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SUMMARY
The structure of cell-free DNA (cfDNA) is altered in the blood of patients with cancer. From whole-genome
sequencing, we retrieve the cfDNA fragment-end composition using a new software (FrEIA [fragment end in-
tegrated analysis]), as well as the cfDNA size and tumor fraction in three independent cohorts (n = 925 cancer
from >10 types and 321 control samples). At 95% specificity, we detect 72% cancer samples using at least
one cfDNA measure, including 64% early-stage cancer (n = 220). cfDNA detection correlates with a shorter
overall (p = 0.0086) and recurrence-free (p = 0.017) survival in patients with resectable esophageal adenocar-
cinoma. Integrating cfDNA measures with machine learning in an independent test set (n = 396 cancer, 90
controls) achieve a detection accuracy of 82% and area under the receiver operating characteristic curve
of 0.96. In conclusion, harnessing the biological features of cfDNA can improve, at no extra cost, the diag-
nostic performance of liquid biopsies.
INTRODUCTION

Liquid biopsies, and cell-free DNA (cfDNA) in particular, are

actively investigated in clinical oncology. Genetic approaches,

including screening for mutations and somatic copy-number

aberrations (SCNAs), are promising biomarker candidates for

precision oncology.1–4 Mutation-based detection of tumor-

derived cfDNA is often hampered by technical and biological

noise (the latter linked to the accumulation of mutations in

normal cells).5,6 For example, in elderly patients with TP53

mutant tumors, such as in esophageal adenocarcinoma

(EAC), clonal hematopoiesis of indeterminate potential (CHIP)

hinder the determination of the origin of cfDNA variants.6,7 In

stage I–III patients with a low tumor fraction of cfDNA, this re-

quires a high sequencing depth for cfDNA, availability of buffy

coat samples, and tumor-informed sequencing or computa-

tional strategies to filter CHIP-derived variants.8,9 However,
Cell Repo
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the complexity and costs of these methods are still high, and

their clinical applicability remains limited.10 Methylation and

fragmentomic sequencing have recently emerged as potentially

sensitive and cost-effective alternatives.11–14

During cell death and mitosis, DNA can be cleaved at non-

random locations and is subsequently released into the blood-

stream.15–19 This pool of cfDNA bears information about their

cells of origin and mechanism of release.19–21 The type of DNase

cleaving the DNA is dependent on the nucleosome organization

and the presence or absence of cofactors, resulting in distinct

fragment sizes and fragment end sequences.15,16,19 The size dis-

tribution of cfDNA, with a mode of �167 bp and multiples

thereof, is related to the wrapping of DNA around the nucleo-

somes.11,22 An increase in the proportion of shorter fragment

sizes (<150 bp) can be observed in the presence of tumor, which

correlates with tumor fraction measured by mutation analysis,

and may help monitor or forecast disease outcome.23–25
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Figure 1. Measures of cfDNA biological features are altered in cancer

(A) The number of cancer, nodule, and control samples, the biological signatures of cfDNA, and the extracted measures used in this study.

(B) Log10 cancer/control fold changes (FCs) of the 50 trinucleotide fragment end sequence proportions. Trinucleotides with a p < 0.01 and a log10FC below the 25th

percentile (red) or above the 75th percentile (blue) are shown.

(C) The log10FC of trinucleotides significantly altered (*p < 0.01) in various cancer types pre-treatment.

(D and E) The increase in (D) the FrEIA score and (E) the Gini diversity index by cancer type in pre-treatment samples.

(F) Aberrant normalized size distribution of cfDNA fragments in pre-treatment cancer samples compared to control samples. The vertical dashed lines outline the

size interval used to calculate the P20-150 measure.

(legend continued on next page)
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Furthermore, a genome-wide analysis of the cfDNA size profile

can identify cancer from different types and stages,26,27 which

could complement methylation or nucleosome footprinting anal-

ysis.14,28 Studies of fragment end sequence profiles revealed the

predominance of C-rich 50 end motifs, linked to the activity of

DNASE1L3 in apoptotic cells and in plasma.15,29 The proportion

of fragments ending with a C-rich motif is decreased in patients

with cancer, and they show a higher sequence diversity in their

fragment ends.30 Information on the diversity of fragment end se-

quences and the clinical utility of biological features retrievable

from cfDNA remains limited in oncology.30 The cancer signal car-

ried by these cfDNA biological features is diluted by fragments

originating from other tissues. No direct evidence is available

for the cancer-specific nature of these signals.

We aim to improve the sensitivity of cfDNA-based non-inva-

sive cancer analysis by mining and combining genetic and

fragmentomic patterns. We hypothesized that changes in

the cfDNA fragment-end patterns, the proportion of short

fragments, and the SCNA tumor fraction (ichorCNA TF), all

obtainable from the same low-coverage whole-genome

sequencing (WGS) sample, can be utilized to improve the

detection and management of patients with cancer. To test

this, we established a genome-wide catalog of cfDNA biolog-

ical signatures of 3 large independent cohorts of patients with

cancer. For the extraction of fragment end sequences, we

developed the fragment end integrated analysis (FrEIA) score

to quantitatively evaluate liquid biopsy samples using low-

coverage WGS. In a xenograft mouse model grafted with hu-

man colorectal cancer cells, we show that fragments origi-

nating from the graft exhibit an increase of these signatures.

We determined that the combination of cfDNA biological fea-

tures can enhance the detection and monitoring of cancer in

patients. Combined with a mutation-based tumor fraction

detection, these metrics improved sensitivity for cancer

detection. Furthermore, we demonstrated the prognostic

and predictive value of these integrated cfDNA metrics in pa-

tients with lung cancer and EAC, respectively.

