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SUMMARY
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious and poorly understood disease.
To understand immune dysregulation in ME/CFS, we use single-cell RNA sequencing (scRNA-seq) to
examine immune cells in patient and control cohorts. Postexertional malaise (PEM), an exacerbation of
symptoms following strenuous exercise, is a characteristic symptom of ME/CFS. To detect changes coinci-
dent with PEM, we applied scRNA-seq on the same cohorts following exercise. At baseline, ME/CFS patients
display classical monocyte dysregulation suggestive of inappropriate differentiation and migration to tissue.
We identify both diseased andmore normal monocytes within patients, and the fraction of diseased cells cor-
relates with disease severity. Comparing the transcriptome at baseline and postexercise challenge, we
discover patterns indicative of improper platelet activation in patients, with minimal changes elsewhere in
the immune system. Taken together, these data identify immunological defects present at baseline in pa-
tients and an additional layer of dysregulation in platelets.
INTRODUCTION

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

is a serious human disease that lacks effective treatment options

and affects�65million individuals worldwide.1,2 Our minimal un-

derstanding of ME/CFS hinders diagnosis, rational approaches

to treatment, and development of a cure. Multiple lines of evi-

dence implicate a role for the immune system in ME/CFS.3 For

example, transforming growth factor b, a cytokine that confers

both pro- and anti-inflammatory signals depending on themicro-

environment,4 has been reported to be upregulated in the

plasma of ME/CFS patients.5,6 Elevated levels of multiple proin-

flammatory cytokines have been correlated with disease

severity, and activation patterns of pro- and anti-inflammatory

cytokines differentiate early cases versus those of longer dura-

tion.7 Together, these results suggest that ME/CFS involves

the dysregulation of immune cells.

Immune cells of both the innate and adaptive systems are

thought to be dysregulated in ME/CFS. Monocytes and natural

killer (NK) cells have been reported to exhibit alterations in pro-
Cell Rep
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portions and surface markers in ME/CFS.8,9 Neutrophils exhibit

elevated apoptosis in ME/CFS patients.10 T lymphocytes also

display abnormal metabolism and cytokine production,11 and

other studies have implicated B cell alterations in ME/CFS.12,13

However, previous studies have examined immune cells in isola-

tion and often across small cohorts. Moreover, heterogeneous

immune cell populations have typically been characterized

as bulk samples, compromising the ability to distinguish

changes that affect only specific cell subsets. These limitations,

together with the heterogeneous nature of the disease,14 have

likely contributed to the contradictory results between studies.15

Thus, at present, it is far from clear which components of the im-

mune system are the most relevant to ME/CFS.

A defining symptom of ME/CFS is postexertional malaise

(PEM), an exacerbation of symptoms resulting fromexertion. Un-

derstanding changes that occur in immune cell populations dur-

ing PEM could provide useful insights into the disease, and the

development of potential treatment and preventive approaches.

An established method of inducing PEM in ME/CFS is with car-

diopulmonary exercise tests (CPETs), which monitor multiple
orts Medicine 5, 101373, January 16, 2024 ª 2023 The Authors. 1
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parameters during a controlled exercise period with increasing

intensity until exhaustion or limiting symptoms appear.16 Incor-

porating CPET into ME/CFS studies provides objective physio-

logical parameters, increasing confidence in diagnosis.

ME/CFS has been proposed to result from infection by an un-

known virus (or other pathogen), leading to the disease in sus-

ceptible individuals. This theory derives from the many occur-

rences of clustered cases of the disease,17 together with the

observation that many patients reported experiencing a flu-like

or other infection before disease onset. It is unknown whether

only specific viruses can trigger ME/CFS or whether many vi-

ruses can induce the disease, although accumulating evidence

implicates enteroviruses.18,19 Notably, ME/CFS and long

COVID (coronavirus disease 2019) share many, although not

all, symptoms20; thus, there may be commonalities between

the diseases, including a viral origin. However, the degree to

which molecular signatures are shared by ME/CFS and long

COVID is unknown. Therefore, the knowledge gained in under-

standing ME/CFS may be of significance regarding long

COVID and vice versa.

Here, we used single-cell RNA sequencing (scRNA-seq) to

examine immune cells within peripheral bloodmononuclear cells

(PBMCs) from ME/CFS patients and matched controls. Our

goals were to identify immune cell types with dysregulated tran-

scriptomes in ME/CFS, and also recognize cell types that show

no substantial differences between the patient and control co-

horts to rule out their involvement in the disease state. Finally,

because PEM is a defining symptom of ME/CFS, we performed

scRNA-seq both before and after exercise challenge (CPET),

with the goal of characterizing changes that occur during PEM.

We observed extensive alterations in the transcriptome of a sub-

set of monocytes in ME/CFS patients, with largely identical alter-

ations present at baseline (BL) and 24 h after the exercise chal-

lenge. Indeed, most gene dysregulation across the ME/CFS

immune system was consistent between the BL and postexer-

cise conditions. In contrast to this general property of the ME/

CFS immune system, we observed marked differences in

platelet transcriptomes from patients at BL compared to post-

CPET (PC), suggesting that aberrant platelet activity is associ-

ated with PEM. Taken together, this study identifies cell types

with distinctive patterns of transcriptome dysregulation; these

data suggest new hypotheses for understanding ME/CFS and

the role of PEM.

RESULTS

Single-cell transcriptomics of the ME/CFS immune
system
Despite evidence that immune dysregulation is amajor feature of

ME/CFS, the components of the immune system most involved

in the disease are unknown. To address this question, we used

the 10X platform to perform scRNA-seq to profile �5,000

PMBCs per sample from a cohort of 30 patients and 28 controls,

matched for sex and BMI and differing in parameters character-

istic of ME/CFS (Figures 1A and 1B; Data S1). Samples were ob-

tained before theCOVID-19 pandemic, eliminating the possibility

that any patients had long COVID rather than ME/CFS. Because

PEM is a defining symptom of ME/CFS, we profiled samples
2 Cell Reports Medicine 5, 101373, January 16, 2024
from all of the individuals at BL and 24 h after a strenuous exer-

cise challenge21,22 (PC; Figure 1A). This design has the potential

to define gene dysregulation in immune cells at BL in patients as

well as dysregulation associated with PEM. We used a two-step

strategy to sequence each library to equivalent coverage,.

First, we sequenced each scRNA-seq library at low coverage

(averaging 57 million reads) and used these data to determine

the sequencing depth required to obtain a depth of over 4,000

unique molecular identifiers per cell, for a total average

sequencing depth of 136 million reads per sample. Datasets

were integrated with Seurat version 423 to generate a landscape

for cell-type annotation and comparisons between samples.

Standard scRNA-seq metrics indicated robust profiling across

all of the samples (Figures 1C and S1A–S1C; Data S2). To asso-

ciate scRNA-seq clusters with cell identities, we used Seurat to

identify marker genes, and also examined the expression of es-

tablishedmarker genes, which allowed us to identify the majority

of the 28 clusters (Figures 1D and 1E).

Previous studies have suggested that immune cell composi-

tion is altered in ME/CFS.9,24,25 No clusters were specific to

the patient cohort, nor were any largely underrepresented in

this cohort (Figures S1C and S1D). We compared the propor-

tions of each cell type (cluster) between patients and controls,

analyzing BL and PC samples separately. As expected,26 we

observed interindividual heterogeneity in the proportions of im-

mune cells, with individual profiles highly consistent at both

time points (Data S3). However, there were only limited differ-

ences in proportions when we compared patient and control co-

horts (Figures 1F and S1D). Proportions of regulatory NK cells

(cluster 15) were elevated in patients (1.1- and 1.3-fold at BL

and PC, respectively; p = 0.23 and 0.02, after multiple compari-

son correction), as were gd T cells (1.3-fold at BL and PC;

p = 0.05 and 0.04, respectively). No other proportions of immune

cells were significantly altered, except for a marginal decrease in

effector/memory CD8+ T cells in patients (0.9-fold, at both time

points; p = 0.04 and 0.09). We used flow cytometry to quantify

the proportions of major subsets of monocytes and T cells in pa-

tients and controls, which demonstrated no substantial changes

between cohorts (Figure S2). We conclude that cell types pre-

sent in PBMCs show very little difference in their relative fre-

quencies in ME/CFS, and that any differences that do exist are

minor compared to normal interindividual variations.

Dysregulation within the ME/CFS immune system
To examine transcriptome dysregulation in the ME/CFS immune

system, we used Seurat version 423 to determine the number of

dysregulated genes per cell type, comparing all of the cells from

patients to those from controls, and performing the comparisons

separately at BL and PC. Certain cell types exhibit strong signals

of transcriptome dysregulation in patients, with CD4+ T cells

(naive and effector/memory subsets; clusters 0 and 1, respec-

tively), monocytes (clusters 2, 9, and 10) and cytotoxic NK cells

(cluster 3) being the most prominent (Figure 2A). There are also

multiple cell types, including those present in high proportions,

that show very little evidence of dysregulation associated with

ME/CFS. This approach has more power to detect changes in

gene expression for cell types present in higher proportions,

and may have high false discovery rates.27 As a gauge with
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Figure 1. Single-cell transcriptomics of the ME/CFS immune system

(A) Study design. PBMCs were collected at BL and 24 h PC for sedentary controls and ME/CFS subjects and used for single-cell gene expression profiling

(scRNA-seq).

(B) Demographic and clinical parameters for both cohorts. Oxygen consumption was measured during CPET. The change in maximal oxygen consumptions

(VO2 at peak) between the VO2 peaks at BL and PC is indicated. Using the SF-36 Version 2Health Survey, the general health score was self-evaluated, with 100 as

perfect health and 0 as worst health. Graphs represent mean ± SEM. **p < 0.01, *** p < 0.001.

(C) Quality control metrics, showing genes and transcripts per cell (left and center, respectively) and percentage of mitochondrial reads per cell (right), compared

between indicated cohorts.

(D) Integrated uniform manifold approximation and projection (UMAP). Clusters are labeled in order of decreasing number of cells.

(E) Relative expression of marker genes for immune cells (x axis) across clusters (y axis); dots indicate average expression and percentage of cells with detected

expression (color and size, respectively).

(F) Cell types with significant differences in relative cell numbers between cohorts. *p < 0.05. Panels represent data from 28 healthy controls and 30 ME/CFS

cases.
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Figure 2. Dysregulation of immune cells in ME/CFS

(A) Counts of differentially expressed (DE) genes (y axis) per immune cell cluster, comparing case and control cells at BL and PC, and compared between control

cells at BL and PC.

(B) Counts of the strongest significantly enriched gene sets (excluding those related to translation and with an absolute normalized enrichment score [NES] <2)

across the largest cell clusters.

(C) Representative GSEA gene set (GOBP cytoplasmic translation) showing lower detection of ribosomal proteins in major clusters (NES <0) at both BL and PC in

ME/CFS (red and purple, respectively). Dots are sized to denote significance (q values); x axis indicates NES.

(D) GSEA results for classical monocytes (cluster 2) comparing patient and control cohorts at BL and PC (red and purple, respectively), focusing on gene sets

related to chemokine/cytokine signaling.

(E) Single sample scores generated using GSEA of leading-edge genes from (D). **p < 0.01.

(F) Differential expression of genes associated with monocyte migration and differentiation at BL and PC in classical monocytes. *p < 0.05; **p < 0.01. Panels

represent data from 28 healthy controls and 30 ME/CFS cases.
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which to contrast dysregulation associated with ME/CFS, we

also compared control samples between the two time points,

anticipating that any signal detected for such a comparison

would represent noise, at least for most cell types. This compar-
4 Cell Reports Medicine 5, 101373, January 16, 2024
ison revealed negligible signal, in terms of numbers of differen-

tially expressed genes (Figure 2A), increasing confidence that

the signal detected in patient versus control comparisons is

meaningful.
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Multiple frameworks exist to detect differential gene expres-

sion in scRNA-seq. Recent approaches have indicated that

‘‘pseudobulk’’ methods (aggregating expression across cells

per cluster) can outperform Seurat.27 However, we found that

this approach had limited power to identify individual genes

with significant differences between case and control samples

in different cell types, likely because interindividual variation in

geneexpressionunrelated todisease state is a large confounding

factor, and theobservation that the largest variation in thedataset

can be attributed to sex (Figure S3A). Previous studies have iden-

tified sex-specific changes in RNA or microRNA profiles from

PBMCs in ME/CFS.28,29 We also performed correlation analyses

between gene expression profiles of classicalmonocytes fromall

of the female samples and identifiedhigher correlationswithin the

same subject (self) over interindividual comparisons. Notably,

interindividual variations among caseswere higher than controls,

consistent with ME/CFS heterogeneity (Figure S3B).

