Supplementary Information

Experimentally validated design principles of heteroatom-dopedgraphene-supported calcium single-atom materials for nondissociative chemisorption solid-state hydrogen storage

Yong Gao¹, Zhenglong Li¹, Pan Wang², Wen-gang Cui¹, Xiaowei Wang³, Yaxiong Yang¹, Fan Gao¹, Mingchang Zhang¹, Jiantuo Gan¹, Chenchen Li¹, Yanxia Liu¹, Xinqiang Wang¹, Fulai Qi¹, Jing Zhang², Xiao Han², Wubin Du⁴, Jian Chen^{5*}, Zhenhai Xia^{6*} and Hongge Pan^{1*}

¹Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an 710021, China

²School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China,

³Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, USA

⁴School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China

⁵School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China

⁶Australian Carbon Materials Centre, School of Chemical Engineering, University of New South Wales, Sydney NSW, 2052 Australia

Corresponding author: E-mail: zhenhai.xia@unsw.edu.au ; E-mail: zhenhai.xia@unsw.edu.au ;

E-mail: Honggepan@zju.edu.cn

1. Supplementary Calculation Methods

1.1. Binding energy calculation of Ca atom anchored on X-G supports

During the formation of X-G-Ca single-atom H₂ storage materials, Ca atoms will be chemisorbed on surfaces of the graphene doped with heteroatoms X(X-G). Thus, the binding energy E_b between the Ca atom and X-G support is given by

$$E_b = E(X - G - Ca) - E(X - G) - E(Ca)$$
(1)

where E(X - G - Ca) and E(X - G) are the total energy of substrates with/without Ca chemisorption at ground state, respectively and can be obtained via DFT calculation, and E(Ca) is the energy of single Ca atom with the value of -1.9863 eV calculated from DFT in VASP.

1.2. Adsorption energy and Gibbs free energy change for H₂ molecule on surface of X-G-Ca H₂ storage materials

In the process of H₂ storage, H₂ molecules are adsorbed on H₂ storage sites of X-G-Ca surface, while upon releasing, H₂ molecules adsorbed on sites of X-G-Ca surface will desorb reversibly. Therefore, the process can be written as

$$H_{2} + * \underset{Desorbing}{\rightleftharpoons} H_{2}^{*}$$
(2)

where * refers to H₂ adsorption site on X-G-Ca surface, and H₂ and H₂^{*} represent the free H₂ molecules in gas and H₂ adsorbed to sites, respectively. The energy change of H₂ molecule adsorption $\Delta E_{H_2^*}$ is expressed as

$$\Delta E_{H_2^*} = E(X - G - Ca - H_2) - E(X - G - Ca) - E(H_2)$$
(3)

where $E(X - G - Ca - H_2)$ is the total energy of X-G-Ca substrate adsorbing H₂ molecule, E(X - G - Ca) is the total energy of X-G-Ca substrate without any H₂ molecules adsorption, and $E(H_2)$ is the energy of a H₂ molecule with the value of -6.764eV. Also, based on the above expression, the averaged adsorption energy change $\Delta \overline{E}_{H_2^*}$ upon n H₂ molecules adsorbed on X-G-Ca surface, is expressed as

$$\Delta \overline{E}_{H_2^*} = [E(X - G - Ca - H_2) - E(X - G - Ca) - nE(H_2)]/n$$
(4)

In addition, at T=298K and P=1bar, the Gibbs free energy change of H₂ adsorption in Equation (S2) can be expressed by

$$\Delta G_{H_2^*} = \Delta E_{H_2^*} + \Delta E_{ZPE} - T \Delta S_{H_2^*} \tag{5}$$

where $\Delta E_{H_2^*}$ is adsorption energy change as mentioned in Equation (3), ΔE_{ZPE} is zero-point energy change of H₂ molecule at adsorbed/dissociative states, and is calculated to be -0.07eV by DFT methods, $-T\Delta S_{H_2^*} = 0.404 \ eV$ is the correction coming from external condition, and *T* and *P* refer to temperature in unit of K and pressure in unit of bar, respectively.

Here, for the simplicity, at T=298K and P=1bar

$$\Delta G_{H_2^*} = \Delta E_{H_2^*} + 0.334 \tag{6a}$$

At
$$T=100$$
K and $P=1$ bar,

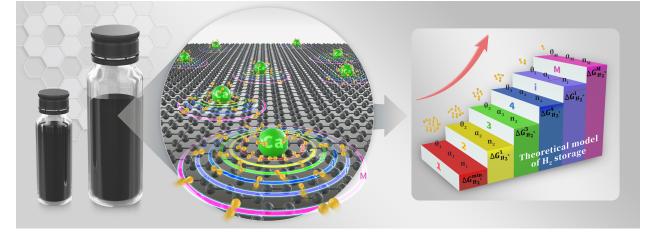
$$\Delta G_{H_2^*} = \Delta E_{H_2^*} + 0.035 \tag{6b}$$

At T=0K, namely ground state,

$$\Delta G_{H_2^*} = \Delta E_{H_2^*} - 0.07 \tag{6c}$$

where
$$\Delta E_{ZPE} = -0.07 eV$$
.