RESULTS

The biological signatures of cfDNA are altered in cancer
We generated a catalog of cfDNA biological signatures (Fig-

ure 1A) using 925 plasma samples from 629 patients with 21

different cancer types, 306 control samples, and 15 samples

from patients with lung nodules (or other lung lesions) not other-

wise classified (Table S1). In total, 628 cancer samples were

acquired at baseline prior to any treatment, while 297 were

collected after various lines of treatment. These samples origi-

nate from 3 datasets: sequencing data for 243 of the samples

were retrieved from a previous study (cohort #1),26 500 are newly

collected (cohort #2), and 503 were retrieved from a public data-

set27 (see STAR Methods) (cohort #3).
(G and H) The (G) P20-150 and (H) the ichorCNA TF increased by cancer type in

cancer; Es, esophageal cancer; Ga, gastric cancer; Gl, glioblastoma; Lu, lung canc

abbreviation represent the sample count. Cancer types with less than 10 sample

Whitney U test: ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001

Bonferroni method. #, mean passing the threshold of 3% tumor fraction. No biol
To characterize and assess the cfDNA fragment-end trinucle-

otide patterns from genome-wide sequencing, we developed the

FrEIA toolkit (see STAR Methods). cfDNA fragment ends were

categorized as pan-cancer based on the frequency of the first

three bases on the 50 end (64 features). The relative proportion

of 14 out of the 64 possible 50 trinucleotide fragment end se-

quences decreased significantly in cancer samples compared

to control samples, while 26 increased (alpha = 0.01, two-sided

Mann-Whitney U test; Figure 1B; Table S2). We detected devia-

tions between the mean cancer/control fold changes of the 40

significantly altered fragment-end trinucleotides of 9 cancer

types with more than 10 pre-treatment samples (Figure 1C). All

cancer types showed a similar trend in fragment end sequence

fold changes, with fragments starting with CCA, CCC, or CCT

decreasing the most compared to healthy control fragments,

while fragments starting with TTC, TTA, or ATG increased the

most, suggesting common mechanisms of cfDNA cleavage in

cancer irrespective of the cancer type.

Accurate detection of fragment end sequences primarily de-

pends on the base-calling accuracy of the sequencing. Our

sequencing batches in cohorts #1 and #2 show high per-base

sequence quality with a mean accuracy greater than 30 (1 incor-

rect base call/1,000 bases) on their 50 end nucleotides (Fig-

ure S1). As reads in cohort 3 were inferred from genomic loca-

tions retrieved from finaleDB (see STAR Methods), sequencing

accuracy is not applicable for these. These results suggest

that fragment end sequences are high fidelity and can be used

for the analysis.

As plasma cfDNA from patients with cancer exhibited alter-

ations in the proportion of 50 end sequences compared to healthy

individuals, we integrated these proportions into a single quanti-

tative measurement called the FrEIA score (see STAR Methods).

The FrEIA score measures a sample’s relative distance in 50 end
trinucleotide composition from a panel of case and control sam-

ples. The FrEIA score is increased in every cancer type for each

cohort compared to control individuals (p < 0.001; two-sided

Mann-Whitney U tests; Figures 1D and S2A). The diversity in

the 50 end trinucleotide sequences, evaluated using the Gini in-

dex (see STAR Methods), is increased for seven out of nine can-

cer types in comparison to control samples (p < 0.01; two-sided

Mann-Whitney U tests; Figures 1E and S2B).

We detected a mode of �167 bp and an enrichment of short

fragments for patients with cancer compared to healthy control

individuals in all three cohorts (Figures 1F and S2C). Based on

this, we selected a range between 20 and 150 bp and calculated

its proportion (P20-150), resulting in a single metric per sample.

P20-150 increased in 7 cancer types (p < 0.05; two-sided Mann-

Whitney U tests; Figures 1G and S2D).

We used the copy-number alterations detectable using low-

coverage samples to estimate tumor fraction (ichorCNA TF) (Fig-

ure S2E). All cancer types passing the threshold of 3% mean

tumor fraction showed an increased ichorCNA TF (p < 0.05;
pre-treatment samples. Bd, bile duct cancer; Br, breast cancer; Cr, colorectal

er; Ov, ovarian cancer; Pa, pancreatic cancer. Numbers below the cancer type

s are in the ‘‘other’’ category. p values were calculated using two-sided Mann-

. When multiple hypotheses were tested, alpha values were adjusted using the

ogical or technical replicates were used.
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Figure 2. cfDNA biological signatures from xenograft mouse models (n = 16) grafted with a human colorectal cancer cell line

(A) The schematic of the workflow. Signatures were computed from the reads aligning to the human reference genome (GRCh38; graft).

(B) Spearman correlation of trinucleotide fragment-end proportions from the patient-derived samples (cancer) and the xenograft-derived samples (graft). Tri-

nucleotides with a p < 0.01 and a log10FC below the 25th percentile (red) or above the 75th percentile (blue) are shown, as computed from the patient-derived

samples with a tumor fraction >10% (see Figure 1B).

(C–E) The increase in (C) the FrEIA score, (D) the Gini diversity index, and (E) the proportion of short fragments (P20-150) of the graft (in magenta) compared to

patient-derived control and cancer samples. No biological or technical replicates were used.
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two-sided Mann-Whitney U tests) compared to control samples

(Figures 1H and S2F).

To demonstrate the strong association between cfDNA bio-

logical features and cancer, we conducted an analysis on the

plasma samples obtained from 16 xenograft mice, engrafted

with a human colorectal cancer cell line (Figure 2A).We observed

a robust correlation (Spearman’s R = 0.96, p < 0.01) between the

trinucleotide end proportions in patients with cancer and the

colorectal graft. Specifically, the graft exhibited a higher fre-

quency of A- and T-rich trinucleotides, whereas C-rich trinucle-

otides were more prevalent in cancer samples (Figure 2B).
4 Cell Reports Medicine 5, 101349, January 16, 2024
Furthermore, the FrEIA score, Gini diversity index, and P20-

150 in the grafts showed a significant increase when compared

to control patient samples (Figures 2C–2E). These findings are

consistent with previous observations in both control individuals

and patients with cancer. It is important to note that human pa-

tient samples comprise a combination of signals originating from

both cancerous and healthy tissues. In contrast, the graft repre-

sents the purest possible form of the signal, providing valuable

insights into the underlying molecular characteristics. Overall,

our results strongly support the connection between the cfDNA

biological features and cancer.
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Figure 3. Correlation between cfDNA biolog-

ical features and with physiological variables

(A) Spearman correlation between cfDNA measures

in pre-treatment cancer samples.

(B) Spearman correlation of cfDNA biological vari-

ables with the mutant allele fraction, where available

(n = 196 samples).

(C) Spearman correlation between cfDNA measures

in control samples. ns, not significant, other values

p < 0.01.

(D–F) Spearman correlation of age and (D) the FrEIA

score, (E) theGini diversity index, and (F) theP20-150

of controls.

(G–I) The FrEIA score (G), the Gini diversity index (H),

and the P20-150 (I) by gender of control individuals.

p values were calculated using two-sided Mann-

Whitney U test: ns, not significant, ****p < 0.001.

