Appendix

1 Experimental and Simulation Methods

One liter of yeast strain BY4743 was grown to mid-log phase, O Dggo = 0.5, in a 3.8-liter fernbot flask (Sigma)
in yeast nitrogen base YNB (Difco) medium without amino acids (save the auxotrophic supplements Leu
and Trp) and without ammonium sulfate, supplemented with 2% glucose and 0.1% glutamine in a shaking
incubator at 300 rpm at 30°C. A 50 ml aliquot was taken and quenched, and total RNA was harvested as
described below. This sample was labeled t = —oo. The cells were pelleted by centrifugation and resuspended
in fresh, prewarmed, preaerated, 2% glucose / 0.1% proline medium by rapidly pipeting up and down for 20
seconds. A second 50 ml aliquot was then taken and quenched, and total RNA was harvested as described
below. This sample was labeled ¢ = 0. The fernbot was returned to the shaking incubator and subsequent
aliquots were taken every 5 minutes.

Each 50 ml sample, containing 3.0z 10® cells, was withdrawn from the fernbot in < 10 seconds and
immediately mixed with 100 ml of medium prechilled at 4°C and mixed with —20°C ice. The sample was
then rapidly transferred to a 4°C cold room in an ice bath, and drawn through a vacuum filter apparatus
with a cellulose acetate filter. Cells were scraped from the filter into an Eppendorf tube and placed in an
ethanol dry-ice bath and then placed in a —70°C freezer.

Probes for ribonuclease protection assays were prepared for each of the five nitrogen catabolite repression
(NCR) circuit genes and ACT1 as an internal control. PCR was performed with the following primers.

e DALSO primers: 5-GCTTGAAGACGGACACCATT-3’, 5-ACTCCTTTGTGTTGGGAACG-3’
e GLN3 primers: 5~AAGACGGTCAAGGACACCAC-3’, 5’-TCACCATTTTGTTGGTTGGA-3’
e URE2 primers: 5-TCAACGCATGGTTGTTCTTC-3’, 5-CCGCATTTTCCGTGTCTAAT-3’
e DEHI primers: 5’-ATGTCGGGAGATTGTTCGAG-3’, 5-GTTGAATTGCGACCGTTCTT-3’
o GAT1 primers: 5-CAGCGTCCAAGAGGAAGAAC-3’, 5-CAACCAATCCAGGCTCAGAT-3’
o ACT1 primers: 5-TGTCACCAACTGGGACGATA-3’ 5~ AACCAGCGTAAATTGGAACG-3’

PCR products were ligated into pCR2.0 TopoTA vector (Invitrogen), and their sequences were verified.
Vectors were linearized, and antisense RNA probes to each of the five NCR genes and ACT1 were synthesized
by in vitro transcription using Ambion MAXIscript kit (Ambion 1308).

Total RNA was harvested from each sample using the Ambion RiboPure-Yeast kit (Ambion 1926). Spe-
cific amounts of the relevant mRNA’s were determined by RNAse protection assay using the Ambion RPATII
kit (Ambion 1415). Equal amounts (10 ug) of total RNA were hybridized at each time point. The data
were quantitated by phosphorimager using a Molecular Dynamics GP storage phosphor cassette and Molec-
ular Dynamics Typhoon 9200 phosphorimager scanner. The data were extracted with the IMAGEQUANT5.2
(Molecular Dynamics) software, and ACT1 normalized ratios are reported in Figure 2.

1.1 Full system definition and simulation

Numerical simulation of System 8 was performed using a Runge-Kutta 4th order scheme with a time step
of 0.06 minutes, implemented in the freely available software package XPPAUT5.41.

The GLN3 and URE2 variables are as before. Let {y,Y, 1} be the Dal80 variables, {z, Z,(} the GAT1
variables, and finally {w, W,w} corresponds to DEH1. The functions H; represent transcriptional reaction
terms.