If $\Delta G_{H_2^*}$ is greater than or equal to zero, H₂ cannot be adsorbed spontaneously under the standard condition. To enhance the H₂ adsorption ability, it needs to change the external driving conditions and/or modify the material structures, which leads to additional free energy change, $\Delta G(T, P, E, B)$. Thus, the total energy change under the conditions can be written as


$$\Delta G = \Delta G_{H_2^*} + \Delta G(T, P, E, B) \tag{7}$$

Here, temperature *T*, pressure *P*, electric field *E* and magnetic field *B* represent external factors that drive ΔG to be less than zero for spontaneous hydrogen adsorption.

Under any temperature *T* and pressure *P*, Equation (5) can be rewritten as $\Delta G_{H_2^*}(T,P) = \Delta E_{H_2^*} + \Delta E_{ZPE} + \Delta G(T,P)$. Here, $\Delta G(T,P)$ is the correction coming from external condition, and *T* and *P* refer to temperature in unit of K and pressure in unit of bar, respectively. $\Delta G(T,P) = \Delta G(T,P_0) + k_B T ln(\frac{P_1}{P_2})$. Here, $\Delta G(T,P_0)$ is the Gibbs free energy change for any temperature *T* at standard pressure of 1 bar, and represents the energy change due to varying temperature *T*, and k_B is Boltzmann constant. P_1 and P_2 refer to the initial hydrogen partial pressure and final hydrogen partial pressure.

1.3. H₂ storage capacity, rate and their volcanic trend

According to the above H₂ storage mechanism, we put forward a H₂ storage theory that correlate the H₂ storage capacity and rate with the structures of X-G-Ca materials based on the previous proposed theoretical model of energy level filling for cations storage¹. Under certain thermodynamic conditions for adsorbing reaction in Equation (S2) $(H_2 + * \rightarrow H_2^*)$, we assume that H₂ molecules will adsorb on Ca ion and its surrounding regions with different H₂ adsorption energy $\Delta G_{H_2^*}$, and these regions with the lower H₂ adsorption energy $\Delta G_{H_2^*}$ are easier to adsorb H₂ molecules under the external driving conditions $\Delta G(T, P)$ (negative ΔG) according to Equation (S7).

Supplementary Fig.0 The theoretical model of generalized Sabatier principle for hydrogen molecules storage proposed by us.

Thus, as shown in Fig. S0, we divided regions with various $\Delta G_{H_2^*}^i$ into different energy level *i* in the order of $\Delta G_{H_2^*}^i$ from low to high, on which the number of total H₂ molecules storage sites, a_i , the number of H₂ molecules really adsorbed on sites, n_i , and the corresponding coverage, θ_i , were set to build H₂ storage capacity, rate and their respective trend.

Therefore, for the whole X-G-Ca H₂ storage system with *M* regions corresponding to *M* energy levels, the total number of H₂ molecules stored, *N*, and the total number of sites used to adsorb H₂ molecules, *A*, H₂ storage capacity, $C_{H_2/site}$, and the coverage, θ_i , of H₂ molecules on each energy level, *i*, can be expressed easily as

$$N = n_1 + n_2 + n_3 + \dots + n_M \tag{8}$$

$$A = a_1 + a_2 + a_3 + \dots + a_M \tag{9}$$

$$C_{H_2/site} = \frac{N}{A} \tag{10}$$

$$\theta_i = \frac{n_i}{a_i} \tag{11}$$

In addition, in the consideration of H₂ molecules adsorption rules in accordance with Boltzmann distribution characteristics, the amount of H₂ molecules on each energy level was expressed as

$$n_i = \lambda e^{\frac{\Delta G_{H_2}^l *}{k_B T}} \tag{12}$$

where λ is pre-factor of Boltzmann distribution rule, and k_B and T are Boltzmann constant and temperature, respectively.