No biological or technical replicates were used.
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To evaluate if the cfDNA features carry the tumor signal inde-

pendently, we computed their correlation in pre-treatment can-

cer samples (n = 628). Measures show that they have amoderate

positive correlationwith each other (SpearmanR> 0.25, p < 0.01)

(Figure 3A) and—where the mutant allele fraction (MAF) is avail-

able—with the MAF (Spearman R > 0.31, p < 0.01, n = 196

pre-treatment cancer samples) (Figure 3B). No correlation was

found between the measures for healthy individuals (n = 306)

(Figure 3C).

Evaluated against physiological variables in healthy control in-

dividuals, the cfDNA measures have weak or no correlation with

the age of healthy individuals (FrEIA score: Spearman R = 0.058,

p = 0.38; Gini diversity index: Spearman R = �0.24, p > 0.001;

P20-150: Spearman R = 0.065, p = 0.32; ichorCNA TF below

detection threshold thus not evaluated; Figures 3D–3F). The

Gini diversity index is higher for female patients (p < 0.001;

two-sided Mann-Whitney U tests), while the other measures

show no differences between sexes (Figures 3G–3I).

These results suggest that the FrEIA score, the fragment-end

trinucleotide diversity, the proportion of short cfDNA fragments,

and the tumor fraction derived from SCNAs can be altered in

multiple cancer types. A moderate correlation with the MAF

(where available) and the fact that they correlate with each other

only in samples from patients with cancer show their link to can-
Cell Repo
cer but also indicate that these measures

may be under the influence of other, yet un-

known physiological factors.

Integration of measures from cfDNA
biological signatures improves
cancer detection
The primary use of cfDNA fragmentation

features in oncology was improving the

detection of cancer26,27,31 or genetic alter-

ations.26 Fragment end sequences were

used to distinguish cfDNA from patients

with cancer and healthy control individuals

in a cohort of patients with hepatocellular

carcinoma.30 As cancer signal is retrievable
from cfDNA biological signatures in various forms, we tested if

their combined use would improve cancer detection. At 95%

specificity, 269/628 (43%) pre-treatment cancer samples were

detected by the FrEIA score (detection threshold of 1.9), 324/

628 (52%) by the Gini diversity index (detection threshold of

0.976), and 180/628 (29%) by the P20-150 (detection threshold

of 0.216). For the ichorCNA TF, assuming a 3% TF detection

threshold,32 we detected 199/628 (32%) pre-treatment cancer

samples (Figures 4A and S3A). Altogether, 454/628 (72%) pre-

treatment cancer samples were detected by at least onemeasure

with a specificity of 95%. Also, 16/26 (61%) stage I, 11/14 (79%)

stage II, 27/40 (68%) stage III, and 111/146 (76%) stage IV lung

cancer samples were detected by at least one of the cfDNAmea-

sures. Similar detection rateswere shown for stage II (27/44; 61%)

and III (48/62; 77%) resectable EAC (rEAC) samples, a challenging

cancer type formutation-baseddetectionmethods,33,34 andother

cancer types (Figures 4B and S3B–S3E; Table S3). We also de-

tected 6/15 samples from patients with nodule/lung lesions.

Among them, one patient was suffering from pancreatic cancer

when the lung lesions were detected. None of the 9/15 non-de-

tected patients were diagnosed with cancer at follow-up.

The integration of cfDNA biological signatures performed

slightly better at detecting cancer samples than the mutation-

based technique. Out of 196 baseline cancer samples with a
rts Medicine 5, 101349, January 16, 2024 5
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Figure 4. Cancer detection and classification using cfDNA biological features

(A) Receiver operating characteristic (ROC) curve of the detection performance of pre-treatment samples using distinct cfDNA measures individually or in

combination (all metrics). The vertical dashed line marks 95% specificity.

(B) The proportion of detected pre-treatment lung and esophageal adenocarcinoma samples by stage. The numbers below the stages represent the detection

rate.

(C) Detection rates by at least one of the cfDNA measure or by the MAF, where available, of pre-treatment samples (n = 196 samples).

(D) Schematic representation of the machine learning approach.

(E) ROC curve from predictions on an independent dataset of a logistic regression classifier based on individual or the combination of cfDNA measures. The

vertical dashed line marks 95% specificity.

(F) Prediction probabilities of the logistic regression classifier of pre-treatment lung and esophageal adenocarcinoma samples by stage. Samples above the

detection threshold (the horizontal dashed line) are considered detected. C, controls; NC, nodules; I, stage I; II, stage II; III, stage III; IV, stage IV. Numbers below

the stages represent detection rates. No biological or technical replicates were used.
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MAF available from previous studies,26,27 143 (73%) were de-

tected by at least one and 97 (50%) by multiple measures,

while 140 (71%) were detected by MAF (specificity 95%, detec-

tion thresholds: FrEIA score: 1.9, Gini diversity score: 0.98,

P20-150: 0.22, ichorCNA TF: 3%) (Figure 4C). Out of 57 samples

with a MAF <0.1%, 33 (58%) were detected by at least one and

19 (33%) by multiple measures.

Next, we tested if cfDNA feature integration via machine

learning approaches would improve cancer classification. To

select the best estimator and hyper parameters, we used the

pre-treatment samples from cohort #3 (n = 232 cancer and n =

231 control samples), iteratively randomly split into 9 training

sets and 1 validation set, with 80% data in a training set and the

remaining 20% in the corresponding validation set, using

10-fold cross-validation and 100-fold re-training (Figure 4D; see

STAR Methods). Benchmarking of 4 supervised machine learning

approaches (k-neighbors, logistic regression, random forest, sup-

port vector classifier) using the four cfDNA metrics indicated the

highest estimation of classification performance (accuracy: 0.82)

was with logistic regression. To test the best model, we used

pre-treatment cancer samples (n = 396) and samples fromhealthy

control individuals (n = 75) and patients with nodules (n = 15) from

cohorts #1 and #2, all collected independently from the training/

validation sets. With a limit of detection probability set to 50%,

the model using the combination of metrics performed the best

(AUC = 0.96, positive predictive value [PPV] = 0.99, and negative

predictive value [NPV] = 0.49), followed by the Gini diversity index

(AUC = 0.89, PPV = 0.96, and NPV = 0.39) and the ichorCNA TF

(AUC = 0.85, PPV = 0.96, and NPV = 0.39). The P20-150 and

the FrEIA score showed lower performance (AUC = 0.82, PPV =

0.96, and NPV = 0.26 and AUC = 0.76, PPV = 0.92, and NPV =

0.32, respectively) (Figures 3E and S3B). At a specificity of 95%,

our classifier based on the combination of metrics detected 12/

19 (63%) stage I, 2/3 (66%) stage II, 28/38 (74%) stage III, and

105/127 (83%) stage IV lung cancer and 34/44 (77%) stage II

and 50/62 (81%) stage III rEAC samples (Figure 3F). These results

suggest that the integration of metrics from cfDNA biological sig-

natures can improve the detection of cancer from shallow WGS

data even at early stages of the disease.

