong AS, Tawab A, et al. Ex vivo characterization of polyclonal memory cd8+ tcell responses to prame-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. *Blood* 2009;113:2245-55.
- 19. Turksma AW, Bontkes HJ, Ruizendaal JJ, et al. Exploring dendritic cell based vaccines targeting survivin for the treatment of head and neck cancer patients. *J Transl Med* 2013;11:152.
- 20. Wenandy L, Sørensen RB, Sengeløv L, et al. The immunogenicity of the htert540-548 peptide in cancer. *Clin Cancer Res* 2008;14:4-7.
- 21. Gillmore R, Xue SA, Holler A, et al. Detection of wilms' tumor antigen--specific ctl in tumordraining lymph nodes of patients with early breast cancer. *Clin Cancer Res* 2006;12:34-42.
- 22. Hill GR, Tey SK, Beagley L, et al. Successful immunotherapy of hcmv disease using virusspecific t cells expanded from an allogeneic stem cell transplant recipient. *Am J Transplant* 2010;10:173-9.
- 23. Ahmed M, Lopez-Albaitero A, Pankov D, et al. Tcr-mimic bispecific antibodies targeting Imp2a show potent activity against ebv malignancies. *JCI Insight* 2018;3.
- 24. Kono K, Takahashi A, Sugai H, et al. Dendritic cells pulsed with her-2/neu-derived peptides can induce specific t-cell responses in patients with gastric cancer. *Clin Cancer Res* 2002;8:3394-400.
- 25. Akatsuka Y, Nishida T, Kondo E, et al. Identification of a polymorphic gene, bcl2a1, encoding two novel hematopoietic lineage-specific minor histocompatibility antigens. *J Exp Med* 2003;197:1489-500.
- 26. Uemura H, Fujimoto K, Tanaka M, et al. A phase i trial of vaccination of ca9-derived peptides for hla-a24-positive patients with cytokine-refractory metastatic renal cell carcinoma. *Clin Cancer Res* 2006;12:1768-75.
- 27. Matsuda K, Tsunoda T, Tanaka H, et al. Enhancement of cytotoxic t-lymphocyte responses in patients with gastrointestinal malignancies following vaccination with cea peptide-pulsed dendritic cells. *Cancer Immunol Immunother* 2004;53:609-16.
- 28. Fujiwara Y, Okada K, Omori T, et al. Multiple therapeutic peptide vaccines for patients with

advanced gastric cancer. Int J Oncol 2017;50:1655-1662.

- 29. Komori H, Nakatsura T, Senju S, et al. Identification of hla-a2- or hla-a24-restricted ctl epitopes possibly useful for glypican-3-specific immunotherapy of hepatocellular carcinoma. *Clin Cancer Res* 2006;12:2689-97.
- 30. Nagata Y, Furugen R, Hiasa A, et al. Peptides derived from a wild-type murine proto-oncogene c-erbb-2/her2/neu can induce ctl and tumor suppression in syngeneic hosts. *J Immunol* 1997;159:1336-43.
- 31. https://www.creativebiolabs.net/symbolsearch_KIF20A_62.htm.
- 32. Tahara K, Takesako K, Sette A, et al. Identification of a mage-2-encoded human leukocyte antigen-a24-binding synthetic peptide that induces specific antitumor cytotoxic t lymphocytes. *Clin Cancer Res* 1999;5:2236-41.
- 33. Goodyear OC, Pratt G, McLarnon A, et al. Differential pattern of cd4+ and cd8+ t-cell immunity to mage-a1/a2/a3 in patients with monoclonal gammopathy of undetermined significance (mgus) and multiple myeloma. *Blood* 2008;112:3362-72.
- 34. Takeuchi S, Kagabu M, Shoji T, et al. Anti-cancer immunotherapy using cancer-derived multiple epitope-peptides cocktail vaccination clinical studies in patients with refractory/persistent disease of uterine cervical cancer and ovarian cancer [phase 2]. *Oncoimmunology* 2020;9:1838189.
- 35. Osawa R, Tsunoda T, Yoshimura S, et al. Identification of hla-a24-restricted novel t cell epitope peptides derived from p-cadherin and kinesin family member 20a. *J Biomed Biotechnol* 2012;2012:848042.
- 36. Hirohashi Y, Torigoe T, Maeda A, et al. An hla-a24-restricted cytotoxic t lymphocyte epitope of a tumor-associated protein, survivin. *Clin Cancer Res* 2002;8:1731-9.
- Nakamoto Y, Mizukoshi E, Tsuji H, et al. Combined therapy of transcatheter hepatic arterial embolization with intratumoral dendritic cell infusion for hepatocellular carcinoma: Clinical safety. *Clin Exp Immunol* 2007;147:296-305.
- 38. Mimura K, Shiraishi K, Mueller A, et al. The mapk pathway is a predominant regulator of hlaa expression in esophageal and gastric cancer. *J Immunol* 2013;191:6261-72.
- 39. Hazama S, Nakamura Y, Takenouchi H, et al. A phase i study of combination vaccine treatment of five therapeutic epitope-peptides for metastatic colorectal cancer; safety, immunological response, and clinical outcome. *J Transl Med* 2014;12:63.
- Lu X, Liu J, Cui P, et al. Co-inhibition of tigit, pd1, and tim3 reverses dysfunction of wilms tumor protein-1 (wt1)-specific cd8+ t lymphocytes after dendritic cell vaccination in gastric cancer. *Am J Cancer Res* 2018;8:1564-1575.
- 41. Masuoka M, Yoshimuta T, Hamada M, et al. Identification of the hla-a24 peptide epitope within cytomegalovirus protein pp65 recognized by cmv-specific cytotoxic t lymphocytes. *Viral*

Immunol 2001;14:369-77.

- 42. Kirchner A, Hoffmeister B, Cherepnev GG, et al. Dissection of the cmv specific t-cell response is required for optimized cardiac transplant monitoring. *J Med Virol* 2008;80:1604-14.
- 43. Kuzushima K, Nakamura S, Nakamura T, et al. Increased frequency of antigen-specific cd8(+) cytotoxic t lymphocytes infiltrating an epstein-barr virus-associated gastric carcinoma. *J Clin Invest* 1999;104:163-71.
- 44. Kuzushima K, Hayashi N, Kudoh A, et al. Tetramer-assisted identification and characterization of epitopes recognized by hla a*2402-restricted epstein-barr virus-specific cd8+ t cells. *Blood* 2003;101:1460-8.
- 45. Liu J, Zhang S, Tan S, et al. Cross-allele cytotoxic t lymphocyte responses against 2009 pandemic h1n1 influenza a virus among hla-a24 and hla-a3 supertype-positive individuals. *J Virol* 2012;86:13281-94.