As an alternative approach to search for coordinated shifts in

gene expression reflecting alterations in pathway activation or

cell state in ME/CFS, we performed gene set enrichment anal-

ysis (GSEA) on each cluster, focusing on C1: HALLMARK, C2:

REACTOME, C2: KEGG, and C5: GOBP (biological process) cat-

alogs from theMolecular Signatures collection.30,31 This analysis

(Figure 2B; Data S4) indicated two general features: first, expres-

sion of ribosomal protein genes and core translational machinery

is downregulated in ME/CFS in multiple cell types (Figure 2C),

and second, that monocytes exhibited the strongest signals of

dysregulation, especially in cluster 2 (classical monocytes) but

also in clusters 9 and 10, nonclassical and intermediate mono-

cytes, respectively (Figures 2B and S3C; Data S5). In particular,

gene sets associated with chemokine signaling, migration, and

activation are expressed at elevated levels in patient classical

monocytes (Figure 2D). Furthermore, we observed the suppres-

sion of genes associated with interferon gamma (IFN-g) signaling

in patient classical monocytes. These results suggest that clas-

sical monocytes from ME/CFS individuals are biased toward a

profile that promotes migration of monocytes to tissue and

increased progression toward a macrophage fate. However,

we also observed the activation of genes associated with inter-

leukin-10 (IL-10), an anti-inflammatory cytokine. Thus, mono-

cytes in ME/CFS patients may undergo a combination of con-

flicting inputs.

To explore signals that may be differentially affecting mono-

cytes in patients, we examined the identities and expression

levels of genes driving the enrichments observed. Using the

genes most responsible for enriched chemokine and cytokine

signaling gene sets (Data S6), we calculated a composite score

for classical monocytes from each sample (Figure 2E; monocyte

clusters in Figure S3D). At the level of individual samples, clas-

sical monocytes from ME/CFS have higher scores for these

genes compared to controls, and these scores are consistent

between BL and PC time points for each individual, indicating

no impact from the exercise challenge (Figure S3E). We also

looked at the differential expression of genes involved in mono-

cyte response, recruitment, and differentiation at BL and PC.

Specifically, we observed the upregulation of CCL4, CX3CR1,

SELPLG, and ITGAL in patients, whereas CXCR4 expression

was suppressed at BL (Figure 2F). CCL4 is a chemoattractant
for monocyte recruitment to inflamed and adipose tissue32;

CCL4 was upregulated regardless of exercise challenge.

CX3CR1, the CX3CL1 receptor, is a marker for the differentiation

of classical monocytes to nonclassical counterparts and

tissue repair and regeneration.33,34 SELPLG and ITGAL play

roles in the tissue recruitment of leukocytes.35 CXCR4, a recep-

tor for CXCL12, regulates monocyte-macrophage differentia-

tion.36 We also detected the upregulation of both inflammatory

(TNFRSF1A, TLR4, TLR5) and anti-inflammatory (IL10RB) recep-

tor genes PC. Taken together, these results suggest that mono-

cytes in ME/CFS are aberrantly promigratory and inflammatory

at BL and that ME/CFS is characterized by a persistent state

of monocyte activation.

Profiling of classical monocytes from ME/CFS patients
and controls
To generate a comprehensive profile of classical monocyte dys-

regulation in ME/CFS and validate our scRNA-seq results, we

turned to RNA-seq of purified monocytes. Starting with

PBMCs from four female patients and four female controls iso-

lated PC, with individuals distinct from those profiled by

scRNA-seq, we isolated classical monocytes (CD14+CD16�)
and confirmed that the isolation strategy was effective (Fig-

ure S4A). Following RNA isolation, we generated RNA-seq

libraries; principal-component analysis (PCA) demonstrated

separation between patients and controls, although the patient

samples were more dispersed than the controls (Figure 3A).

We compared expression profiles of classical monocytes from

patients and controls (Figure S4B) and identified enrichment of

similar GSEA terms and leading-edge genes between the

RNA-seq (Figure 3B; Data S7) and scRNA-seq data (Figure 2D;

Data S5), such as regulation of cell migration by cytokines and

chemokines and IL-10 signaling. These observations confirmed

a pattern of monocyte activation and migration in ME/CFS in an

independent cohort of samples. We also examined expression

levels for a set of genes associated with monocyte migration

and differentiation (Figures 3C and S4C). Perhaps due to hetero-

geneity in ME/CFS cases (Figure 3A), we found consistent

changes only in CCL4 upregulation and CXCR4 downregulation,

when examining both the RNA-seq for classical monocytes and

the corresponding scRNA-seq cluster (Figures 2F and 3C). How-

ever, using the RNA-seq data alone, we identified additional

changes, including most prominently upregulation of CSF2

(granulocyte-monocyte colony-stimulating factor, an important

monocyte differentiation cytokine). Notably, CSF2 is upregulated

in plasma and extracellular vesicles of ME/CFS patients and this

upregulation correlated with disease burdens.6,37 Transcripts

encoding multiple additional chemokines important for mono-

cyte recruitment (CCL20, CCL5, and CCL3)38 were also upregu-

lated in ME/CFS classical monocytes. These analyses support

the hypothesis that monocytes in ME/CFS patients are aber-

rantly primed to migrate to tissues.

To further validate dysregulation of classical monocytes inME/

CFS, we examined the proteome of classical monocytes from

three female patients and four female controls at BL. PCA of

the proteomic data showed a clear separation between cases

and controls coincident with PC2 (Figure 3D). Interestingly,

PC1 separated a single case from all of the other samples, and
Cell Reports Medicine 5, 101373, January 16, 2024 5
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Figure 3. Complete transcriptomics of classical monocytes

(A) PCA of 4 patient and 4 control transcriptomes from classical monocytes.

(B) Significantly enriched gene sets between cohorts by GSEA. Dots are sized to denote significance (adjusted p values); x axis indicates NES.

(C) Differentially expressed genes between cohorts. Dots are sized to denote significance (p values).

(D) PCA of 3 patient and 4 control proteomes from classical monocytes.

(E) Significantly enriched gene sets between cohorts by GSEA comparing proteome profiles of cases and controls; otherwise as in (B).

(F) Volcano plot of differentially expressed proteins between cohorts. Cohorts of 4 healthy controls and 4 ME/CFS cases (all females) at BL and PC were chosen

for proteome (D–F) and transcriptome (A–C) profiling, respectively.
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this case had the highest metrics of disease severity. Proteins

driving PC1 include EPX, PRG2, RNASE2, and RNASE3, factors

and components of secretory vesicles (Figure S4D). This trend

was observed in the RNA-seq dataset in which the genes driving

the differences within ME/CFS cases were mostly made up

of membrane-associated and secretory protein transcripts

(CCL4, CCL20) (Figure S3E).

GSEA comparing the proteomes of classical monocytes from

controls and cases confirmed the elevated activation state of
6 Cell Reports Medicine 5, 101373, January 16, 2024
classical monocytes in ME/CFS, with the upregulation of path-

ways such as defense response to bacteria, secretory vesicle

formation, and degranulation (Figure 3E; Data S8). We also

observed downregulation of translational machinery in the prote-

ome data (Figure 3E). Looking at individual proteins, we found

the upregulation of proteins involved in iron metabolism (FTL1),

monocyte-to-macrophage differentiation (CNN2, SERPINA1,

DCTN1, NUDT21, PLD3), immune cell recruitment (ALDH3B1)

and activation (HVCN1, NCF1, PPIA), and platelet activation
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Figure 4. Heterogeneity in classical monocyte cells from ME/CFS patients

Data represent BL female samples, unless described otherwise.

(A) Schema describing positive unlabeled learning strategy to stratify single-cell patient transcriptomes.

(B) UMAP for classical monocyte cells, tiled and colored by pD state.

(C) Percentage of pD cells per individual.

(D) Correlation (Spearman) between pD cells per individual, compared between BL and PC.

(E) CH index comparing clustering performance across different stratifications of the single-cell dataset (y axis).

(F) Correlation (Spearman) between MFI-20 score and percentage of pD cells.

(G) Gene setsmost differentially enriched between pD and pN cells from cases. Dots are color-coded to indicate enrichment in pD (blue) or pN (yellow) cells; sizes

indicate corrected p values.

(H) Genes (y axis) most differentially expressed (x axis) between pD and pN cells in an intrasample paired analysis.

(I) Expression of CCL4 (y axis) from individual samples, aggregating expression over pD and pN cells from cases and over all cells from controls (x axis and

color-coded). ** p < 0.01, *** p < 0.001.

(J) Top gene sets differentially enriched between pD and pN cells, based on GSEA between each subset of cells paired by sample.

(legend continued on next page)
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(STXBP5) (Figure 3F) in cases. Iron metabolism, a tightly regu-

lated process, is associated with immune response; FTL1 is cen-

tral to this process, functioning to control Fe2+ levels during

inflammation, thereby preventing the formation of reactive oxy-

gen species.39 CNN2, SERPINA1, DCTN1, NUDT21, and PLD3

regulate monocyte differentiation into macrophages in different

tissues and diseases.40–44 ALDH3B1 induces ITGB1 expression

and promotes tissue recruitment.45 HVCN1 upregulation is asso-

ciated with CNS injury,46 whereas NCF1 is a factor in autoim-

mune encephalomyelitis.47 Notably, we observed the upregula-

tion of STXBP5, which correlates with platelet activation.48

However, we found proteins involved in translation (RTRAF,

RPS2), mitochondrial functions (HADHB), and cell-to-cell inter-

action (JUP, TPD52L2) to be downregulated in ME/CFS classical

monocytes (Figure 3F). To confirm that the results are not driven

by a single outlier sample, we repeated these analyses, omitting

the patient sample coincident with PC1. As expected, PCA

showed a clear separation of controls and cases (Figure S4F),

and the GSEA results were largely identical (Figure S4G; Data

S9). Similarly, when we examined the changes in the expression

of individual proteins, we found that almost all of the upregulated

proteins were congruent with and without the outlying sample

(Figures 3F and S4H, respectively; Data S10), except for

HVCN1. However, when we examined the proteins downregu-

lated in ME/CFS classical monocytes, only RTRAF was found

to be significantly downregulated in the more stringent dataset

(Data S10). In summary, the upregulation of activation status in

monocytes in ME/CFS is recapitulated at the protein level, vali-

dating inferences made from the transcriptome analysis.

Monocyte dysregulation is heterogeneous within and
between ME/CFS patients
Our data identify classical monocyte dysregulation as a promi-

nent feature of ME/CFS. However, it is unknown whether this

feature derives from consistent alterations across monocytes,

or alternatively, is restricted to a subset of cells per individual.

Similarly, transcriptome profiling of monocytes from patients

suggests more extensive variation between patients than be-

tween controls (Figure 3B), consistent with patients possessing

a heterogeneous monocyte population, in contrast to a more ho-

mogeneous population in controls. To explore these possibilities

using the classical monocytes single-cell data, we used a ma-

chine learning approach, positive unlabeled learning,49 which

accommodates mixed populations (Figure 4A). Starting with

BL case and control female samples, the algorithm was opti-

mized to label cells as diseased or normal (Figures 4B and

S5A). The results indicated that ME/CFS patients possess a het-

erogeneous classical monocyte population, only some of which

are diseased, with the remainder comparable to those in controls

(Figures 4A and S5A). The percentage of cells classified as

diseased within patients was variable (Figure 4C), but consistent

per individual when compared between BL and PC (Figure 4D).