Combining cfDNA biological signatures for improved
clinical management of patients with cancer
To evaluate the significance of the integratedmeasures of cfDNA

biological signatures in a ‘‘real-world’’ clinical setting, we tested

cfDNA from patients with rEAC, where serial circulating tumor

DNA (ctDNA) detection has been shown to predict adverse

outcome.7 Here, we assessed the potential of the combined

measures in 293 rEAC samples from 2 clinical cohorts: a neoad-

juvant chemoradiotherapy (CRT) cohort (BIOES cohort, n = 70

patients, n = 149 plasma samples) receiving standard-of-care

carboplatin combined with paclitaxel-based CRT, and a cohort

of patients who participated in the phase II PERFECT trial (n =

40 patients, n = 144 samples; see STAR Methods) received

CRT in combination with a PD-L1 inhibitor.35 Both cohorts

included EAC stage II (n = 125 samples) and stage III (n = 168

samples). Plasma samples were collected longitudinally before

and after chemoradiation, and also postoperatively, in the

PERFECT cohort (Figure 4A).
The detection of treatment response can help stratify patients

for surgery or further adjuvant treatment. However, detection of

treatment response using liquid biopsies is challenging andmost

commonly requires more complex and elaborate approaches

such as tumor-guided and personalized sequencing36,37

(Figures S4 and S5). The FrEIA score post-CRT and pre-surgery

was significantly increased compared to pre-treatment for pa-

tients with an incomplete response (pT+N+/�, or pT0N+) as

determined by a pathologist from the resection specimen (p =

0.0015 and 0.04, two-sidedMann-Whitney U test), while patients

with a pathological complete response (pCR; pT0N0) showed no

difference (p = 0.77 and 0.62, two-sided Mann-Whitney U test)

(Figure 5B). Moreover, the FrEIA score post-CRT and pre-sur-

gery was significantly increased compared to pre-treatment for

patients with a tumor regression (TR) grade (Mandard) score of

3–5 (partial/no response) (p < 0.0023 and p = 0.011, two-sided

Mann-Whitney U test), while patients with a low TR score of

1–2 (complete/suboptimal response) showed no significant dif-

ference (p = 0.38 and 0.56, two-sidedMann-Whitney U test) (Fig-

ure 5B). In line with the FrEIA score, mean ichorCNA TF and the

Gini diversity index also increased between the pre-CRT and the

post-CRT samples for incomplete responders, while for patients

with a TR score of 3–5, the Gini diversity index increased signif-

icantly (Table S4). These findings are surprising, as there was no

significant difference between the measures of patients with or

without a pCR or a high or low Mandard score at any of the

time points. These results suggest that dynamic changes

compared to the pre-treatment quantification of multiple cfDNA

metrics were related to the prediction of treatment response

prior to resection and histological assessment.

The prediction of recurrence after surgery is challenging for tu-

mor-naive liquid biopsy assay due to theminute amount of tumor

signal in circulation following surgery. Patients from the

PERFECT trial had one plasma samples collected�3months af-

ter surgery (n = 31), and 17 showed recurrence within 2 years of

sampling (Figure 5C). Using low-coverage WGS, we detected

one of the 4 cfDNA features in 6/11 (55%) early recurrent patients

(<365 days postsurgery) in follow-up samples and in 1/12 (8%)

patients that are not experiencing clinical recurrence. A total of

53% patients with recurring disease were detected postsurgery,

which was associated with a shorter recurrence-free survival

(RFS) from the time of surgery (hazard ratio = 4.08; log-rank

p = 0.017), with stage III patients having a higher chance of recur-

rence (RFS; hazard ratio = 2.25; log-rank p = 0.017) (Figure 5D).

We further assessed the prognostic potential of cfDNA fea-

tures from the postresection samples of 31 patients with rEAC

and 101 pre-treatment patients with lung cancer with available

survival data (stage I = 11, stage II = 2, stage III = 24, stage

IV = 64). Patients with rEACwith at least one ormore cfDNAmea-

sures above the detection threshold have a shorter survival from

the time of surgery than patients who had undetected levels of

cfDNA (hazard ratio [HR] = 4, log-rank p = 0.0086) and stage III

patients showing a slightly increased risk of death (HR = 0.7,

log-rank p = 0.0086) (Figure 6A). Similarly, patients with lung can-

cer with multiple cfDNA features above the detection threshold

pre-treatment displayed significantly lower overall survival (OS)

from the time of first sampling (HR = 1.56, log-rank p = 0.03),

with stage IV patients having a higher risk of death (HR = 1.66,
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Figure 5. cfDNA biological patterns enable monitoring and prediction of recurrence for esophageal carcinoma

(A) Schematic representation of the clinical timeline and sampling of patients with EAC.

(B) The change in FrEIA score between pre-CRT and post-CRT samples based on the pathological complete response (pCR). p valueswere calculated using two-

sided Mann-Whitney U test: ns, not significant, **p < 0.01, ***p < 0.005.

(C) Clinical timeline of patients with EAC undergoing resection from the PERFECT subcohort (n = 33) centered around the time point of resection. EOT, end of

treatment; CSD, cancer-specific death.

(D) Kaplan-Meier curves of the recurrence-free survival probabilities for patients with EAC from the PERFECT subcohort from the postresection time point.

Samples with one of the measures higher than the threshold were considered ‘‘detected’’ (FrEIA score: 2.54, Gini diversity index: 0.98, P20-150: 0.26, ichorCNA:

3% sensitivity threshold). p values were calculated using log-rank test statistics. Dashed lines show themedian survival time. No biological or technical replicates

were used.
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log-rank p = 0.03) (Figure 6B). This demonstrates the potential

clinical utility of multi-signal profiling of different malignancies.