Transcriptional time delays, ¢, are incorporated into the nuclear protein variables to account for mRNA
elongation and transport. Therefore, the transcriptional reaction terms have the form

Hi(z(t —1),y(t — 1), 2(t — 1), w(t —<1))-

These time delays do not appear notationally in the equations of the full System 8 to improve readability.
Further, simulations performed for this paper were performed without time delays.
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e Correspondence to fullsystem

Kimp() = k(60.0,0.03,4.0,)
Keap(-) = k(60.0,0.03,4.0,)

Hi(z,y,z,w) = 0.22h(30.0,0.0001,pf2)r(0.2,1— pf2)
Hy(z,y,z) = 0.41h(10.0,0.001,pf1)r(0.2,1— pf1)
Hi(z,y,2) = 0.15h(2.0,0.05,pf1)r(0.2,1— pf1)

T(p) = h(0.1,0.26,p)p.

e Degradation parametersa =7 =p=¢ =0.00485,8 =0 =x =0.022,y =k =n = p = v = 0.009,
¢ =w = 0.095.

e Cell cycle parameters s0 = 110, s1 = 115, s2 = 120, s3 = 130, s4 = 140.
e Miscellaneous parameters r, = 0.2, r, = 0.05, kf = 0.00001, kr = 0.13.

e Initial conditions z(0) = 0, X(0) = 0.2, £(0) = 0.001, U(0) = 0.05, x(0) = 0.001, C(0) = 0.5,
2(0) = 0, Z(0) = 041, ¢(0) = 0.001, y(0) = 0.001, Y(0) = 0.22, %(0) = 0.001, w(0) = 0.00L,
W(0) = 0.15, w(0) = 0.001.

2 Mathematical background

We first review some mathematical background. We introduce mathematical concepts in five subsections
devoted to the description of the phase space, complete continuity, dissipativeness, injectivity of the solution
map, and monotonicity respectively.

2.1 Phase space

In order to formulate our results precisely we need to introduce the concept of a phase space for System 5.
We write w = (z,£) € R?. Even though w is a two-dimensional vector, R? is not a proper phase space for
the System 5. The reason is that in order to determine future behavior of the system, we need to know not
only value of w at a particular time ¢, but values of w(t + 8) for all § € [—7,0]. This leads to the following
definition. Let C([—7,0],R"™) be a Banach space of continuous functions on [—7,0]. If we set

ye(0) ==y(t+6) —7<6<0,
then y; belongs to the space C([—,0], R™).
In the case of System 5 we define
wi(0) = (24(0),&:(0))

and wy(f) € C([—7,0], R?). In the case of System 7 we define

wy(0) = (74(0),£(0), e (6))
and w(0) € C([-7,0], R?).

2.2 Complete continuity

Our main source in first two parts is the monograph on delay-differential equations by Hale and Verduyn-
Lunel (1).

Definition 2.1 If X,Y are metric spaces, a map A : X — Y is completely continuous if it maps any
bounded set to a subset of a compact set.



Definition 2.2 [1, Definition 3.6.2] If X,Y are metric spaces, then a mapping A : X — Y is bounded if A
takes bounded sets of X to bounded sets of Y. If A(A) : X — Y depends on a parameter in a metric space
A, then A()) is said to be bounded uniformly on compact sets of A if for any compact set Ag C A and any
bounded set X C X, there is a bounded set Yy C Y such that A(A)Xg C Yp for all A € A.

Let C' = C([-7,0],R™) be a set of continuous maps from [—7,0] to R™.

Theorem 2.3 [1, Corollary 3.6.2] Consider x' = f(t,x;) where f : R x C — R™. If f is a bounded
continuous map and the solution map T (to,t,-) : C — C is bounded uniformly on compact sets of [tg, o),
then T (to,t,-) is completely continuous for all t > to + 7.

2.3 Dissipativeness

Definition 2.4 A map F : C — C is dissipative, if every solution enters a bounded region of C' and stays
there.

2.4 Injectivity of the solution map for delay equations

For Banach spaces X and Y, £(X,Y) is the Banach space of bounded linear mappings from X to Y with
the operator topology. If L € £(C,R™) then the Riesz representation theorem implies that there is n x n
matrix function 7 on [—7, 0] of bounded variation such that

0
Lo= [ dn(0)]e(6). [9]

For any such 7 it is always understood that we have extended the definition to R so that n(#) = n(—7) for
0 < —7, n(¢) =n(0) for § > 0.
Definition 2.5 [1, Definition 2.5.2] If § € R, function L is given by Equation 9, and the matrix

B+h

B
AB.L) =) =) = fim [ @) [ o)

h—0 B
is non singular, we say that L is atomic at (3.