We calculated the Calinski-Harabasz (CH) index applied within
(K) Pseudobulk PCA from aggregated cells from control samples (yellow); pN and

(L) Genes contributing to negative values for PC2 (top) and PC3 (bottom) in (K).

(E, I, K, and L) Data from 28 healthy controls and 30ME/CFS cases at BL, with parti

20 healthy controls and 20 ME/CFS cases at BL.
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PCA space, as a metric of performance for the split of predicted

diseased and normal groups in comparison with other sample

metadata. The CH index analysis demonstrated that cells pre-

dicted as diseased are more highly related to one another than

those partitioned by disease status, sex, or the identity of an in-

dividual (Figure 4E), suggesting that the prediction recovered

latent signal within the data.

We examined correlations between the proportion of aberrant

monocytes per individual and patient health parameters. We

observed a correlation between the fraction of classical mono-

cytes identified as diseased and patients’ Multidimensional

Fatigue Inventory (MFI)-20 score50 (Figure 4F), an evaluation of

fatigue. Similar correlations were observed with other metrics,

including general health, Short Form (SF)-36 Physical Compo-

nent Summary scores,51 and PEM severity (Figures S5D–S5F).

Similar trends were observed for male samples (Figures S5B,

S5C, S5G, and S5H). These observations indicate a relationship

between the symptoms that ME/CFS patients experience and

the fraction of diseased monocytes.

To examine the dysregulation of predicted diseased (pD) cells,

we used GSEA to examine patterns of differential expression be-

tween patient cells predicted as normal (pN) versus pD. The tran-

scriptome profiles from pD cells compared to pN cells exhibited

changes in the expression of pathways involving cytosolic DNA

sensing, cytokine–cytokine receptor interaction, and chemokine

signaling (Figure 4G), which were similarly observed when

comparing profiles of all patient cells to healthy controls (Fig-

ure S5I). In addition, ribosomal gene sets were downregulated

in pD cells (Figures 4G and S5J), consistent with observations

across multiple cell types (Figure 2C).

To minimize the impact of interindividual variation in gene

expression unrelated to disease state and confidently identify

genes dysregulated due to ME/CFS, we performed a paired anal-

ysis by individual of origin. We calculated the pseudobulk gene

expression changes between pD and pN monocytes from the

same ME/CFS individual, and then averaged these ratios across

individuals. In this analysis, CCL4 (C-C motif chemokine ligands

4) exhibited the strongest change, with elevated expression in

pD cells within the same individuals (Figure 4H).We also observed

differences inCCL4 expression levels when comparing profiles of

pD and pN from patients to controls (Figure 4I). Elevated expres-

sion of CCL4 in pD cells was more prominent in female

patients than inmalepatients (Figure4I). Furthermore,TMEM176B

(Transmembrane Protein 176B) was downregulated in pD cells

compared topNcells inME/CFS individuals aswell ascontrol cells

(Figures 4H and S5K). TMEM176B is involved in maintaining the

immature stateofdendritic cells (togetherwithTMEM176A),which

is anti-inflammatory.52 Other genes upregulated in pD cells

includedGIMAP7andTRIM7,whichmaycontribute tocell survival

by suppressing apoptosis53 and promoting inflammation.54 The

identities of genes downregulated in pD cells, such as OLR1,

G0S2, ATF3, RGCC, and TMEM176B contain both proinflamma-

tory and anti-inflammatory factors,55–59 suggesting that the
pD cells from case samples (green and blue, respectively), partitioned by sex.

tion based on sex in (I) and (K). (B–D) and (F–H) Data from the female cohort with
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environment eliciting inflammatory responses is complex, with

multiple ME/CFS-specific changes in signaling. For example,

ATF3, downregulated in pD cells, is a regulator of IFN responses

and able to suppress CCL4 in animal models.57,60 We also per-

formed GSEA using the paired analysis data (Figure 4J). The

IFN-g pathway was upregulated in pN cells, suggesting reduced

inflammatory responses of pD cells through this pathway (as in

Figure 3C).

Finally, we used PCA to visualize sex-specific pseudobulk

transcriptomes generated from control monocytes and from pa-

tient cells partitioned into pD and pN. Transcriptomes derived

from pD cells clustered away from control cells and from pN cells

(Figure 4K). In particular, PC1 reflected the sex of the individuals

(Figure S5L), with PC2 and PC3 coincident with pD state for

males and females, respectively (Figure 4K). These observations

suggest that the case cells were separated into two groups: pD

cells distinct from control cells and pN cells that are less different

from but still show some deviation from control cells. Analysis of

principal-component loadings (Figure 4L) show that CCL4 has a

strong negative contribution to both PC2 and PC3, indicating

that dysregulation ofCCL4 contributes strongly to discrimination

between pD and pN cells in males and females. Thus, within pa-

tients, a subset of classical monocytes exhibited a high expres-

sion of cytokine receptor and chemokine signaling genes, in

particular, CCL4. Overall, these analyses demonstrated that

classical monocyte populations are heterogeneous within and

variable across ME/CFS patients. The machine learning algo-

rithm partitioned monocytes in ME/CFS patients into two

groups, which enabled us to identify pD cells in patients and

establish that these cells upregulate the expression of specific

cytokine receptor and chemokine signaling genes indicative of

aberrant monocyte recruitment to tissue. A key observation is

that the percentage of pD cells per individual correlated with

metrics of disease severity (Figures 4F and S5F).

Signaling pathways affecting monocytes in ME/CFS
Because monocytes in ME/CFS patients show dysregulation in

proinflammatory chemokine and cytokine signaling pathways,

they may be intrinsically biased toward this premigratory tran-

scriptome; alternatively, they may be responding to changes in

intercellular signaling. To assess whether intercellular signaling

is altered in ME/CFS, we used CellChat61 to analyze scRNA-

seq data to model intercellular communication as a function of

ligand and receptor expression levels62 (Figure 5A). To remove

confounding factors such as sex, exercise, and cluster size,

we focused on the larger female-only cohort at BL and down-

sampled large clusters to 500 cells before calculating communi-

cation probabilities, a recommended approach.63 Comparing

the interactomes of patient and control cells, we found evidence

suggesting alterations in inferred communication to and from

several cell types. In particular, monocyte signaling to certain

T and NK cells is predicted to be elevated in ME/CFS,

while also increasing signaling interactions among themselves

(Figures 5B and S6A). These results suggest that monocyte dys-

regulation in ME/CFS in part derives from alterations to estab-

lished intercellular communication pathways.

We next investigated the pathway identities that may

contribute to alterations in the interactome of ME/CFS
classical monocytes. Among the patients, we found evidence

of increased signaling in pathways that regulate monocyte sur-

vival and localization to inflamed tissue (Galectin, Resistin,

CSF3, CCL),7,64,65 with the strongest dysregulation observed in

genes associated with the C-C motif chemokine (CCL) pathway

(Figures 5C, 5D, and S6B). The upregulation of CSF2, CFS3,

RETN, CCL3, CCL4, and CCL5 was also observed in the inde-

pendent cohort analyzed by RNA-seq (Figure S6C). To identify

the ligand-receptor pairs contributing to changes in signaling in

ME/CFS and with cell-type resolution, we compared communi-

cation probabilities between the patient and healthy cohorts,

finding 782 upregulated and 1,046 downregulated ligand-recep-

tor pairs in patients, aggregated across all pairwise combina-

tions of cell types (Data S11). In particular, for ligand-receptor

pairs associated with the CCL pathway, we identified increased

signaling from classical monocytes to platelets in ME/CFS pa-

tients; this signal derived from elevated CCL3/CCL5 expression

in monocytes (Figure 5E). Monocyte–platelet interactions have

been demonstrated to be a potent marker of inflammation.66,67

Thus, classical monocytes inME/CFS patientsmay exist in an in-

flammatory state in part due to altered cross-talk between plate-

lets and monocytes.

An abnormal platelet state is coincident with PEM
PEM is a defining symptom of ME/CFS. To investigate whether

PEM is associated with changes in immune cells, we compared

expression changes across cells between BL and 24 h after

CPET. Conventional analysis of differential gene expression

comparing the averagePCexpression toBLdid not identify signif-

icant genes within cases or controls. Because our study includes

samples collectedbeforeandafter exercise from the same individ-

ual, we could leverage a paired analysis to reduce interindividual

variation, which can compromise signal detection. For each cell

type (cluster), we calculated the expression ratio for each gene

per individual in response to exercise, retaining genes that met

detection criteria. This approach generates a DRNAmetric per in-

dividual, whichwecomparedbetween patient and control cohorts

(Figure 6A). Tests for differential expression of individual genes

again failed to reach significance. However, GSEA, which can

detect coordinated shifts in gene expression across genes,

showed a marked number of enriched gene sets in platelets,

with minimal signal or no signal in other cell types (Figure 6B).

Gene sets related to platelet function were significantly en-

riched in the paired analysis of platelets, with positive enrichment

in case ratios (PC/BL) compared to controls (Figures 6C and 6D).

To examine the behavior of platelets at each time point, we

repeated the GSEA analysis directly comparing ME/CFS pa-

tients and control cohorts at BL and PC. This analysis revealed

reduced expression of platelet-function gene sets at BL in ME/

CFS (Figure 6C). Interestingly, these enrichments were not sta-

tistically significant in the PC samples. These analyses revealed

that the platelet cluster manifests a strong signature of dysregu-

lation only before exercise in ME/CFS, an observation which

suggests that strenuous exercise alters platelets in ME/CFS

individuals.

Other notable gene sets in the paired GSEA analysis for plate-

lets shared a high number of ribosomal protein genes (Figure 6D;

Data S12). Again, this enrichment derived from differences at BL,
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Figure 5. Intercellular signaling in the ME/CFS immune system

(A) Schema depicting CellChat strategy.

(B) Circle plot showing differential number of interactions (case minus control), aggregating clusters of similar cell types. Blue indicates case cells exhibit more

interactions than control cells; orange indicates control cells exhibit more interactions.

(C) Scatterplot of differential incoming versus outgoing interaction strength in classical monocytes (cluster 2). Positive values indicate increased signaling

strength in patients and vice versa.

(D) Heatmap of overall signaling for pathways dysregulated (y axis) for classical monocytes receiving signaling from different cells (y axis; cluster identifiers from

Figure 1). Top bar plot indicates aggregate interaction strength of incoming signals; right bar plot indicates aggregate interaction strength of outgoing signals.

(E) Communication probabilities between specific ligand-receptor pairs in the CCL pathway, for case (blue) and control (orange) cells. Panels represent data from

the female cohort, with 20 healthy controls and 20 ME/CFS cases at BL.
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with no significant enrichment in the PC cohorts. Therefore, the

negative enrichment scores for the paired analysis reflects an in-

crease in the detection of ribosomal proteins and translation ma-

chinery at BL in ME/CFS. Notably, no other cell types exhibited a

significant change due to exercise in the paired GSEA analysis

(Figure 6B).

To validate the scRNA-seq findings, we isolated large particles

from frozen plasma samples from 3 healthy controls and 3 ME/

CFS cases at BL and PC (Figure S7A) for further analysis. Sam-

ples were centrifuged at low speed to enrich platelets and

platelet-derived aggregates and eliminate any contamination

from other, smaller circulating vesicles. We confirmed the iden-

tity of the isolated particles by flow cytometry, which revealed

that the particles were positive for the platelet marker CD41

and devoid of leukocyte (CD45) and erythrocyte (CD235a)

markers (Figure S7B). We conducted RNA-seq on these isolated

plasma particles. Consistent with the scRNA-seq GSEA results,

we found the transcriptomes of the platelet-derived plasma par-

ticles from ME/CFS cases are different from healthy controls at

BL (Data S13). However, no significant differential expression

was observed between PC case and control samples. GSEA an-

alyses of the platelet-derived plasma particle RNA-seq data

recapitulated results observed in the scRNA-seq analysis. In

particular, platelet function–related terms were downregulated

at BL and upregulated in a paired analysis controlling for individ-

ual of origin (Figures 6C and 6F; Data S14). These trends were

consistent across patients and demonstrated that the transcrip-

tomes at the PC time point from patients shifted toward gene

expression profiles more similar to controls for genes relating

to platelet function (Figure 6E). We also detected a consistent

trend of increased translation activity in the plasma particles of

ME/CFS patients at BL relative to PC, appearing as negative

enrichment in the paired GSEA analysis (Figures 6F and S7C).