DISCUSSION

The combination of different analytes from the blood plasma can

improve the sensitivity of liquid biopsy for low-tumor-burden pa-

tients in a tumor-naive context but requires an accumulation of

expensive tests and skills for their analysis.38,39 Here, we evalu-
8 Cell Reports Medicine 5, 101349, January 16, 2024
ated if multiple biological signatures obtained from the same

sample and sequencing data can be harnessed to enhance the

sensitivity of detecting cancer signals in a range of clinical appli-

cations. Using a pan-cancer dataset of 925 plasma samples

from three independent cohorts of cost-effective, low-coverage

WGS, we demonstrated that integrating genomic and fragmen-

tomic features can enhance the detection of early-stage cancer,

providing value as a prognostic biomarker as well as for moni-

toring recurrence in serial samples.
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Figure 6. Integrating cfDNA biological patterns improve survival prognostication

(A) Kaplan-Meier curves of the survival probability for patients with EAC from the postsurgery time point. Dashed lines represent the median survival.

(B) Kaplan-Meier curves of the survival probability for patients with lung cancer from the time of initial sampling. Samples with one of themeasures higher than the
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Despite biological unknowns, the cfDNA fragmentation patterns

are being evaluated for cancer detection.26,27,31,40 Other cfDNA

biological features, notably their fragment end sequences and po-

sitions, remain to be extensively characterized and their potential

for cancer diagnostics to be determined.41,42 Our new open pipe-

line, called FrEIA, allows the recovery of cfDNA fragment end se-

quences from genome-wide sequencing data in a reproducible

way. FrEIA can be used on low-coverage WGS,26,32,43 as well as

higher-depth WGS27,28,44 or other forms of paired-end

sequencing.37Ourworkprovidesstrongevidence that thecompo-

sition in bases at the end of cfDNA fragments in the plasmaofmul-

tiple cancer types is altered in comparison to healthy control indi-

viduals, resulting in increased diversity of cfDNA fragment ends in

cancer. A previous report observed such bias in hepatocellular

carcinoma but did not verify its tumor-specific nature.30 We

confirmed specifically that such modifications can be cancer

derived using xenograft models, allowing a separation of tumor

(human) and non-tumor (mouse) DNA.23,26,45–47 Based on these

observations, we developed the FrEIA score, which is increased

for cancer samples irrespective of cancer type and stage. Plasma

cfDNA from patients with cancer are enriched in shorter frag-

ments.23,48,49 We observed an increase of the proportion of short

cfDNA fragments in the different datasets. These fragmentation-

related biological features correlate moderately with ctDNA pro-

portion estimates (MAF or ichorCNA TF) in plasma samples of pa-

tients with cancer but not healthy control individuals. Solid tumors

exhibit heterogeneity at the genetic and non-genetic levels.

Focusing on a single biological characteristic, such as point muta-

tionsorcopy-number alterations,maynot fully capture thishetero-

geneity. Thus, the limited correlation observed between cfDNA

biological features and the disease underscores the necessity of

integrating multiple cancer-related signals from diverse sources

to enhance detection accuracy.50
Pre-analytical conditions pose potential limitations to the us-

age of cfDNA fragmentation features and could bias conclusions

if not carefully examined.51 Similarly, the choice of library prepa-

rationwith either single-stranded and double-strandedDNA,52,53

or PCR and PCR-free,54 could impact the size distribution of

cfDNA, with an anticipated method-dependent bias in the frag-

ment-end composition. Sequencing quality and read filtering

can affect the fragment end sequence composition. Further-

more, cfDNA fragment-end analysis could be potentially

obscured by other clinical conditions that affect cfDNA release

in thebloodstream.55–57Another limitation is thenumber of nucle-

otides chosen for analysis, as the stretch of DNA on the fragment

end carrying the tumor-specific signal is currently not clearly

defined. Previous studies observed cancer-type-specific cfDNA

signatures, which may be the case for fragment end sequence

patterns.58 However, the cohorts used in our study have an un-

balanced distribution of samples across different cancer types,

which limits the statistical power of our results for cancer types

with lower sample counts.

The combination of cfDNA features improved the detection

of cancer with machine learning. A classifier tested on a cohort

of 528 samples (396 cancer, 75 control, and 15 nodule sam-

ples) leads to an area under the receiver operating character-

istic curve (AUROC) = 0.96 when classifying cancer from con-

trol samples. In contrast, separate use of the FrEIA score, the

fragment-end diversity, the proportion of short fragments, or

the ichorCNA TF with a logistic-regression-based classifier

for the classification of cancer from control decreases the

classification power (AUROCs of 0.76, 0.89, 0.82, and 0.85,

respectively). Using a classifier based on the combination of

cfDNA features in a cohort of 187 patients with lung cancer,

we could detect 14/22 early-stage patients, while in a subco-

hort of 106 pre-CRT rEAC samples from two different studies,
Cell Reports Medicine 5, 101349, January 16, 2024 9
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34/44 early-stage patients were detected. The availability of

early-stage cancer samples is limited in our study; thus, addi-

tional confirmation will be needed to determine the clinical util-

ity for early detection. The analysis of fragment sizes and frag-

ment end sequences in genomic bins could have potential for

cancer classification.59 A combined use of cfDNA features ex-

tracted from subgenomic bins or from genomic regions of in-

terest could improve detection rates and thus needs further

evaluation.

Beyond the classification of cancer beyond a cancer diag-

nostic, cfDNA biological features can be used in realistic clinical

scenarios. Here, we show that a multi-signal cfDNA approach

can be a sensitive, cost-effective, and flexible tool for a range

of clinical applications in the tumor-naive context. The recovery

of cfDNA fragment end sequences has a prognostic value for

treatment response. In a cohort of 46 patients with rEAC,

75% patients with suboptimal TR (TR score 3–5) have an in-

crease in their FrEIA score, 64% in their Gini diversity index,

47% in their P20-150, and 44% in their irchorCNA TF post-

CRT compared to their baseline values. Patients with a com-

plete pathological response or with an optimal TR (TR score

1–2) also show a non-significant increase, explained by the

transient release of ctDNA after radiotherapy or by other phys-

iological and clinical conditions.57 However, these results are

limited by the low number of patients with a pCR in this cohort.