Definition 2.6 [1, Definition 2.5.3] Let € be an open subset of C. A function f: Q — R™ is atomic at
on Q if f is continuous together with its first and second Fréchet derivatives with respect to ¢; and f,, the
derivative with respect to ¢, is atomic at 8 on .

The importance of these concepts lies in the following theorem.

Theorem 2.7 [1, Corollary 2.5.1] Consider a system

w' = f(tawt)a

and suppose Q is an open set in R x C, f: Q — R" is continuous and T'(t,to,p) : @ = C is the solution
map for this system. If f is atomic at —7 on Q, then T(t,t9,p) is one-to-one for all t in the interval of
existence of the solution.

2.5 Monotonicity and strong monotonicity

The main reference for this section is the monograph by H. Smith (2).

A closed convex cone D C C, where C' = C([—7,0], R"™) is a Banach space, is an order coneif DN(—D) =
{0}. Given an order cone D C C we define an order on C by writing ¢ > 4 if, and only if, ¢ — ¢ € D. We
will write ¢ > ¢ if p > 9 and ¢ # ¢. If the cone D has nonempty interior, then we write ¢ >> ¢ if, and
only if, ¢ — 4 € intD.



To illustrate these concepts, take D the cone of nonnegative functions in C. Then the order is defined
by ¢ > ¢ if, and only if, ¢ — ¢ > 0, and ¢ >> ¢ if, and only if, ¢; — ¢; > 0 for all 4.

It is important to note that although, as will be shown in Lemma 3.1 and Lemma 3.2, the phase spaces of
Systems 5 and 7 are the positive cones Ci and C?r, the order cone D does not have to be a subset of either
C}r or Cﬂ’r. Monotonicity of the solution map implies that two solutions starting with a particular order in
the phase determined by a cone D maintain that order for all time. What phase space these solutions belong
to is a different issue. This becomes important in System 7, where the order cone D is not the positive cone
cY.

Definition 2.8 The map F : C — C is monotone if ¢ < 1) implies F(p) < F(¢). The differential d,F' of
the period map F(p) = T'(r,0, ) is strongly monotone for all p € C if ¢ > 0 implies d, F(p)1 >> 0.

A set X is called order convex if [p,1)] C X whenever ¢, € X satisfy ¢ < .
Definition 2.9 Consider a system
w' = f(ta wt)a [10]

where f : R x Q@ — R"”, where 2 is an open subset of C, is continuously differentiable. The System 10 is
cooperative if ) is order convex and if df (w) satisfies

df;(t,w)e > 0 whenever ¢ > 0 and ¢;(0) =0 [11]

for every w € Q and all ¢. If the system is cooperative, then by Lemma 5.1.2 in ref (2), the derivative df (¢, w)
can be represented as

n 0
dfi(t,w)e = ai(t,w)p:(0) + Z/ ©;(0)doni; (t, w,0)
j=17-7
where a;(t,w) and 7;;(t,w,#) are continuous functions of w € Q and ¢t € R. System 10 is cooperative and

irreducible if it is cooperative and the following hold:

(i) the matrix
A(t,w) := col(df (t,w)éq, . ..df (t,w)é,) [12]

is irreducible for every w € 2 and ¢t € R. Here é; € C is the obvious embedding of the standard unit
vector e; € R".

(ii) for every j such that the jth variable is delayed in the ith equation, we have
i (t, w)([=7, =7 + €)) > 0 [13]
for all small € >0 and all £ € R.

For a constant a € R™ we will denote by @ the obvious embedding of a into C. Let Ct C C be the set
of all ¢ € C such that ¢(0) > 0 for all § € [—7,0]. This set is the positive cone of C.

]?efinition 2.10 The set of all ¢ € CT such that 0 < ¢ < I;:, is called an interval and will be denoted by
[0, k]. The inequality here refers to the regular ordering with respect to the cone Ct.

Lemma 2.11 [2, Theorem 5.2.1 and Remark 5.2.1] Consider System 10 on C = C([-7,0],R™). The
interval [ﬁ, k], for some k € R™, is positively invariant provided that the following condition holds. Whenever
w € [0,k] and w;(0) =0 (w;(0) = k;) for some i, then fi(t,w) >0 (fi(t,w) <0) for all t.