Thus, the ME/CFS platelet transcriptome at BL is abnormal,

but following strenuous exercise, platelets in the circulationman-

ifest markedly less dysregulated transcriptomes.

DISCUSSION

This study provides a resource to investigate immune dysregula-

tion in ME/CFS. Here, because classical monocytes manifested

the strongest signal of dysregulation in PBMCs in ME/CFS pa-

tients, we focused on exploring changes in their gene expression

program, as a novel aspect of the disease. However, alterations

to additional immune cells are also evident, with the strongest

signal observed in certain T cell subsets. Patterns of dysregula-
Figure 6. Aberrant platelet transcriptomes coincident with PEM in ME

(A) Schema depicting paired analysis (intraindividual expression) of gene expres

(B) Number of significantly enriched gene sets across clusters (x axis) in a paired

(C) GSEA results for significantly enriched gene sets related to platelet function. GS

cases and controls (dark purple for scRNA-seq and pink for RNA-seq), as well as c

PC (none detected).

(D) Enrichment plot depicting representative significantly enriched gene sets relate

platelets (cluster 19) from scRNA-seq.

(E) Heatmap of leading-edge genes taken from the gene set ‘‘GOBP regulation of p

BL and PC; expression values row-normalized.

(F) Enrichment plot depicting the same gene sets shown in (D) using the intraind

(B–D) Data from a cohort of 28 healthy controls and 30ME/CFS cases. (E and F) Da
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tion limited to adaptive immune cells specific to a particular an-

tigen are difficult to detect in scRNA-seq data. Nevertheless, it is

worth noting that we observe changes in gene expression in

clonally diverse antigen-experienced CD4+ T cells and in other

adaptive cell populations, an observation consistent with the

dysregulation of adaptive immune cells occurring via cytokine-

mediated bystander regulation68 rather than via antigen-specific

interactions. Nevertheless, the largest alterations in ME/CFS

PBMCs are found in monocytes.

Multiple lines of evidence implicate the dysregulation of

classical monocytes in ME/CFS. Our analysis discovered the

upregulation of chemokine/cytokine pathway genes in patient-

derived monocytes as well as a correlation between the propor-

tion of pD monocytes and disease severity. Future studies

investigating macrophages from tissue biopsies from ME/CFS

patients will be important to investigate the impact of altered

monocytes. CellChat analyses implicated alterations in intercel-

lular communication within the ME/CFS immune system. In

contrast to controls, in which a diverse network of intercellular in-

teractions is predicted, monocytes are predicted to dominate

the overall information exchange in ME/CFS. This observation

may be a consequence of prolonged exposure to an inflamed

environment in ME/CFS, which can alter cellular metabolism

and functions.69 We also detected conflicting pathways related

to immune response as upregulated in classical monocytes—

specifically, both proinflammatory and anti-inflammatory re-

sponses. These observations call for more extensive character-

ization of classical monocytes in ME/CFS to identify the overall

response of such cells in an abnormal disease state. Future

studies that integrate plasma cytokine analysis with monocyte/

macrophage function will be particularly valuable.

How might aberrant monocyte activation contribute to symp-

toms experienced by ME/CFS patients? Monocytes express

multiple chemokine receptors, which in response to different

chemokines direct monocytes to a variety of tissues. We

observed an increased expression of CCL3 and CCL4, which

direct monocytes to joints and adipose tissues in osteoarthritis

and adipose tissue in obesity.32,38 Thus, our observations sug-

gest that ME/CFS patients experience continual improper

recruitment of monocytes to one or more tissues. If this hypoth-

esis is correct, then it will be important to examine the balance of

pro- and anti-inflammatory macrophages in patient tissues, and

whether the macrophages themselves are altered.

A previous study identified aberrant platelet activity in ME/

CFS,70 although another study did not observe platelet alter-

ations.10 There is evidence of aberrant platelet activation in long
/CFS

sion altered by strenuous exercise in ME/CFS patients compared to controls.

analysis comparing case and control DRNA measurements with GSEA.

EA analyses included the comparison of pairedDRNAmeasurements between

omparing group averages at BL (red for scRNA-seq and blue for RNA-seq) and

d to platelet function and translation using the intraindividual paired analysis for

latelet activation’’ between 3 healthy controls (HC) and 3ME/CFS cases (ME) at

ividual paired analysis of bulk RNA-seq of platelet-derived plasma particles.

ta from 3 healthy controls and 3ME/CFS cases (all females) at both time points.
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COVID.71 Our analysis suggests a refinement to the hypothesis

linking platelet activation toME/CFS: although aberrant activation

may be present at BL, it appears that the platelet population in cir-

culation undergoes a substantial change in response to strenuous

exercise, and therefore a clear association with PEM. At BL, the

patient platelet transcriptome is biased toward a lower expression

program of genes important in platelet activation and an increase

in transcripts encoding translational machinery. Following exer-

cise, theplatelet transcriptome inpatients shifts toward the normal

profile, indicatingeither a lossofplatelets harboringdefective tran-

scriptomesoran infusionofnewplatelets.Weenvision twomodels

to explain these observations. In the first model, perhaps a subset

of platelets in patients are susceptible to activation, and strenuous

exercise inducesmicroclot formation, removing themfromcircula-

tion; thus, PC, only normal platelets remain. The secondmodel en-

visions that exercise induces an influx of normal platelets, perhaps

in combination with clearance (or clot formation) of older platelets.

Platelets, lacking a nucleus, have unconventional transcrip-

tomes. Upon their release into circulation, platelets inherit the

transcriptome of their megakaryocytes of origin. Therefore,

the platelet transcriptome degrades without replenishment as

platelets circulate. The rate of degradation in vitro shows a

fast degradation, with half of the RNA lost after 6 h and almost

all at 24 h.72 Selective degradation of the platelet transcriptome

has been reported, in which transcripts encoding the transla-

tional machinery degrade slower than others.73 Our analysis

shows that platelets at BL in ME/CFS subjects possess a tran-

scriptome indicative of older platelets, with a reduction in tran-

script levels for genes essential to platelet activation and func-

tion and an increase in ribosomal protein genes and other

genes relevant to translation. However, the exercise challenge

erases such signals. In healthy individuals, acute exercise has

been reported to activate platelets74 and upregulate both proin-

flammatory and anti-inflammatory cytokines,75 but prior studies

have not explored the effect of exercise on platelet function in

ME/CFS.

We note that aberrant platelet activation and fibrin amyloid mi-

croclots have been reported in patients with long COVID76 as

well as in ME/CFS patients, although the microclot load was

found to be smaller in theME/CFS cohort.70 These studies corre-

spond most closely to the BL state assessed here, and our re-

sults suggest that dysregulation, as judged by transcriptome

analysis, occurs at BL. Nevertheless, it is clear that the CPET in-

duces a marked change in the transcriptomes of platelets in ME/

CFS individuals.

Distinct from monocyte dysregulation, one of the most prom-

inent features of transcriptome dysregulation in ME/CFS is

repression of translational machinery and ribosomal protein

genes, which we observed across multiple cell types. Regulation

of such genes is complex, involving multiple pathways, including

p53 and target of rapamycin,77 although in general, the repres-

sion we observe suggests that multiple immune cells exist in a

more quiescent or less proliferative state than normal. For

example, normal CD8+ T cell activation requires increased trans-

lation.78 It is worth noting that both CD4+ and CD8+ T cells in ME/

CFS exhibit reduced glycolysis,11 and patient NK cells also have

impaired cytotoxic activity.9 Future studies could be designed to

systematically test for correlations between these molecular
changes, and if such correlations exist, seek a mechanistic un-

derstanding of them.

ME/CFS and long COVID, together with other postviral dis-

eases, have been suggested to share common molecular alter-

ations.79 At present, this suggestion is based on an overlapping

(although not identical) set of symptoms, rather than molecular

data. Our data, describing the circulating immune system in

ME/CFS, will be an ideal comparison set for future studies of

long COVID, with the potential to identify both congruent and

divergent aspects of immune function in ME/CFS and long

COVID. In this regard, future studies will determine whether clas-

sical monocyte dysregulation is also themost prominent signal in

the circulating immune system of long COVID patients, andmore

important, whether the genes and gene sets affected in ME/CFS

are also observed in monocytes from long COVID patients.
Limitations of the study
In this study, we used scRNA-seq to profile the circulating im-

mune system inME/CFS at BL, and also after symptomprovoca-

tion. However, PEM can last over an extended amount of time,

and our data are limited to analysis only 24 h PC. Moreover, by

focusing on immune cells found within PBMCs, we were unable

to determinewhetherME/CFS results in alterations to tissue resi-

dent immune cells. Our profiling of classical monocytes reveals

gene expression signatures indicative of aberrant tissue recruit-

ment of monocytes in ME/CFS. Thus, it will be important to

perform functional assays on circulatingmonocytes and onmac-

rophages from tissues to rigorously test this hypothesis. More-

over, although monocytes exhibit the most pronounced dysre-

gulation in ME/CFS, other immune cells also show significant

alterations in ME/CFS. In particular, we see evidence of ME/

CFS-specific changes in gene expression in multiple T cell sub-

sets, highlighting the need for further analysis of these cells.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Human subjects

d METHOD DETAILS

B PBMC isolation

B Single-cell gene expression profiling

B Monocyte isolation and profiling

B Flow cytometry of PBMCs

B Plasma particle isolation and profiling

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Single-cell RNAseq

B Flow cytometry analysis

B Bulk RNAseq

B Proteomics
Cell Reports Medicine 5, 101373, January 16, 2024 13



Article
ll

OPEN ACCESS
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xcrm.2023.101373.

ACKNOWLEDGMENTS

This study was supported by U54NS105541 and U54AI178855 to M.R.H.,

A.G., and D.C.S.; an NIH grant cofunded by the National Institute of Neurolog-

ical Disorders and Stroke, National Institute of Allergy and Infectious Diseases,

National Institute on Drug Abuse, National Heart, Lung, and Blood Institute,

National Human Genome Research Institute, and the Office of the Director;

and by UL1 TR 002384 from the National Center for Advancing Translational

Sciences. We thank the Cornell Biotechnology Resource Center (BRC) Geno-

mics, Flow Cytometry, Transcriptional Regulation and Gene Expression, and

Proteomics (RRID: SCR_021727; SCR_021740; SCR_022532; SCR_021743)

facilities for support. Thanks to Dr. John Chia for support in recruiting and

screening ME/CFS individuals and controls. We send our heartfelt thanks to

the ME/CFS subjects who participated in this study. Illustrations were created

with Biorender.com.

AUTHOR CONTRIBUTIONS

Conceptualization, A.G. Methodology and software, F.A., H.Z., and J.K.G.

Validation, L.T.V. and E.A.F. Formal analysis, F.A., H.Z., D.S.H.I., Y.K., W.C.,

P.R.M., and J.K.G. Investigation, F.A., L.T.V., H.Z., E.A.F., D.S.H.I., Y.K.,

W.C., A.E.T., P.R.M., and J.K.G. Resources, C.J.F., G.E.M., S.M.L., J.K.G.,

B.A.K., J.S., M.R.H., X.M., and D.C.S. Data curation, F.A. and J.K.G. Writing –

original draft, A.G. Writing – review & editing, L.T.V., F.A., H.Z., D.S.H.I., E.A.F.,

M.R.H., J.K.G., and A.G. Visualization, F.A., L.T.V., H.Z., D.S.H.I., and J.K.G.

Supervision and project administration, A.G. and J.K.G. Funding acquisition,

A.G., M.R.H., and D.C.S.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 11, 2022

Revised: August 10, 2023

Accepted: December 14, 2023

Published: January 16, 2024

REFERENCES

1. Hanson, M.R., and Germain, A. (2020). Letter to the Editor of Metabolites.

Metabolites 10, 216.

2. Lim, E.-J., Ahn, Y.-C., Jang, E.-S., Lee, S.-W., Lee, S.-H., and Son, C.-G.

(2020). Systematic review and meta-analysis of the prevalence of chronic

fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J. Transl. Med.