When analyzing the 30 samples collected post-surgery, we

demonstrated that 55% patients detected by one of the cfDNA

features (6 out of 11 patients) showed recurrence in a year. In a

recent publication, a ctDNA panel consisting of 77 genes was

tested in 97 patients with EAC. After filtering of CHIP variants,

the panel showed high prognostic potential for disease-free

survival (HR = 5.35, 95% confidence interval [CI] 2.10–13.63;

p % 0.0001) based on the post-surgery samples.7 Another

study used an EAC tumor-guided sequencing approach and

found ctDNA status (positive vs. negative) to be prognostic at

baseline for disease-free survival (p = 0.042).8 In contrast to

these two approaches, the metrics derived from cfDNA fea-

tures do not require a buffy coat or a tumor biopsy and have

the potential to be easily implementable in the clinic, costing

a fraction of tumor-informed sequencing. However, the speci-

ficity of metrics derived from cfDNA features is below that of tu-

mor-informed sequencing methods (and bespoke sequencing

panels that can reach parts per million fragments).36,37 Further-

more, due to the nature of hybrid-capture sequencing, a com-

bination of mutation analysis with cfDNA biological signatures

is possible and could result in improved tumor signal detec-

tion.60,61 The armamentarium of cfDNA fragmentomic signals

is increasing quickly, and we can foresee that some of these

features could have a diagnostic potential in combination with

other cfDNA signals.11,12,62

Our results highlight that a multi-signal combination of cfDNA

genomic and fragmentomic features has the potential to deliver

sensitive detection of tumor-derived cfDNA using genome-wide

sequencing. Although further validation in larger cohorts is

needed, cfDNA multi-signal integration can inform on the early

detection of cancer and could contribute to addressing, at a

competitive cost, the unmet need of residual disease therapy de-

cision-making in oncology.
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Limitations of the study
The following limitations should be considered when interpreting

the results. cfDNA fragmentomic signals may be biased by the

pre-analytical variables, computational pre-processing, and in-

dividual genetic diversity or comorbidities. The current study

enrolls a wide range of cancer types (n = 21), which may have

variable ctDNA release, potentially different fragmentomic signa-

tures, and a limited number of samples per condition. Treatment

response monitoring may be affected by the sampling time

because of transient release of ctDNA after treatment. Addition-

ally, the effects of treatment and drug toxicity on cfDNA fragmen-

tomic signatures are unknown. The necessity of data harmoniza-

tion when comparing multiple cohorts may blur small differences

between cancer types or sampling time points. Finally, there are

no clear guidelines on how multi-modal liquid biopsy analysis

could be integrated in clinical settings.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human plasma samples Amsterdam Liquid Biopsy Center http://www.liquidbiopsycenter.nl/

Critical commercial assays

ThruPLEX Plasma-Seq Takara Cat #: R400492

Deposited data

Esophageal adenocarcinoma dataset This paper EGA: EGAD00001008316

Lung cancer and healthy control dataset #1 This paper EGA: EGAD00001008321

Lung cancer dataset #2 This paper EGA: EGAD00001008666

Healthy control dataset This paper EGA: EGAD00001008322

Retrieved dataset Mouliere et al.26 EGA: EGAS00001003258

Xenograft mouse dataset This paper EGA: EGAD00001011128

Experimental models: Cell lines

MDST8 Sanger Institute (Cambridge, UK) N/A

Experimental models: Organisms/strains

Mouse model (Hsd:Athymic Nude-Fox1nu) Envigo N/A

Software and algorithms

FrEIA tool This paper Github: https://github.com/mouliere-lab/FrEIA.git

Machine learning classifier pipeline This paper Github: https://github.com/mouliere-lab/FrEIA.git

ichorCNA Adalsteinsson et al.32 Github: https://github.com/broadinstitute/ichorCNA

bwa-mem Li and Durbin63 Github: https://github.com/lh3/bwa

Samtools Li et al64 https://github.com/samtools/samtools

ComBat Johnson et al.65 http://www.bioconductor.org/packages/

release/bioc/html/sva.html
Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Florent

Mouliere (f.mouliere@amsterdamumc.nl).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The cfDNA sequencing data have been deposited in the European Genome-Phenome Archive (EGA) and are publicly available as of

the date of publication. Accession numbers are listed in the key resources table.

The code for the FrEIA tool and of the machine learning pipeline has been deposited on Github and is publicly available as of the

date of publication. Links to the code are listed in the key resources table.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human participants
A total of 925 plasma samples from 629 patients were analyzed across 21 cancer types, together with samples of 306 healthy controls

and 15 plasma samples from patients with lung nodules or other lesions in three independent cohorts (Table S1). Data for cohort #1

(n = 243) was retrieved from a previous study from a public database (EGA accession number: EGAS00001003258).26 Cohort #2

(n = 500) was recruited following informed consent via the Liquid Biopsy Center at the Amsterdam UMC, location VUmc and location

AMC (study approved by the AmsterdamUMCethics board, METCU2019_035). Esophageal adenocarcinoma patients were recruited

as part of the PERFECT trial or the BIOES esophageal and gastric cancer biobank (nCRT cohort).35 The PERFECT trial (study approved

by the AmsterdamUMCethics board,METC2016_325) and theBIOESbiobank (study approvedby the AmsterdamUMCethics board,
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METC 2013_241) have both received local approval from the medical ethical committee, resp. biobanking committee of the Academic

Medical Center. Data from cohort #3 (n = 503) was retrieved from the public finaleDB database as described in the methods section.

Cell lines
Colorectal cancer cell line MDST8 was obtained from the Sanger Institute (Cambridge, UK) and cultured in Dulbecco’s modified Ea-

gle’s medium/F-12 medium with L-glutamine, 15 mM HEPES (Thermo-Fisher Scientific, Bleiswijk, The Netherlands) supplemented

with 10% v/v fetal bovine serum (Life Technologies), penicillin and streptomycin. The cell line was authenticated by STR Genotyping

and regularly tested for mycoplasma infection.

Animals
Animal experiments were approved by the Animal Experimentation Committee at the Amsterdam UMC (location AMC) and conduct-

ed in accordance with the national guidelines. 16 female nude (Hsd:Athymic Nude-Fox1nu) mice (6–12 weeks old) were purchased

from Envigo. Human MDST8 CRC cells (10,000 cells/mice) in medium containing 50% matrigel (Corning) were injected intraperito-

neally. Five weeks after tumor cell injection, blood collection via cardiac puncture under anesthesia was performed, immediately

followed by euthanasia.

METHOD DETAILS

Blood processing and DNA extraction
Blood samples for cohort #2 were collected into EDTA-containing tubes and processed by a double-centrifugation protocol (1600 g

for 10 min; 16000 g for 10 min) before storage at �80�C. Blood samples collected locally in Amsterdam in EDTA coated tubes were

processed using a double-centrifugation protocol (900 g for 15min; 2500 g for 10min). Supernatant plasmawas carefully aliquoted in

0.5mL Nunc tubes before being stored at �80�C.Plasma cfDNA was extracted using either the QIAamp Circulating Nucleic Acid Kit

(QIAGEN; silica column-based) in the EAC cohort or QIAsymphony DSP Circulating Nucleic Acid Kit (QIAGEN) for the lung cohort.