Theorem 2.12 Consider an r-periodic system defined on C([—1,0]),R™)
w' = f(t7 wt)

and assume that it is cooperative and irreducible. Let T (t,to,wo) be a solution with the initial condition
wo € C([—1,0]),R™) at time t. Then the differential d,F of the period map

F(wO) = T(Taoawo)

is strongly monotone for all wy € C([—7,0]),R™), provided r > nr.



Proof. Let ¢ > 0 such that ¢; = 0. Let y(¢,v) be a solution of the variational equation

yl(t) = df('UJ(t,O,wO))y{;, Yo = ’(p

Then

do F(wo)y = y(r,1)).
It is easy to see that L(t) = df (w(t,0,wq)) satisfies Conditions 11-13 on ¢ > 0. By [2, Lemma 3.2] if ¢ > 0,
then y(¢,8) >> 0 for ¢ > n7. Therefore d, F(wy) is strongly monotone, if r > nr. |

3 Proofs of the main results

Systems 5 and 7 posses an important invariance property that we formulate and verify in a pair of related
lemmas.
3.1 Invariance properties

Lemma 3.1 Assume that the initial condition wo = (o, &) is nonnegative, i.e. xo(0) > 0 and & (0) > 0 for
all 0 € [—7,0]. Then the solution w; starting at wo stays nonnegative for all t > 0. In other words xz;(0) >0
and &(0) > 0 for all 7 > 0 and the non-negative cone

Ci = {(zt,&) € C([-7,0,, R?), 2, > 0,& > 0}
is positively invariant under the semiflow generated by System 5.
Proof. Consider a first time ¢ when z,(0) = 0. Then
&(t) = Kimp(§(t — 7)) 20
and so z(s) > 0 for all s > t, s — ¢ sufficiently small. Similarly, if & (0) = 0 then
E(t) = T(X(t = 01)) + Keap(a(t = 7)) > 0

and so £(s) > 0 for all s > ¢, s — ¢ sufficiently small. Hence, C} is positively invariant. O

Lemma 3.2 Assume that the initial condition wo = (xo,&o, po) is nonnegative, i.e. xo(0) > 0, £(0) > 0
and po(0) > 0 for all @ € [—7,0]. Then the solution w; starting at wo stays nonnegative for all t > 0. In
other words the non-negative cone

C_?_ = {(xtaftaut) € C([_Ta 0],R3),$t Z 07§t 2 OalJ’t Z 0}
is positively invariant under the semiflow generated by System 6.

Proof. The proof of this fact is similar to proof of Lemma 3.1. In fact if either z;(0) = 0 or &(0) = 0 the
proof is identical. Assume now that at time ¢ we have p;(0) = 0. Then

fu(t) = T(U(t - 82)) > 0,
which implies that u(s) > 0 for all s > ¢t with s — ¢ small enough. Hence C9 is positively invariant. O
In view of this result we write System 6 as
w'(t) = fO(t,w,)  with wy = (4, &, ) € CY [14].

Let U(t,to,wo) be the solution of the System 5 with initial condition U (to,to,wo) = wo, wo € Cg. Let
G : CY — CY a time r solution map of the System 5, i.e.

G(wo) :=U(r,0,wp), wo € CY.



3.2 Proof of Theorem 1.

Proof of this theorem is based on two abstract results.

Theorem 3.3 [3, Theorem 5.1] Assume F is a C?, monotone, one-to-one, completely continuous dissipative
mapping such that its differential d, F' is a strongly monotone operator on C_li_. Then the set of points wy € C_li_
such that T'(t,to,wo) converges to a single periodic orbit with period equal to some multiple of T, contains an
open and dense set for any tg.

The second part of the Theorem 1 is based on the following result.

Theorem 3.4 [/, Corollary 4] Assume F is C?, monotone, one-to-one, completely continuous dissipative
mapping such that its differential d, F is o strongly monotone operator. Assume further that G is an open,
bounded positively invariant subset of C_lir. Then there is an m such that the set

{wo € G : T(wo,to,t) converges to a single periodic orbit of period at most mr}
contains an open and dense subset of G.

In light of Theorems 3.3 and 3.4 we need to verify that F' is C?, one-to-one, completely continuous,
monotone and that dF is strongly monotone on C'*. Further, we will show that all solutions enter a fixed
bounded region U C C}r and that this region U/ gives rise to a positively invariant region G C C’}r. We apply
Theorem 3.4 to this region to conclude that there is an integer m such that all solutions converge to solution
of period sr with s < m.