18, 100.

3. Komaroff, A.L., Buchwald, D.S., and MD. (1998). Chronic Fatigue Syn-

drome: An Update. Annu. Rev. Med. 49, 1–13.

4. Sanjabi, S., Zenewicz, L.A., Kamanaka, M., and Flavell, R.A. (2009). Anti-

and Pro-inflammatory Roles of TGF-b, IL-10, and IL-22 In Immunity and

Autoimmunity. Curr. Opin. Pharmacol. 9, 447–453.

5. Blundell, S., Ray, K.K., Buckland, M., and White, P.D. (2015). Chronic fa-

tigue syndrome and circulating cytokines: A systematic review. Brain Be-

hav. Immun. 50, 186–195.

6. Montoya, J.G., Holmes, T.H., Anderson, J.N., Maecker, H.T., Rosenberg-

Hasson, Y., Valencia, I.J., Chu, L., Younger, J.W., Tato, C.M., and Davis,

M.M. (2017). Cytokine signature associated with disease severity in

chronic fatigue syndrome patients. Proc. Natl. Acad. Sci. USA 114,

E7150–E7158.

7. Hornig, M., Montoya, J.G., Klimas, N.G., Levine, S., Felsenstein, D., Bate-

man, L., Peterson, D.L., Gottschalk, C.G., Schultz, A.F., Che, X., et al.
14 Cell Reports Medicine 5, 101373, January 16, 2024
(2015). Distinct plasma immune signatures in ME/CFS are present early

in the course of illness. Sci. Adv. 1, e1400121.

8. Maher, K.J., Klimas, N.G., and Fletcher, M.A. (2005). Chronic fatigue syn-

drome is associated with diminished intracellular perforin. Clin. Exp. Im-

munol. 142, 505–511.

9. Eaton-Fitch, N., du Preez, S., Cabanas, H., Staines, D., and Marshall-Gra-

disnik, S. (2019). A systematic review of natural killer cells profile and cyto-

toxic function in myalgic encephalomyelitis/chronic fatigue syndrome.

Syst. Rev. 8, 279.

10. Kennedy, G., Spence, V., Underwood, C., and Belch, J.J.F. (2004).

Increased neutrophil apoptosis in chronic fatigue syndrome. J. Clin.

Pathol. 57, 891–893.

11. Mandarano, A.H., Maya, J., Giloteaux, L., Peterson, D.L., Maynard, M.,

Gottschalk, C.G., and Hanson, M.R. (2020). Myalgic encephalomyelitis/

chronic fatigue syndrome patients exhibit altered T cell metabolism and

cytokine associations. J. Clin. Invest. 130, 1491–1505.

12. Sato, W., Ono, H., Matsutani, T., Nakamura, M., Shin, I., Amano, K., Su-

zuki, R., and Yamamura, T. (2021). Skewing of the B cell receptor reper-

toire in myalgic encephalomyelitis/chronic fatigue syndrome. Brain Behav.

Immun. 95, 245–255.

13. Milivojevic, M., Che, X., Bateman, L., Cheng, A., Garcia, B.A., Hornig, M.,

Huber, M., Klimas, N.G., Lee, B., Lee, H., et al. (2020). Plasma proteomic

profiling suggests an association between antigen driven clonal B cell

expansion and ME/CFS. PLoS One 15, e0236148.

14. Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/

Chronic Fatigue Syndrome, Board on the Health of Select Populations,

and Institute of Medicine (2015). Beyond Myalgic Encephalomyelitis/

Chronic Fatigue Syndrome: Redefining an Illness (National Academies

Press (US)).

15. Noor, N., Urits, I., Degueure, A., Rando, L., Kata, V., Cornett, E.M., Kaye,

A.D., Imani, F., Narimani-Zamanabadi, M., Varrassi, G., and Viswanath, O.

(2021). A Comprehensive Update of the Current Understanding of Chronic

Fatigue Syndrome. Anesth. Pain Med. 11, e113629.

16. Stevens, S., Snell, C., Stevens, J., Keller, B., and VanNess, J.M. (2018).

Cardiopulmonary Exercise Test Methodology for Assessing Exertion Intol-

erance in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front.

Pediatr. 6, 242.

17. Rasa, S., Nora-Krukle, Z., Henning, N., Eliassen, E., Shikova, E., Harrer, T.,

Scheibenbogen, C., Murovska, M., and Prusty, B.K.; European Network

on ME/CFS EUROMENE (2018). Chronic viral infections in myalgic

encephalomyelitis/chronic fatigue syndrome (ME/CFS). J. Transl. Med.

16, 268.

18. O’Neal, A.J., and Hanson, M.R. (2021). The Enterovirus Theory of Disease

Etiology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Crit-

ical Review. Front. Med. 8, 688486.

19. Hanson, M.R. (2023). The viral origin of myalgic encephalomyelitis/chronic

fatigue syndrome. PLoS Pathog. 19, e1011523.

20. Wong, T.L., and Weitzer, D.J. (2021). Long COVID and Myalgic

Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)—ASystemic Re-

view and Comparison of Clinical Presentation and Symptomatology. Me-

dicina (Mex.) 57, 418.

21. Keller, B.A., Pryor, J.L., and Giloteaux, L. (2014). Inability of myalgic

encephalomyelitis/chronic fatigue syndrome patients to reproduce VO2-

peak indicates functional impairment. J. Transl. Med. 12, 104.

22. Davenport, T.E., Stevens, S.R., Stevens, J., Snell, C.R., and Van Ness,

J.M. (2020). Properties of measurements obtained during cardiopulmo-

nary exercise testing in individuals with Myalgic Encephalomyelitis/

Chronic Fatigue Syndrome. Work Read Mass 66, 247–256.

23. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A.,

Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis

of multimodal single-cell data. Cell 184, 3573–3587.e29.

24. Kitami, T., Fukuda, S., Kato, T., Yamaguti, K., Nakatomi, Y., Yamano, E.,

Kataoka, Y., Mizuno, K., Tsuboi, Y., Kogo, Y., et al. (2020). Deep

https://doi.org/10.1016/j.xcrm.2023.101373
https://doi.org/10.1016/j.xcrm.2023.101373
http://Biorender.com
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref1
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref1
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref2
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref2
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref2
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref2
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref3
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref3
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref4
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref4
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref4
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref5
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref5
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref5
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref6
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref6
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref6
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref6
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref6
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref7
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref7
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref7
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref7
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref8
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref8
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref8
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref9
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref9
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref9
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref9
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref10
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref10
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref10
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref11
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref11
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref11
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref11
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref12
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref12
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref12
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref12
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref13
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref13
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref13
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref13
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref14
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref14
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref14
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref14
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref14
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref15
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref15
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref15
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref15
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref16
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref16
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref16
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref16
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref17
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref17
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref17
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref17
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref17
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref18
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref18
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref18
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref19
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref19
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref20
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref20
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref20
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref20
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref21
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref21
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref21
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref22
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref22
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref22
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref22
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref23
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref23
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref23
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref24
http://refhub.elsevier.com/S2666-3791(23)00602-X/sref24


Article
ll

OPEN ACCESS
phenotyping of myalgic encephalomyelitis/chronic fatigue syndrome in

Japanese population. Sci. Rep. 10, 19933.

25. Brenu, E.W., Huth, T.K., Hardcastle, S.L., Fuller, K., Kaur, M., Johnston, S.,

Ramos, S.B., Staines, D.R., and Marshall-Gradisnik, S.M. (2014). Role of

adaptive and innate immune cells in chronic fatigue syndrome/myalgic

encephalomyelitis. Int. Immunol. 26, 233–242.

26. Patel, A.A., and Yona, S. (2019). Inherited and Environmental Factors Influ-

ence Human Monocyte Heterogeneity. Front. Immunol. 10, 2581.

27. Thurman, A.L., Ratcliff, J.A., Chimenti, M.S., and Pezzulo, A.A. (2021). Dif-

ferential gene expression analysis for multi-subject single-cell RNA-

sequencing studies with aggregateBioVar. Bioinformatics 37, 3243–3251.

28. Cheema, A.K., Sarria, L., Bekheit, M., Collado, F., Almenar-Pérez, E., Mar-
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Antibodies

FITC anti-human CD3 Antibody Biolegend Cat#300440; RRID: AB_314060

PerCP anti-human CD45 Antibody Biolegend Cat#304026; RRID: AB_893337

PE anti-human CD16 Antibody Biolegend Cat#302008; RRID: AB_314207

APC/Cyanine7 anti-human CD14 Antibody Biolegend Cat#325620; RRID: AB_830693

Human TruStain FcXTM (Fc Receptor

Blocking Solution)

Biolegend Cat#422302; RRID: AB_2818986

FITC anti-human CD4 Antibody Biolegend Cat#357406; RRID: AB_2562357

BV785 anti-human CD8a Antibody Biolegend Cat#301046; RRID: AB_11219195

BV650 anti-human CD45RA Antibody Biolegend Cat#304136; RRID: AB_2563653

APC/Cyanine7 anti-human CCR7 Antibody Biolegend Cat#353212; RRID: AB_10916390

PE/Cyanine7 anti-human CD56 Antibody Biolegend Cat#362510; RRID: AB_2563927

PE anti-human CD41 Antibody Biolegend Cat#303706; RRID: AB_314376

APC/Cyanine7 anti-human CD235a

Antibody

Biolegend Cat#349116; RRID: AB_2650978

Biological samples

Human Normal Peripheral Blood

Mononuclear cells (PBMCs), 20 mil/vial,

Frozen

Human Cells Biosciences Cat#PBMC-C20M

Human Normal Peripheral Blood

Mononuclear cells and plasma

Center for Enervating NeuroImmune

Disease

Frozen PBMC and plasma

Critical commercial assays

Chromium Single Cell 3ʹ v3 10x Genomics Cat#CG000183 Rev A and Rev B

Chromium Single Cell 3ʹ GEM, Library & Gel

Bead Kit v3

10x Genomics Cat#1000075

Chromium Single Cell B Chip Kit, 16 rxns 10x Genomics Cat#1000074

Classical Monocyte Isolation Kit, human Miltenyi Biotech Cat#130-117-337

CD14 MicroBeads, human Miltenyi Biotech Cat#130-050-201

Ultra II Directional RNAseq NEB Cat#E7760

CD3 Microbeads, human Miltenyi Biotech Cat#130-097-043

Deposited data

Analyzed single cell and bulk RNA seq data [GEO SuperSeries Accession]:

[GSE214284]

Software and algorithms

Cell Ranger mkfastq v6 10x Genomics RRID:SCR_017344

R package https://www.R-project.org RRID:SCR_001905

Seurat v4.1.023 https://doi.org/10.1016/j.cell.2021.04.048 RRID:SCR_016341

prcomp https://doi.org/10.1038/

s41592-019-0619-0

RRID:SCR_014676

DoubletFinder v2.0.380 https://doi.org/10.1016/j.cels.2019.03.003 RRID:SCR_018771

DEseq2 (v2.03)81 https://genomebiology.biomedcentral.

com/articles/10.1186/s13059-014-0550-8

RRID:SCR_015687

DESeq2 (v1.34.0)81 https://genomebiology.biomedcentral.

com/articles/10.1186/s13059-014-0550-8

RRID:SCR_015687

clusterProfiler (v3.18.1)82 https://doi.org/10.1089/omi.2011.0118 RRID:SCR_016884

fgsea (v.1.20.0)83 https://doi.org/10.1101/060012 RRID:SCR_020938
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Singscore (v1.20.0)84 https://bioconductor.org/packages/

release/bioc/html/singscore.html

N/A

ggpubr (v0.4.0) https://rpkgs.datanovia.com/ggpubr/ N/A

CellChat v1.1.361 https://doi.org/10.1016/j.celrep.2022.