Library preparation and sequencing
Plasma cfDNA was quantified using the cell-free DNA screentape kit and a Tapestation 4200 system (Agilent) or a BioAnalyzer HS

chip and system (Agilent). Indexed sequencing libraries were prepared using 1–10 ng of DNA and the ThruPLEX-Plasma Seq kit or

ThruPLEX-Tag Seq kit (Takara). Libraries were pooled in equimolar amounts and sequenced to <1x depth of coverage on a NovaSeq

6000 (Illumina) generating 150-bp paired-end reads from an S4 flowcell.

Fragment inference from genomic locations
For cohort #3 we inferred the fragments based on the start and end positions from the fragment.tsv files retrieved from finalDB [http://

finaledb.research.cchmc.org]. In brief, we queried ‘‘Cristiano et al., 2019, ‘‘blood plasma’’ and ‘‘WGS’’ on the finalDB database and

retrieved the fragment.tsv files containing the genomic locations of fragments for the GRCh38 human genome assambly. We first con-

verted the fragment.tsv to a Browser Extensible Data (bed) file format using AWK ‘‘awk -v OFS = ’\t’ ’$4R5 {{print $1, $2, $3, ".", $4,

$5}}’ {input_fragment.tsv} > {output_fragment.bed}’’, selecting fragments with a mapping qualityR5. Next we converted the bed files

to fasta using ‘‘bedtools getfasta -fi {GRCh38.fna} -bed {output_fragment.bed} -s | gzip > {output_fragment.fa.gz}’’ (bedtools v.2.30.0

[https://bedtools.readthedocs.io/en/latest/]) and the GRCh38 human genome assembly. The resulting fasta files were used in further

analysis.

Fragment end analysis
Sequencing data were processed using a pipeline controlled by Snakemake (v. 5.14.0), and fragment ends were analyzed using the

FrEIA toolkit developed in our group [https://github.com/mouliere-lab/FrEIA.git]. In brief, adapters and indexes were trimmed using

the bbduk.sh (v. 38.79) [https://sourceforge.net/projects/bbmap/] in paired mode with the ‘ktrim = r k = 23mink = 11 hdist = 1’ param-

eters and the adapter reference dataset provided with the software. For the xenograft model samples, trimmed human derived reads

were split from trimmed mouse derived reads by using bbsplit (v 38.79) aligned to the human reference genome GRCh38 (GeneBank

accession: GCA_000001405.28) and the mouse reference genome GRCmm10 (GeneBank accession: GCA_000001635.9). The

trimmed reads from the three clinical cohorts were mapped to the GRCh38 human genome assembly (GeneBank accession:

GCA_000001405.28) using the bwa-mem (v. 0.7.17) [https://github.com/lh3/bwa]. Reads with a mapping quality lower than 5, un-

mapped reads, secondary mappings, chimeric and PCR duplicates were filtered with samtools (v. 1.12) [https://github.com/

samtools/samtools]. Reads passing the filtration step were submitted for our custom pysam (v. 0.16.0.1) implementation, extracting

the first 3 mapped bases from the 50 end of the remaining paired reads. Fragments were categorized based on their first mapped 50

trinucleotide sequence. Fractions of these fragment categories were calculated for every sample.

Data harmonization
We observed batch-effect in the 64 trinucleotide counts of both healthy and cancer samples, supposedly caused by pre-analytical

conditions51 (Figure S5A). To eliminate this, data harmonization was performed using theComBat-Seqmodule65 from the R package
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SVA (v.3.42.0) with 6 batches as covariates (B1 n = 293, B2 n = 42, B3 n = 77, B4 n = 88, B5 n = 243 and B6 n = 503) (Figure S5B).

ComBat-Seq works by modeling and adjusting for batch effects using an empirical Bayes framework, enabling the harmonization of

data across different sequencing experiments while preserving biological variability. The 6 batches represent 4 rounds of sequencing

belonging in Cohort #2 (B1, B2, B3 and B4), and Cohort #1 and #3 considered as two separate batch (B5 and B6 respectively). The

resulting fragment end trinucleotide counts were used in further analysis.

The FrEIA score calculation
Based on the observation that cfDNA fragment endings are non-random, and that cancer patients show a shift in fragment end se-

quences, we developed a single quantitative metric, designated the FrEIA score (F), with the following formula:

F =
dn

dc

where dn is the Euclidean distance in fragment end trinucleotide pattern of a given sample from themedian vector of a panel of control

samples, while dc is that from a panel of cancer samples. The fragment end trinucleotide pattern is represented by vectors that are

composed of selected trinucleotide proportions with a significant increase or decrease in cancer. The distances were computed us-

ing the dist function from the R package stats v.4.1.2. To select these trinucleotides, we first picked samples with a ichorCNA TF

higher than 10% to ensure the tumor signal to noise ratio is high, and used these samples to calculate the log10-fold change of

each trinucleotide proportion with the following formula:

FCx = log10

 
Pcancer
x

Phealthy
x

!

where Px is the proportion of a given trinucleotide. Following this, we compared the mean proportion of each trinucleotide of the can-

cer cohort to the mean proportion of the same trinucleotide of the healthy cohort using the Wilcoxon Rank-Sum Test and selected

those that passed the alpha = 0.01 significance threshold. Those that had an FC lower than�0.018, the 25% percentile were consid-

ered ‘‘significantly decreased in cancer’’, while those that had an FC higher than 0.056, the 75% percentile were considered ‘‘signif-

icantly increased in cancer’’. As panel of controls, we used the 117 control samples while the panel of cancer samples was composed

of 396 baseline cancer samples.

Fragment end trinucleotide diversity analysis
The 50 trinucleotide fragment end sequence diversity was calculated for every sample as the Gini index using the formula:

G= 1�
X64
i = 1

P2
i

where Pi is the frequency of a specific i trinucleotide ending.

Somatic copy number analysis
The ichorCNA software (commit 5bfc03e) was used to perform the copy number analysis and estimate the ctDNA tumor fraction.32

Exceptions to the software’s default settings are as follows: (1) An in-house panel-of-normals from shallow Whole Genome

Sequencing (sWGS) was created; (2) non-tumor fraction parameter restart values were increased to c(0.95,0.99,0.995,0.999); (3)

ichorCNA ploidy parameter restart value was set to 2; (4) no states were used for subclonal copy number and (5) the maximum

copy number to use was lowered to 3. The tumor fraction with the highest log likelihood was retrieved and reported.