Since all functions in the System 5 are smooth, the solution map T'(t,tg,wg) is smooth and hence the
mapping F' is smooth.

We first compute the derivative df', where f! is the right hand side of System 5

_dKep _ dKmp
df*(z,€) = l Jiouy K i ] [15]
Pezp —y — i

1. The map F' is one-to-one We show that the System 5 is atomic at —7 by showing that the
derivative is atomic at —7. We evaluate Derivative 15 at an arbitrary wg = (zg, &) and apply this matrix

t0 Y := (Yr, Ye):

. | ez (z0(0) —a Ezr(g(-1) | [ e
v (“"’W‘l Bl ey | ()

We can separate the action of the derivative matrix into a part that acts on 1o(0) and the part that acts

o(—7) as

dKesp () N
PHwo)y = [_T(OO(O)) - s 0 ](ﬁg%)

az
0 Wz (bo(—7)) | ( Yo (-T) )
T e (g (1) Y ve(=7) )
The matrix A(wo, —7) is the part that acts on o(—7)
_ 0 T (o)
Al =) = [ Wor ao(-r) 0
and
dKimp dKezp

detA(wo, —7) = 7(60(—7))7(180(—7)) >0,

for all wy. Therefore the System 5 is atomic and solution mapping T'(¢, o, we) is one-to-one for all ¢ in the
interval of existence. It follows that F' is one-to-one as well.



2. The differential d, F' is strongly monotone.

In light of Theorem 2.12 we need to show that the System 5 is cooperative and irreducible.
A. System 5 is cooperative.

We choose cone D' = C} the positive cone of C. This D! is clearly order convex.

We computed derivative df (w,t) in Equation 15. By assumption

dKz'mp dKez
d P
d >0 an .

Take 1) = (1, v¢) € D' i.e both components are nonnegative. We want to verify Condition 11. Take i = 1.
Then

>0for £ > 0,2 >0. [16]

T _ dszp

Aff ()(0, )" = = 2 0
by Inequalities 16 and )¢ > 0. For i = 2 we get
KGZ
)0, 0)" = T2, >0,

Therefore the System 5 is cooperative.

B. System 5 is irreducible.

Recall that a 2 x 2 matrix A is irreducible if the off-diagonal entries are not zero. The Equation 15
shows that the matrix A satisfies this property and hence is irreducible. This verifies (i) of the definition of
irreducibility. To verify (i) it is enough to observe that 712 = 1721 = d_, a delta function at —7. This shows
that System 5 is cooperative and irreducible. By Theorem 2.12 the differential d,F is strongly monotone
for t > 27.

3. The map F is completely continuous and dissipative

We need to verify for our system assumptions of Theorem 2.3. The map f! is clearly bounded and
continuous so we need to show that the solution map is bounded uniformly on compact subsets of [tg, 00).
Recall that r is a period of the function X (t). We set

Up = maxKimp(u),
Ui = max T(X(s)) [17]
t€[0,r]
Uy = maXKewp(u)-
Set U U+ U
nml =B e .

Now we verify conditions of Lemma 2.11 for an interval [0, B]. We take an initial condition wo = (x0,&)-
Assume first that zo(0) = 0 and both zo(f) > 0 and &(6) > 0 for all # € [—7,0]. Then fi(wo) =
Kimp(€0(=7)) > 0. Let now z0(0) = R, and 0 < &(6) < R for all § € [-7,0]. Then,

fll (wO) Kimp(fo(_T)) — Kezp(.'lfo(())) — al“o(())
Uo — aR; — Kezp(Ry)
—Kezp(Rz)
0.

For the second coordinate we let £(0) = 0 and 0 < xo(0) < R for all 8 € [—7,0]. Then f3(wp) =
T(X(t—01)) + Keap(xo(—7)) > 0. Finally, if {(0) = R¢ and 0 < z9(f) < R, for all § € [—7,0], then

VAN VANV,

fa(wo) = T(X)—=7£(0) = Kimp(€o(=7)) + Keap(xo(—T))
< Ui —pR¢ - Kimp(RE) + Kewp($0(0))
< Ui +Us—vRe
< 0.