111155

RRID:SCR_021946

CellChatDB62 https://doi.org/10.1038/

s41467-021-21246-9

RRID:SCR_021946

MSigDB database (v7.5.1)30 https://www.gsea-msigdb.org/gsea/

msigdb/index.jsp)

RRID:SCR_016863

XGBoost (Python, v0.90) https://doi.org/10.1145/2939672.2939785 RRID:SCR_021361

FlowJo BD Bioscience RRID:SCR_008520

Cutadapt85 https://doi.org/10.14806/ej.17.1.200 RRID:SCR_011841

STAR (v2.7) dx.doi.org/10.17504/protocols.io.

3byl4bjr2vo5/v1

RRID:SCR_004463

ANOVA RRID:SCR_002427

Proteome Discoverer (PD) 2.5 https://doi.org/10.3390/

proteomes9010015

RRID:SCR_014477

Other

RPMI Medium 1640 ThermoFisher Cat#11875093

Fetal Bovine Serum ThermoFisher Cat#10437028

Phosphate Buffered Saline 1x ThermoFisher Cat#10010023

DMSO Sigma Aldrich Cat#D8418

Histopaque 1077 Sigma Aldrich Cat#10771

SepMate Tubes Stemcell Technologies Cat#85450
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Andrew

Grimson (agrimson@cornell.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
(1) De-identified human single-cell and bulk RNA-seq data have been deposited at GEO and are publicly available as of the date

of publication. The superseries accession number is listed in the key resources table.

(2) Analyzed proteomics data provided by the Cornell BRC Proteomics Facility is included as a supplemental table.

(3) Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

(4) This paper does not report original code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
The human subjects research described in this publication was approved by the Weill Cornell Medical College and Ithaca College

Institutional Review Boards and participants provided written informed consent prior to participation as previously described.86 Par-

ticipants at three sites participated in cardiopulmonary exercise tests (CPETs), donated blood, and provided demographic informa-

tion as part of the Cornell ME/CFSCollaborative Research Center. The specific cohort in this study was selected using age, BMI, sex,

and peak VO2 from CPETs. Age and BMI ranges were matched to minimize confounding factors between cases and controls

(Figure 1B). Sex was considered to ensure that the cohort matched disease prevalence where considerably more females thanmales
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report havingME/CFS.87,88 Cases were selected that demonstrated a considerable decrease in peak VO2 over the course of 2 CPETs

conducted as part of the larger study86 (Figure 1B), as an objective basis for physiological dysfunction within the ME/CFS

participants.21

The Multidimensional Fatigue Inventory (MFI-20)50 was used to assess the level of fatigue in cases. The SF-36v2 Health Survey89

was used to compare general health and quality of life between cases and controls. A modified version of the Chronic Fatigue Syn-

drome severity score90 was used to measure post-exertional malaise (PEM). The severity score measured PEM on a 0–10 scale over

the past month. The MFI-20, SF-36v2, and PEM severity score are all self-reported. The MFI-20, SF-36v2, and past month-PEM

severity were completed before visiting the test site to perform the CPETs. Current PEM severity was then serially measured at

the test site prior to CPET and then every two days post CPET for at least ten days to measure recovery.

In order to preserve anonymity in the public data repository, the subjects’ demographic information at the time of sample collection

is coded into the following bins: age bins (1:R18 to%35 years, 2: >35 to%45 years, 3: >45 to%55 years, 4: >55 to%70 years); BMI

bins (1:R0 to%18.5, 2: >18.5 to%25, 3: >25 to%27, 4: >27 to%30, 5: >30 to%100); duration bins (1:R0 to%5 years, 2: >5 to%

100 years); general health bins, MFI20 total bins, and physical component score bins (1:R0 to%20, 2: >20 to%40, 3: >40 to%60,

4: >60 to%80, 5: >80 to%100); post-exertional malaisemaximumdelta bins (1:R0 to%2, 2: >2 to%10). For speed ofME/CFS onset

(mecfs_sudden_gradual), 1 indicates "sudden" and 2 indicates "gradual".

METHOD DETAILS

PBMC isolation
ME/CFS cases and healthy sedentary controls participated in a larger study conducted by the Cornell ME/CFS Collaborative

Research Center as previously described.86 This study utilized PBMCs processed from whole blood collected from each participant

over the course of two days, separated by a cardiopulmonary exercise test (CPET (Figure 1A).

Whole blood was collected in EDTA tubes and centrifuged on the day of collection for 5 min at 500 rcf prior to removing the plasma

fraction. The remaining sample was diluted with equal parts PBS and transferred to a SeptMate Tube (Stemcell Technologies) con-

taining Histopaque-1077 (Sigma-Aldrich). SeptMate Tubes were then centrifuged for 10 min at 1,200 rcf and the buffy coat layer was

transferred to a new tube. After two washes with PBS (first wash was centrifuged for 10 min at 120 rcf for without brake; the second

was centrifuged for 8 min at 300 rcf), the resulting pellet was resuspended in PBMC storage media (60% RPMI 1640, 30% heat in-

activated FBS, and 10% DMSO), counted, and divided into aliquots of �1–10 million cells per mL. PBMC aliquots were promptly

transferred to �80�C for slow freeze down in a Mr. Frosty Freezing Container (Thermo Scientific). After 24 h, the PBMCs were trans-

ferred to liquid nitrogen for long-term storage.

Single-cell gene expression profiling
Samples were co-processed for single-cell RNAseq (scRNAseq) in batches of 4–8 PBMC aliquots, such that each batch contained

paired baseline and post-CPET samples from the same individual and a mix of cases and controls. PBMCs were prepared for

scRNAseq using the 10x Genomics Demonstrated Protocol: Fresh Frozen Human Peripheral Blood Mononuclear Cells for Single

Cell RNA Sequencing (CG00039) as a guide. Briefly, vials were rapidly thawed in a 37�C water bath and 500 mL was transferred

to a 50 mL centrifuge tube using a wide-bore tip. Cells were serially diluted 1:1 with RPMI 1640 (Gibco # 11875093) plus 10%

heat inactivated FBS (Gibco #10438026) in 1-min increments until the total volume reached 32mL. Cells were centrifuged in a swing-

ing bucket rotor at 300 rcf for 5 min at room temperature. After discarding the majority of the supernatant, cells were gently resus-

pended in the residual volumewith a regular-bore tip to achieve single cell suspension, transferred to a 15mL centrifuge tube and the

volume brought up to 10 mL with RPMI 160 plus 10% heat inactivated FBS. Cells were centrifuged again at 300 rcf for 5 min at room

temperature, and the pellet was gently resuspended in 1 mL of 1x PBS (BioWhittaker #17-516F) plus 0.04% BSA (Invitrogen

#AM2616) with a wide-bore tip. The cells were transferred to a 2 mL microfuge tube, centrifuged at 300 rcf for 5 min in a swinging

bucket centrifuge at room temperature, and resuspended in 1x PBS plus 0.04% BSA to a specified cell concentration to load

�8,000 cells onto the 10x Chromium chip for a target capture of 5,000 cells. Cells were counted on a TC-20 cell counter (Bio-

Rad) multiple times to track total and live cell counts. In total, 120 PBMC samples were processed in 18 batches and only two paired

samples from a control individual failed the minimum viability tests and were excluded from the study.

Viable cells were submitted to the Cornell BRCGenomics Facility for processing with the ChromiumSingle Cell 3ʹ v3 kit (CG000183

Rev A and Rev B, 10x Genomics). The Facility prepared a total of 120 single-cell RNAseq libraries; all underwent quality checks for

size distribution on a Fragment Analyzer 5200 (Agilent) and molarity on a QX100 Digital Droplet PCR Machine (Bio-Rad). Libraries

were sequenced in an initial run to generate preliminary data quality metrics, and additional sequencing depth was generated as

required to meet the target coverage for each sample. The libraries generated in batches 1–13 were primarily sequenced on a

NextSeq500 (R1:28bp, R2:55bp) and the libraries from batches 14–18 were sequenced on a HiSeq2000 followed by a

NovaSeq6000 (both PE 2x150bp). A final sequencing run on a NextSeq2000 brought all samples to the minimum target depth

(see below).
e3 Cell Reports Medicine 5, 101373, January 16, 2024
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Monocyte isolation and profiling
Magnetic enrichment

Samples from individuals in the larger Cornell Center study that were not included in the scRNA-seq cohort were selected for mono-

cyte profiling. For bulk RNAseq, we used PBMCs from eight post-CPET females (4 caseswith low SF36v2 PCS scores and 4 controls,

matched by age and BMI). For proteomics, we used PBMCs from eight baseline females (4 cases and 4 controls with similar criteria

as described above). Vials containing cryopreserved PBMCs were rapidly thawed in a 37�C water bath and serially diluted 1:1 with

RPMI 1640 plus 10% heat inactivated FBS in 1-min increments until the total volume reached 32 mL. Cells were centrifuged in a

swinging bucket rotor at 300 rcf for 5 min at room temperature and the pellet was gently resuspended in 10 mL of MACS buffer

(Miltenyi Biotech Cat# 130-091-376). After two washes in MACS buffer, centrifuging at 300 rcf for 5 min at room temperature, the

pellet was resuspended in 1 mL of MACS buffer and cells were counted with a TC-20 cell counter (Bio-Rad). Monocytes were initially

purified with the Classical Monocyte Isolation kit, human (Miltenyi Biotech Cat#130-117-337), then additionally enriched for CD14+

cells using theCD14MicroBeads (Miltenyi Biotec Cat#130-050-201). After counting, 20,000–140,000 cells were removed to 250 mL of

MACs buffer and 750 mL of Trizol LS (ThermoFisher) added to lyse cells for bulk RNAseq profiling. Trizol lysates were frozen at�80�C
prior to RNA extraction and submitted to the Cornell Transcriptional Regulation and Expression (TREx) Facility for RNA extraction and

RNAseq. Remaining cells were immediately analyzed with flow cytometry.

Flow cytometry

Human TruStain FcX Fc Receptor Blocking Solution (BioLegend Cat#422302) was added according to the number of cells, mixed

well and incubated for 10 min at room temperature. Cells were divided into separate microfuge tubes for staining with fluorescently

labeled antibodies (CD3-FITC, CD45-PerCP, CD16-PE, and CD14-APC-Cy7 from BioLegend) for flow cytometry and incubated on

ice for 30 min. 1 mL of FACS buffer (heat inactivated FBS, 0.5M EDTA pH8.0 1x PBS) was added to the cells, mixed well and centri-

fuged at 300 rcf for 5 min at 4�C. The supernatant was removed and the cells were washed once more. The final cell pellet was re-

suspended in 100 mL of FACS buffer and kept on ice in the dark. Sytox blue (0.2 mL/100 mL or less) was added directly before flow

cytometry analysis and analyzed on a Thermo Fisher Attune NxT at the Cornell BRC Flow Cytometry Facility.

Bulk RNAseq

At the TREx Facility, RNAwas extracted from Trizol following the manufacturer’s protocol with the following exceptions: the aqueous

fraction was re-extracted with an equal volume of chloroform in Phase Lock Gel Heavy tubes (QuantaBio) and 2 mL of GlycoBlue

(Thermo) was added prior to precipitation to improve RNA recovery. Total RNA samples were quantifiedwith theQubit HSRNA assay

(Thermo) and integrity assessed on a Fragment Analyzer (Agilent) to confirm RQN values R7. Bulk polyA + RNAseq libraries were

generated from 25 ng total RNA with the NEBNext Ultra II Directional RNA kit (New England Biolabs). Libraries were quantified

with a Qubit HS DNA assay (Thermo) and sequenced on a NovaSeq6000 (Illumina) at Novogene to generate a minimum of 20M

PE 2x150bp reads per sample.

Proteomics

Classical monocytes isolated by MACS were washed 3 times with PBS to reduce BSA contamination by centrifugation. After the last

wash, cells were resuspended in RIPA buffer (Thermo) with protease inhibitor cocktail (Thermo). Cell lysates were submitted to Cor-

nell BRC Proteomics and Metabolomics Facility for quality check and label free quantification. 1.4 mg of proteins from each sample

was digested and analyzed by nanoLC-Orbitrap mass spectrometer. Yeast enolase digests (100 fmol) were spiked into each sample

for normalization.