Classification and predictive model
For the classification of baseline cancer samples from control samples we trained, validated and tested a machine learning

model, using the combination of the FrEIA score, the Gini diversity index, the P20-150 and the ichorCNA TF, and the scores

separately. To test the robustness of our model we split our dataset into two: one training/validation set encompassing pre-

treatment cancer samples (n = 232) and controls (n = 231) of cohort #3 and one independent test set including pre-treatment

cancer samples (n = 396), controls (n = 75) and nodules (n = 15) of cohorts #1 and #2. To select the best model, we performed

hyper-parameter tuning coupled with estimator selection using Optuna (v. 3.0.5). In brief, we performed 10-fold cross-validation

with random sample selection on the training/validation set scaled with StandardScaler, splitting the data into 80% training

and 20% validation sets - stratified by the ‘cancer’ and ‘control’ categories. We surveyed the parameter landscape of the

KNeighborsClassifier, LogisticRegression, SupportVectorClassifier and RandomForestClassifier estimators throughout 1000 tri-

als, encompassing 100-fold re-training. We pruned trials with mean intermediate accuracy smaller than the best accuracy. The

model with the highest accuracy was selected and used to classify the independent testing set, namely the LogisticRegression

with the parameters: solver: lbfgs, c: 24.986504780795247, maxitter: 8332, classweight: balanced. Samples with a score above

0.5 were classified as ‘cancer’, why those below were classified as ‘control’. For a graphical representation of the classification

sequence see Figure 3D.
e3 Cell Reports Medicine 5, 101349, January 16, 2024
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Statistical analysis and plotting
For hypothesis testing we used the two-sided Mann-Whitney U test with a significance level of 0.05, where not stated otherwise.

When multiple hypotheses were tested, alpha values were adjusted using the Bonferroni method. Figures were plotted in RStudio

(v. 1.3.1093) running R (v. 3.6.3) using ‘ggplot2’ (v. 3.3.3), ‘ggpubr’ (v. 0.4.0), ‘ggsci’ (v. 2.9) and ‘ggfortify’ (v. 0.4.11). The Kaplan-

Meier analysis was performed using the R packages ‘survival’ (v 3.1–8) and visualized using ‘survminer’ (v. 0.4.9). We used a detec-

tion threshold of 95%specificity, except for overall and recurrence-free survival, whichwere calculated using a detection threshold of

99% specificity. Survival curves were calculated using the overall survival of the patients with a detection threshold of 99% speci-

ficity. The survival of patients who survived beyond the end of the study or the recurrence free survival of patients without recurrence

before the end of the study was censored.

ADDITIONAL RESOURCES

No additional resources.
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SUPPLEMENTARY DATA 

Figure S1: Average base quality (phred scores) of reads per sample after adapter trimming. 
Related to Figure 1. (A) sequencing batch 1, (B) batch 2, (C) batch 3, (D) batch 4, (E) batch 5. A 
phred score >30 represents 1 incorrect base call per 1000 bases. 
 



Figure S2: Measures of cfDNA biological features are altered in cancer for each cohort. Related 

to Figure 1. The increase in (A) the FrEIA score, (B) the Gini diversity index by cancer type in pre-

treatment samples. (C) Aberrant normalized size distribution of cfDNA fragments in pre-treatment 

cancer samples compared to control. The vertical dashed lines outline the size interval used to 

calculate the P20-150 measure. The (D) P20-150 increased by cancer type in pre-treatment samples. 

(E) An example of the copy number alterations from the pre-treatment sample of lung cancer patient 

LUN222 derived by ichorCNA. Red dots: gains, blue dots: copy-neutral regions, green dots: losses.  

(F) The ichorCNA TF increased by cancer type in pre-treatment samples. Bd: bile duct cancer, Br: 

breast cancer, Cr: colorectal cancer, Es: esophageal cancer, Ga: gastric cancer, Gl: glioblastoma, Lu: 

lung cancer, Ov: ovarian cancer, Pa: pancreatic cancer. Numbers below the cancer type abbreviation 

represent the sample count. Cancer types with less than 10 samples are in the “other” category. P-

values calculated using two-sided Mann-Whitney U test: ns: not significant, *: p < 0.05, **: p < 0.01, 

***: p < 0.005, ****: p < 0.001. When multiple hypotheses were tested, alpha values were adjusted 

using the Bonferroni method. 

 



Figure S3: Testing for multiple measures of cfDNA biological features improves cancer 

detection. Related to Figure 4. (A) The number of pre-treatment cancer samples (total n = 628) 

detected by one measure or a combination of the measures. Detection rate of cancer stages of pre-

treatment samples by (B) the FrEIA score, (C) the Gini diversity index, (D) the P20-150 and (E) the 

ichorCNA TF. Horizontal dashed line: detection threshold. Red dots represent samples higher than 

the detection threshold. P-values calculated using two-sided Mann-Whitney U test: ns: not significant, 

*: p < 0.05, **: p < 0.01, ***: p < 0.005, ****: p < 0.001. (F) Performance metrics of the logistic 

regression classifier based on a single measure or a combination of measures (“All metrics”) tested 

on an independent cohort. AUROC: area under the receiver operating characteristic curve, PPV: 

positive predictive value, NPV: negative predictive value. 

  



  

Figure S4: The change in the measures of cfDNA biological features throughout the clinical 

timeline of EAC patients. Related to Figure 5. pCR: complete pathological response corresponding 

to pT0N0 as determined by a pathologist at surgery. CRT: chemoradiotherapy, res: surgery. 



  



Figure S5: Measures of cfDNA biological features of the rEAC samples. Related to Figure 5. 

Pre-CRT, post-CRT and pre-surgery samples are split by the patient’s pathological complete response 

(pCR), while for pos-surgery by the recurrence status in 2 years. The horizontal dashed line represents 

the detection threshold (FrEIA score:) Numbers below the plots show the detected/total count of 

samples. 

 

Figure S6: Harmonization of fragment end trinucleotide sequence counts. Related to Figure 1. 

Principal component analysis (PCA) of the 64 fragment end trinucleotide sequence counts (A) before 

and (B) after harmonization. The 6 batches (B1 to B6) represent 4 rounds of sequencing in for Cohort 

#2, and Cohort #1 and #3, which were considered as separate batches. 
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