By Lemma 2.11 the interval [0, R] is a positively invariant set in C}. Since the above argument is true for
any R >> R every solution starting at wg € C_l|r exists for ¢ € [0, 00]. It also shows that all solutions enter
the closed and bounded region [0, R,] x [0, Rg] C Ci. Hence, both the semiflow T'(wy,t,t) and the map
F : C} — Ci are dissipative. This also implies that the solution map is uniformly bounded on [to, 00) and
thus by Theorem 2.3 F' is completely continuous.

4. The map F is monotone.
We have shown above that the System 5 is cooperative. By [2, Lemma 5.3.3] this implies that f! is
quasi-monotone, that is

whenever ¢ < 9 and ¢;(0) < v;(0) holds for some 4, then f}(t,¢) < fi(t,2).

By [2, Theorem 5.1.1] quasi-monotonicity of f! implies that whenever ¢ < ¢ then T'(¢,0,¢) < T'(t,0,) for
any t > 0. Since F(-) = T(r,0,-) this proves the monotonicity of F.
This verifies all assumptions of Theorem 3.3. Take the region i := (O,R) C C}r. By the argument for
complete continuity the set
Gu == |J T(t,0,U)

t>0

is open, bounded, and positive invariant subset of C’}r. Theorem 3.4 applied to the set G;; produces an integer
m such that all solutions starting in Gy converge to periodic solutions with periods sr with s < m. Since
T(t, to, wo) is dissipative and all solutions eventually enter [0, ] this statement is valid for any initial data
in C}. This concludes the proof of Theorem 1. O

3.3 Proof of Theorem 2

We first observe that convergence of X (t) — X(t), U(t) = U(t) and C(0)e~** — 0 is exponentially fast.
Following the ideas outlined in ref (5), we now embed the semiflows of Systems 4 and 3 into one autonomous
semiflow. Given a non-autonomous semiflow ® defined by System 4 and a limiting semiflow ¥ defined by
System 3 we choose the state space Z = [tg, 0] x C}. where [tg, 00] is compactified in the usual way. Z is
then a metric space. We define an autonomous semiflow © on Z by

ot s, = { (TEIGEom) s

into the full System 4 as described in ref (5). Since we assume hyperbolicity in the limiting System 3, there
is only finitely many invariant sets in the System 3. Let & be an unstable invariant set of the limit System
3 and assume that the unstable manifold has dimension k. Then the stable manifold of S in the full System
4 has codimension at least k and hence is closed and nowhere dense in R x C7 . Since there is only finitely
many such unstable invariant sets, the union of their stable manifolds is closed and nowhere dense in R, x Ci.
This implies that for (fo,wo) in an open and dense subset of R x C7. the solution T'(¢,to,wo) converges to a
periodic trajectory, which corresponds to a period sr point of the map F with s < m. O

3.4 Proof of Theorem 3

The proof of this theorem is analogous to Theorem 1 with one notable exception. Theorem 3.3 requires
that the flow defined map G is one-to-one. Delay differential equations do, in general, admit solutions which
merge in finite time. This means that the solution map may not be one-to-one. While we are able to prove
that the solution map of System 4 is one-to-one, it can be shown easily that this is not the case for the
System 7. Therefore we are forced to use an unpublished result of I. Tere§¢dk (personal communication
P. Polacik) where the injectivity assumption is not required.

Theorem 3.5 (Teresédk,Polaéik) Assume G is a C?, monotone, completely continuous and dissipative
mapping such that its differential d,G is strongly monotone operator on C’S’r. Then the set of points wg € C_?r



such that U(t,to,wo) converges to a single periodic orbit with period equal to some multiple of r, contains an
open and dense set.

We now verify the assumptions of this Theorem. Let
D® := {(w1,ws,w3) € C([~,0],R?) | w1(8) > 0,w2(8) > 0,w3(¢) < 0}

be a cone in C. Notice that the cone D° is not a subspace of the positive cone Cﬂ’r. We will show that
the map G is a C2, compact, monotone (with respect to the cone D°) mapping on its domain of definition.
Furthermore, for any wy € Cﬂ, the differential d,,G is a strongly monotone operator with respect to the
cone D°. We compute the derivative df®, where fO is the right hand side of System 7

_dKemp —«a dKi'mp 0
df*(w,t) = ‘f‘ij— -y = d’fm — ko —kgE |- [19]
0 —k = kyp —ks

1. The differential d,,G is strongly monotone.

In light of Theorem 2.12 we need to show that the System 7 is cooperative with respect to the cone D°
and irreducible.