Flow cytometry of PBMCs
PBMCs from 4 cases and 4 controls at baseline were thawed as described above. PBMCs were processed for monocyte subset

analysis was described above. For T lymphocytes, CD3 cells were enriched using the CD3 MicroBeads (Miltenyi Biotec Cat#130-

097-043). After enrichment, cells were incubated with Aqua dead cell stain kit (Thermo) with Human TruStain FcX Fc Receptor Block-

ing Solution (Biolegend) for 10 min at room temperature. Fluorescently labeled antibodies (CD4-FITC, CD8a-BV785, CD45RA-

BV650, CCR7-APC-Cy7, and CD56-PE-Cy7 from BioLegend) were subsequently added to the cells and incubated on ice for

30 min. 1 mL of FACS buffer (heat inactivated FBS, 0.5M EDTA pH8.0 1x PBS) was added to the cells, mixed well and centrifuged

at 300 rcf for 5min at 4�C. The supernatant was removed and the cells were washed oncemore. The final cell pellet was resuspended

in 100mL of FACS buffer and kept on ice in the dark. Flow cytometry analysis was performed on a FACSARia Fusion at the Cornell

BRC Flow Cytometry Facility.

Plasma particle isolation and profiling
Enrichment

Frozen plasma samples from 3 cases and 3 controls were thawed at room temperature. 1 mL of plasma were mixed with 2 mL of

DMEM and centrifuged at 800 rcf for 20 min. After centrifugation, media was discarded and the pellet were washed in 1 mL of

Tyrode’s buffer and centrifuged. The washed pellet was resuspended in 400 mL of PBS. 250 mL of the plasma particles was mixed

with 750 mL of Trizol-LS (Thermo) for RNA extraction. The remaining samples were processed for flow cytometry analysis.

Flow cytometry

Plasma particles were incubated with 20 mL of Human TruStain FcX Fc Receptor Blocking Solution (Biolegend) for 10 min at room

temperature. Fluorescently labeled antibodies (CD41-PE, CD45-PerCP, and CD235a-APC-Cy7 from BioLegend) were subsequently
Cell Reports Medicine 5, 101373, January 16, 2024 e4
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added to the samples and incubated at room temperature for 30min in the dark. Samples were washed twice with Tyrode’s buffer by

centrifugation at 800 rcf for 5min at room temperature. Flow cytometry analysis was conducted on a Thermo Fisher Attune NxT at the

Cornell BRC Flow Cytometry Facility.

Bulk RNAseq

RNA extraction, polyA + RNAseq library preparation, and sequencing was conducted by the TREx Facility as described above for

monocytes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell RNAseq
Data processing

Fastq files were generated with cellranger mkfastq (10x Genomics) by the sequencing facility (BRC Genomics Facility or Novogene).

Raw count tables were generated with cellranger count v6 (10x Genomics) [cellranger count –id = ID –transcriptome = /path/to/re-

fdata-gex-GRCh38-2020-A/–fastqs = /path/to/directories –sample = list –expect-cells = 5000 –r1-length = 28 –r2-length = 55 –nose-

condary]. Because sequencing read lengths from different instruments varied, and this was observed to contribute to bias in the

count tables, reads were trimmed to match the minimum length across the dataset (R1 = 28nt, R2 = 55nt).

Single-cell integration and clustering

Count tables from all samples were imported into R to analyze with Seurat (v4.1.0)23. Initial filtering removed cells that did not meet

minimum quality criteria (nFeature_RNA >500 & nFeature_RNA <5000 & percent.mt < 30 & log10GenesPerUMI >0.80). A pair of sam-

ples from the same control individual were discarded due to an excess of counts for mitochondrial genes indicating a sample quality

problem, leaving a total of 116 samples in the final dataset. Normalization of UMI counts for each library was performed using the

SCTransform function [SCTransform(sobj, method = "glmGamPoi", vars.to.regress = "percent.mt", return.only.var.genes =

FALSE)]. Samples were integrated with the Seurat function RunHarmony (sobj, reduction = "harmony", dims = 1:50), a wrapper

for Harmony.91 Clustering with Seurat [FindNeighbors(sobj, reduction = "harmony", dims = 1:50) %>% FindClusters(resolution =

0.6)] generated a total of 29 clusters. Cell doublets within each sample were determined with DoubletFinder (v2.0.3)80 and removed

from the dataset. The FindMarkers function in Seurat was used to determine marker genes between clusters and genes that distin-

guish case and control cells within each cluster.

Pseudobulk analysis

Raw pseudobulk counts were extracted from the Seurat object as the sum of counts for each gene per sample, per cluster. Normal-

ization of pseudobulk matrices with DEseq2 (v1.30.0)81 generated normalized counts for downstream analyses, and was rerun as the

cell assignments or cohorts were altered for different analyses. DEseq2 was used to detect differentially expressed genes between

groups, using ‘minReplicatesForReplace = Inf’ to reduce the contribution from spurious outliers.

The log2-fold change calculation fromDEseq2was used for gene set enrichment analysis (using R packages clusterProfiler (default

parameters: v3.18.1)82 or fgsea83 (minimal gene set size 5, maximum gene set size 2000, eps 0: v1.20.0) to run the GSEA30,92 algo-

rithm, after filtering out genes with low coverage. For example, the GSEA analysis for clusters with more than 10,000 cells was filtered

to retain only the top quartile of genes based on the median normalized counts across all samples. The Hallmark, C2:CP and C5 cat-

alogs from the MSigDB database30 were used for enrichment tests.

For the paired analysis controlling for the individual of origin, the post-CPET/BL ratio was calculated for each gene and each in-

dividual when normalized counts were available for both timepoints and only for individuals with at least 4 cells contributing to pseu-

dobulk counts at both timepoints. Normalized counts were floored to 1 to reduce the contribution from poorly detected genes. The

geometric means of the ratios of all cases and all controls were used to calculate the final log2-fold change metric for the paired anal-

ysis; only genes with at least 6 ratios for cases and for controls were retained in the final rank list for GSEA. The Wilcoxon rank-sum

test, using the wilcox.test function in base R was used to assess genes that change significantly in response to the CPET challenge.

Scores were calculated per sample (or per ratio) with the R package singscore (v1.20.0),84 using a unique list of genes derived from

the GSEA leading edge genes from gene sets related to chemokine/cytokine signaling (listed in Figure 2D), and the Wilcoxon rank-

sum test was used to compare groups.

Cell demographics analysis

Cell counts per cluster per individual were normalized to the total cell counts per sample. Wilcoxon rank-sum tests were used to

compare normalized cell counts in the case versus control cohorts at baseline and post-exercise respectively, as well as for normal-

ized cell counts at baseline versus post-exercise separately for cases and controls.

Positive unlabeled learning algorithm

Positive unlabeled learning was performed based on publicly available methods and codes with the scRNA-seq dataset as input.49,93

Briefly, the algorithm took the normalized single cell gene expression matrix of cluster 2 (classical monocytes), using data from either

females or males at baseline or post-CPET (data slot of the RNA assay in the Seurat object) as input. Cells from control individuals are

labeled as positive, and cells from case individuals are unlabeled. Twenty percent of labeled cells (i.e., cells from control individuals)

were held out, and the remaining 80% labeled cells together with all unlabeled cells (i.e., cells from case individuals) were used to train

an XGB classifier (using Python package XGBoost,94 with default parameters) separating labeled and unlabeled cells. Next, the

reserved labeled cells were projected onto the labeled/unlabeled classifier to estimate the probability of cells being labeled if they
e5 Cell Reports Medicine 5, 101373, January 16, 2024
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are positive (control-like). In the following step, all labeled and unlabeled cells were projected onto the labeled/unlabeled classifier.

Finally, based on the theorem of conditional probability, the probability of unlabeled cells being positive can be estimated by the

probability of the cells being labeled divided by the probability of cells being positive when labeled. Predicted probabilities were aver-

aged across 24 iterations.

To select the probability threshold that determines if a cell is predicted as healthy or diseased, the Calinski-Harabasz Index of pre-

dicted diseased and predicted control cells was calculated based on the top 50 principal components of the single cell expression

matrix across thresholds 0.1–0.9 (Figure S4A). The threshold with the highest Calinski-Harabasz Index was selected (0.4 for classical

monocytes in females at baseline). Cells with probabilities higher than the threshold are considered as predicted control, and cells

with probabilities lower than the threshold are considered as predicted diseased.

To correlate the predictions with other metrics, the percentage of cells predicted as diseased were calculated for each individual.

Spearman correlation was calculated by R package ggpubr v0.4.0 between percentage of cells predicted diseased at baseline

compared to post-CPET in cases and controls, or between percentage predicted-diseased cells and demographic metrics (MFI-

20 total score, general health score, SF-36 physical component score, and PEM maximum change) across individuals. PEM

maximum changewas calculated as the largest delta for the PEM symptom severity scores (from baseline to each of the survey time-

points post-CPET). Significance of difference between case and control for PEM maximum change was determined using Fisher’s

z-transformation for correlation coefficients.95

To evaluate the performance of the predictions, Calinski-Harabasz Indexes of cells partitioned by predictions and other sample

metadata (sex, case/control, individual of origin) were calculated based on top 50 principal components of the partitioned single

cell expression matrix in PCA space, generated with RunPCA from Seurat.

Differential expression between cells predicted diseased and control was performed by FindMarkers function in Seurat. All genes

are included. GSEA on log2-fold changes of genes between predicted diseased and predicted control groups of cells was performed

using R package fgsea v1.20.0,83 with minimal gene set size = 5, maximum gene set size = 2000 and eps = 0. The Hallmark gene sets

and KEGG subset from the C2 catalog in MSigDB database v7.5.130 were used for enrichment tests.

Pseudobulk counts were calculated by aggregating gene expression counts of cells partitioned by the predicted labels. Vst func-

tion in DESeq2 v1.34.081 was used to normalize the pseudobulk counts. PCAwas performed on normalized pseudobulk counts using

the R function prcomp and the loadings were then extracted from rotation of the PCA result. Paired analysis controlling the individual

of origin was performed by calculating the log2-fold changes between normalized psuedobulk counts of predicted-diseased and pre-

dicted-normal cells for each ME/CFS patient. Ratios for each gene were then averaged across each predicted cohort.

Inference of cell-cell communication

CellChat (v1.1.3)61 was used to infer cell-cell communication probabilities and identify signaling changes across healthy and

diseased cell populations. We down-sampled each cluster to 500 cells from females, at baseline only, for a balanced comparison.

We discarded clusters with fewer than 500 cells. Briefly, we first identified, for each cluster, differentially over-expressed ligands, re-

ceptors and cofactors in the human CellChatDB database,62 then their average expression values were used to calculate commu-

nication probabilities between all cell groups. Interaction strength along specific intercellular signaling pathways was calculated by

summarizing the communication probabilities of associated ligand-receptor pairs across all clusters. Comparison of healthy and

diseased signaling networks was performed as described previously,61 with statistical significance of changes in communication

probabilities determined by Wilcoxon rank-sum test and using only cells collected from females at baseline.

Flow cytometry analysis
Raw compensated flow cytometry files (.fcs) were analyzed using Flowjo (v10.8.1). Cells were first gated by size and granularity. Sin-

gle cells were selected by looking at forward scatter area and height and side scatter area and height. Live cells were selected by

gating on Sytox blue or Aqua negative events. Bulk monocytes were selected as CD45+CD3�cells. Monocyte subsets were analyzed

by investigating surface expression of CD14 and CD16. Classical monocytes (CD14+CD16�) were gated based on fluorescent-

minus-one (FMO) controls. Bulk T lymphocytes were selected as CD4+CD56�or CD8+CD56�cells. T lymphocyte subsets were

analyzed by investigating surface expression of CD45RA and CCR7. Naive (CD45RA + CCR7+) and effector/memory (CD45RA-

CCR7+/�) T lymphocytes were gated based on FMO controls. Plasma particles were analyzed based on surface expression of

CD41, CD45, and CD235a. Platelet-derived particles (CD41+CD45�CD235a-) were gated based on FMO controls. For a complete

list of antibodies, see key resources table.

Bulk RNAseq
Fastq files were trimmed to remove 30 low quality and adaptor sequences with TrimGalore (v0.6),96 a wrapper for cutadapt85 and

fastQC,97 retaining readsR50bp. Trimmed reads were mapped to the reference genome (GRCh38 with Ensembl gene annotations)

with STAR (v2.7) [–outSAMstrandField intronMotif, –outFilterIntronMotifs RemoveNoncanonical, –outSAMtype BAM

SortedByCoordinate, –quantMode GeneCounts], which outputs a count table of reads per gene for each sample. DESeq281 was

used to normalize raw counts, generate PCA (normalized by rlog) and MA plots, and analyze differential expression, using genes

with more than 10 read counts in more than or equal to 3 libraries. The log2-fold change values from DEseq2 were used for GSEA

analysis with R package fgsea v1.20.083 as described above, with minimal gene set size = 5, maximum gene set size = 2000,

eps = 0 and gseaParam = 0. Paired analysis controlling the individual of origin was conducted as described above for the single-cell
Cell Reports Medicine 5, 101373, January 16, 2024 e6
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pseudobulk profiles for platelets; only genes with at least 2 ratios for cases and for controls were retained in the final rank list for

GSEA, Hallmark, C2:KEGG, C2:Reactome, and C5:GO_BP gene sets from the MSigDB database30 were used for enrichment tests.

Proteomics
We omitted one case from the cohort due to low input and MS signal intensity. The raw files were searched against Human UNiProt

database using Proteome Discoverer (PD) 2.5 software at the BRC Proteomics Facility. Proteins with at least 2 peptides identified

were used for further analysis. Protein abundances were normalized to the abundance of the spike-in, yeast enolase. Function

aov() in R was used to perform ANOVA test to identify differentially expressed proteins between monocytes of controls and cases.

Benjamini & Hochbergmethodwas used to calculate adjusted p values. Log2-fold change values between patients and controls were

used for GSEA analysis with R package fgsea v1.20.083 (minSize = 0, maxSize = 10000, eps = 0, gseaParam = 1, nPermSimple =

100000). C2:Reactome and C5:GO gene sets from the MSigDB database v7.5.130 were used for enrichment tests.
e7 Cell Reports Medicine 5, 101373, January 16, 2024
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Supplemental Figure 1. Single cell transcriptomics of the ME/CFS immune system 

Related to Figure 1 

(A) Violin plot showing quality control metrics (from top to bottom: transcripts per cell, genes per cell, percent 

mitochondrial reads per cell, S Score and G2M score) for each batch of samples (x-axis) processed on the 10x 

Genomics Chromium instrument. (B) Violin plot showing quality control metrics for each cluster (x-axis). (C) 

UMAP split by condition (Case-Baseline, Case-post-CPET, Control-Baseline, Control-post-CPET), showing 

representation of all clusters in each condition. (D) Relative cell numbers between cohorts across all clusters 

(numbered as per Figure 1D) except clusters 4, 13, and 15 (see Figure 1F). Panels represent data from 28 

healthy controls and 30 ME/CFS cases.  
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Supplemental Figure 2. Flow cytometry analysis of T cell and monocyte subsets 

Related to Figure 1 

(A) Representative flow cytometry analysis of CD3+ T cells from PBMCs. Naïve and effector/memory 

(Eff/Mem) cells were separated based on CD45RA and CCR7 expression (right panel). For correct gating, we 

also stained cells with antibody cocktails that omit a single antibody per channel (fluorescent minus one – 

FMO). Left and middle panel are FMO controls omitting the indicated antibody. (B) Percentage of different T 

cell subsets at baseline between controls and ME/CFS cases, measured for 4 individuals per group; bar graphs 

represent mean ± SEM. (C) Representative flow cytometry analysis of monocytes from PBMCs. Classical 

(CM), intermediate (IM) and non-classical monocytes (NCM) were identified based on CD14 and CD16 

expression; otherwise as described in panel E. (D) Percentage of different monocyte subsets in controls and 

ME/CFS cases at baseline, measured for 4 individuals per group; bar graphs represent mean ± SEM. 
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Supplemental Figure 3. Dysregulation of immune cells in ME/CFS 

Related to Figure 2 

(A) PCA plots for pseudobulk analysis of gene expression for cluster 2 (classical monocytes, top) and cluster 19 

(platelets, bottom). Left panels are colored by sex, center panels are colored by condition (Case-Baseline, Case-

post-CPET, Control-Baseline, Control-post-CPET), and right panels are colored by batch (Chromium 

processing). In most clusters and as shown for cluster 2, sex explains the first principal component of variation 

in the gene expression profiles. Cluster 19 is unique in not showing a strong sex bias. (B) Distribution of 

pairwise correlation (Spearman) values for cluster 2 gene expression profiles. Correlations were compared for 

each individual at the two time points (Self BL-PC) and between individuals at different time points (Non-self 

BL only and Non-self PC only) and between time points (Non-self BL-PC). Mann-Whitney U test was 

conducted to compare the distributions between controls and cases within each subset and between controls 

(BL-PC) and cases (BL-PC) with p-value shown on top of each graph. (C) GSEA results for comparisons of 

case versus control cohorts at baseline or post-CPET for clusters 9 (top) and 10 (bottom) for the same gene sets 

shown in Figure 2D, when the result is statistically significant (q-value < 0.05). Dots are sized to denote 

significance and colored to indicate the timepoint for the comparison of case versus control (Baseline or post-

CPET); x-axis indicates normalized enrichment score (NES). (D) Single-sample scores for pseudobulk profiles 

for clusters 9 (top) and 10 (bottom) generated using the same list of genes as in Figure 2E (leading-edge genes 

from Figure 2D). * p-value < 0.05. (E) Correlation (Spearman) for single-sample scores for each individual, 

comparing baseline (x-axis) to post-CPET (y-axis). All panels represent data from 28 healthy controls and 30 

ME/CFS cases.  
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Supplemental Figure 4. Complete transcriptomics of classical monocytes 

Related to Figure 3 

(A)  Purification of classical monocytes from PBMCs. PBMC samples from female cases and controls collected 

post-CPET was utilized for classical monocyte isolation and bulk RNA-seq (top); all individuals were distinct 

from those profiled with scRNA-seq. Flow cytometry analysis confirmed enrichment of classical monocytes 

(CD14+CD16-, bottom). (B) MA plot showing average expression of genes (x-axis, DEseq2 baseMean) and the 

log2-fold change between case and control groups (y-axis). Dots are color-coded to indicate statistically 

significant differential expression and the group with higher relative expression (case, control; blue, yellow, 

respectively) at adjusted-p < 0.05. (C)  Differential expression of genes associated with monocyte migration and 

differentiation for classical monocytes collected as in Figure 3A between case and control groups. Dots are 

sized to denote significance (p-values) and colored to reflect the group with higher relative expression (case, 

control; blue, yellow, respectively); x-axis indicates log2-fold change (case/control). (D)Top 5 genes 

contributing to positive and negative side of PC1 of proteomic PCA (Figure 3D). (E) Top 5 genes contributing 

to positive and negative side of PC1 of RNA-seq PCA (Figure 3A). (F) PCA of two patient and four control 

proteome profiles from classical monocytes, excluding outlier sample in Figure 3D. (G) Significantly enriched 

gene sets between patient and control cohorts by GSEA, excluding outlier sample in Figure 3D. Dots are sized 

to denote significance (adjusted p-values); x-axis indicates NES. (H) Differentially expressed proteins between 

patients and control cohorts, excluding outlier sample in Figure 3D. Red dots represent consistently upregulated 

proteins in cases between analyses (see Figure 3F). y-axis represents adjusted p-values. 2 cohorts of 4 healthy 

controls and 4 ME/CFS cases (all females) at baseline and post-CPET were chosen for proteome (panels D and 

F-H) and transcriptome (panels A-C and E) profiling, respectively. 
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Supplemental Figure 5. Heterogeneity in classical monocyte cells from ME/CFS patients 

Related to Figure 4 

(A) Calinski-Harabasz Index comparing performance of classification for using different cutoffs for predictions, 

using female classical monocytes at baseline. The threshold with the maximum CH Index value for the 

algorithm was selected (0.4). (B) Performance of grouping predicted normal and diseased cells for male 

samples: percentage of cells predicted as diseased (pD) per sample; males only, examined at baseline. (C) 

Correlation (Spearman) between percentage of pD cells per sample, comparing paired baseline and post-CPET 

values per individual; males only. (D) Correlation (Spearman) between general health score and percentage of 

pD cells per sample; females only, examined at baseline. (E) Correlation (Spearman) between SF-36 physical 

component score and percentage of pD cells per sample; females only, examined at baseline. (F) Correlation 

(Spearman) between maximum change in PEM symptom severity and percentage of pD cells per sample; 

females only, examined at baseline. (G) Correlation (Spearman) between MFI-20 total score and percentage of 

pD cells per sample; males only, examined at baseline. (H) Correlation (Spearman) between general health 

score and percentage of pD cells per sample; males only, examined at baseline. (I) Top 5 gene sets differentially 

enriched in GSEA comparing average log2-fold change (FindMarkers) in case and control cells from females at 

baseline. Dots are color-coded to indicate enrichment in case (blue) or control (yellow) cells and sized to 

indicate corrected P values. (J) Top 5 gene sets differentially enriched in GSEA comparing predicted normal 

(pN) and pD cells from males at baseline. Dots are color-coded to indicate enrichment in pN (yellow) cells and 

sized to indicate corrected P values. (K) Expression of TMEM176B (y-axis) across indicated groups (X-axis) per 

sample, aggregating expression of cells from controls (yellow), pN cells from cases (green), and pD cells from 

cases (blue), partitioned by sex, all at baseline. (L) PCA (principal components 1 and 2) of pseudobulk profiles 

from aggregated subsets of cells from controls (yellow), pN cells from cases (green), and pD cells from cases 

(blue), partitioned by sex, all at baseline. Panels A, D-F, and I represent data from the female cohort with 20 

healthy controls and 20 ME/CFS cases. Panel B, C, G, H, and J represent data from the male cohort with 8 

healthy controls and 10 ME/CFS cases. Panels K and L represent data from the full cohort with partition based 

on sex. All panels represent data at baseline except C which compares baseline to post-CPET. 
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Supplemental Figure 6. Intercellular signaling in the circulating ME/CFS immune system 

Related to Figure 5 

(A) Heatmap of differential interaction strengths between cell types at baseline, from female samples following 

down-sampling. Top bar plot indicates aggregate interaction strength of incoming signals to indicated clusters 

(X-axis); right bar plot indicates aggregate interaction strength of outgoing signals from indicated clusters (Y-

axis). Positive values (blue) indicate increased signaling strength in cells from ME/CFS patients compared to 

controls; negative values (orange) indicate decreased signaling strength. (B) Violin plots of log-normalized 

expression levels for genes annotated under the CCL pathway in CellChatDB, per cluster, showing female cells 

at baseline in the control (orange) and ME/CFS (blue) cohorts. (C) Expression levels of indicated genes in 

RNA-seq of female classical monocytes at post-CPET for cases and controls (see Figure 3). * p-value < 0.05, ** 

p-value < 0.01, *** p-value <0.001. Panels A and B represent data from the female cohort with 20 healthy 

controls and 20 ME/CFS cases at baseline.  
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Supplementary figure 7. Plasma particle isolation 

Related to Figure 6 

(A) Schema describing plasma particle isolation using low speed centrifugation for flow cytometry and RNA-

seq, (B) Representative histograms of platelet (CD41), leukocytes (CD45), and red blood cells (CD235a) on the 

surface of plasma particles, compared between full panel and fluorescence minus one (FMO; omitting the 

antibody identified on the x-axis) control panels. (C) Heatmap of the top 20 leading-edge genes from RNA-seq 

of plasma particles between 3 healthy controls (HC) and 3 ME/CFS cases (ME) from the enriched GSEA 

termed “GOBP cytoplasmic translation”. Gene expression values are row-normalized. Panel C represents data 

from a cohort of 3 healthy controls and 3 ME/CFS cases (all females) at both time points.  
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