A. System 7 is cooperative.

Our choice guarantees that D is order convex. We computed the derivative df°(w,t) in Equation 19.
Take 1) = (Y4, %¢,%,) € D°, which means that ¢, (0) > 0,9¢(0) > 0 and ¢, (0) <0 for all § € [—7,0]. Take
the derivative df°(wo,t) evaluated at point wo in the phase space C{ with zo(6) > 0,&(0) > 0, u0(6) > 0
for all § € [—7,0]. We show cooperativity with respect to the cone DY. Take i = 1. Then

T — dszp
dg

df?(woat)(07¢§7¢u) ¢E Z 0

since the coefficient dlfi'g"? > (. For i = 2 we get

dKew
413 (w0, ) (1,0, ) = 22

since & > 0, k¢ > 0 and ¢, < 0. Finally, for 4 = 3 we have

dfg(woat)(w$7¢§a0)T = (_K' - kf,“/O)¢E S 0

since p1o > 0 and ¢ > 0. Therefore the System 7 is cooperative with respect to the cone D°.

% - kf&O"pu Z 0

B. System 7 is irreducible.

Equation 19 shows that the matrix df° is irreducible since for every nonempty, proper subset I of
N := {1,2,3} there is an i € I and j € N \ I such that df; # 0. This verifies (i) of the definition of
irreducibility. To verify (#7) it is enough to observe that 12 = 1721 = §_, a delta function at —7.

This shows that System 7 is cooperative and irreducible. By the Theorem 2.12, the differential d,G is

strongly monotone with respect to D°.

2. The map G is completely continuous and dissipative.

We need to verify for our system the assumptions of Theorem 2.3. The argument is completely analogous
to the argument from proof of Theorem 1. The map f° is clearly bounded and continuous so we need to
show that the solution map is bounded uniformly on compact subsets of [tg, 00). In addition to definition of
Up,U; and Us in Equation 17 we define

= T := min T .
Us [nax, (U(s)), Us in, (U(s))

In addition to R, and R (see Equations 18) we define



We now show that System 7 admits a positively invariant interval of the form [G,R] C C? with R =
(Rz, Re, Ry,). Notice that inequalities in this part of the proof are with respect of the cone CSL and not the
cone D°. The estimates for i = 1 and i = 2 are identical to the estimates for System 5 which were performed
in the proof of Theorem 1. When ¢ = 3 we let wo = (29, o, t0) and assume po(0) =0, 0 < z¢(0) < R, and
0 <&o(8) < Rg for all § € [—7,0]. Then by direct inspection

13 (20, &0, o) > Uy > 0.
For puo(0) = R, 0 < 29(f) < R, and 0 < §y(#) < R¢ for all 8 € [—7,0], we get
f{?(m07§07,u/0) S U3 — K‘RH — kfRHR£ < 0.

It follows from Lemma 2.11 that the interval of the form [0, R] with R = (R,, R, R,,) is positively invariant
in C?r. Since the above argument is true for any R >> R every solution starting at wg € C’_?r exists for
t € [0, 00]. It also shows that all solutions in C? enter the closed and bounded region [0, R, [0, Re] x [0, R,)-
Hence, G is dissipative and thus the solution map is uniformly bounded on [tg,00]. By Theorem 2.3 this
implies that G is a completely continuous map.
3. The map G is monotone.

We have shown above that the System 7 is cooperative. By [2, Lemma 5.3.3] this implies quasi-
monotonicity of the right hand side f° of System 7

whenever ¢ < 1 and ¢;(0) < ¢;(0) holds for some i, then f(t,) < fP(t,9).

By [2, Theorem 5.1.1] quasi-monotonicity of f° implies that whenever ¢ < ¢ then U(t, ty,p) < U(t,to,%).
Since G(-) = U(r,0, ) this proves monotonicity of G. This verifies the assumptions of Theorem 3.5 and thus
proves the Theorem 3. Finally, the proof of Theorem 4 is completely analagous to the proof of Theorem 2.
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