Additionally, in the light of the small increment of H₂ adsorption energy per adsorbing a H₂ molecule from DFT theoretical calculation, the adsorption energy change at each energy level can be expressed approximately as

$$\Delta G_{H_2^*}^i = \Delta G_{H_2^*}^{min} + \frac{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}}{M}i$$
(13)

Therefore, according to Equations (8), (12) and (13), the total number of H₂ molecules adsorbed on X-G-Ca H₂ storage system can be given by

$$N = n_1 + n_2 + n_3 + \dots + n_M$$

$$\Delta G^1_{\dots *} \qquad \Delta G^2_{\dots *} \qquad \Delta G^3_{\dots *}$$

$$= \lambda e^{-\frac{\Delta G_{H_2^*}^1}{k_B T}} + \lambda e^{-\frac{\Delta G_{H_2^*}^2}{k_B T}} + \lambda e^{-\frac{\Delta G_{H_2^*}^3}{k_B T}} + \dots + \lambda e^{-\frac{\Delta G_{H_2^*}^3}{k_B T}}$$

$$= \sum_{i=1}^{M} \lambda e^{-\frac{\Delta G_{H_2^*}^i}{k_B T}}$$

$$= \frac{\lambda M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \times \frac{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}}{M} \sum_{i=1}^{M} e^{-\frac{\Delta G_{H_2^*}^i}{k_B T}}$$

$$= \frac{\lambda M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{\Delta G_{H_2^*}^{max}} e^{-\frac{x}{k_B T}} dx$$

Namely,

$$N = \frac{\lambda M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{\Delta G_{H_2^*}^{min}}^{\Delta G_{H_2^*}^{max}} e^{-\frac{x}{k_B T}} dx$$
(14)

On the other hand, the H₂ molecules coverage θ_i on each energy level *i* can be related to equilibrium constant K_i by

$$\theta_i = \frac{\kappa_i}{1 + \kappa_i} \tag{15}$$

Also, equilibrium constant K_i is able to be related to the change of Gibbs free energy $\Delta G_{H_2^*}^i$ before and after H₂ adsorption reaction (S2) by

$$K_i = e^{-\frac{\Delta G_{H_2}^i}{k_B T}}$$
(16)

Thus, combining (15) and (16), the H₂ molecules coverage θ_i on each energy level *i* was finally given by

$$\theta_{i} = \frac{1}{\frac{\Delta G_{H_{2}^{*}}^{i}}{1+e^{\frac{\Delta G_{H_{2}^{*}}^{i}}{k_{B}T}}}}$$
(17)

Hence, combining Equations (11), (12) and (17), the number of H₂ storage sites a_i on each energy level *i* was given by

$$a_i = \lambda \left(1 + e^{-\frac{\Delta G_{H_2}^i}{k_B T}} \right) \tag{18}$$

Consequently, the total number of H_2 adsorption sites on practical X-G-Ca H_2 storage system surface is able to be given by

$$A = a_{1} + a_{2} + a_{3} + \dots + a_{M}$$

$$= \lambda \left(1 + e^{-\frac{\Delta G_{H_{2}^{*}}^{1}}{k_{B}T}} \right) + \lambda \left(1 + e^{-\frac{\Delta G_{H_{2}^{*}}^{2}}{k_{B}T}} \right) + \dots + \lambda \left(1 + e^{-\frac{\Delta G_{H_{2}^{*}}^{M}}{k_{B}T}} \right)$$

$$= \frac{\lambda M}{\Delta G_{H_{2}^{*}}^{max} - \Delta G_{H_{2}^{*}}^{min}}} \times \frac{G_{H_{2}^{*}}^{max} - \Delta G_{H_{2}^{*}}^{min}}{M} \sum_{i=1}^{M} \left(1 + e^{-\frac{\Delta G_{H_{2}^{*}}^{i}}{k_{B}T}} \right)$$

$$= \frac{\lambda M}{\Delta G_{H_{2}^{*}}^{max} - \Delta G_{H_{2}^{*}}^{min}}} \int_{\Delta G_{H_{2}^{*}}^{\Delta G_{H_{2}^{*}}^{max}}} \left(1 + e^{-\frac{x}{k_{B}T}} \right) dx$$
(19)

Namely, positive A can be expressed as

$$A = \frac{\lambda M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{\Delta G_{H_2^*}^{min}}^{\Delta G_{H_2^*}^{max}} \left(1 + e^{-\frac{x}{k_B T}} \right) dx$$
(20)

or

$$A = \frac{\lambda M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \left[\left(\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min} \right) - k_B T \left(e^{-\frac{\Delta G_{H_2^*}^{max}}{k_B T}} - e^{-\frac{\Delta G_{H_2^*}^{min}}{k_B T}} \right) \right]$$
(21)

Therefore, combining Equations (10), (14) and (20), hydrogen storage capacity, namely the mean number of H_2 molecules per unit site, can finally be derived as

$$C_{H_2/site} = \frac{N}{A} = \frac{\frac{\lambda M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{\Delta G_{H_2^*}^{Max}} e^{-\frac{x}{k_B T}} dx}{\frac{\lambda M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{\Delta G_{H_2^*}^{Max}} \left(1 + e^{-\frac{x}{k_B T}}\right) dx}$$
(22)

1) For the case of $\Delta G_{H_2^*}^{max} < 0$,

$$C_{H_2/site} = \frac{N}{A} = 0 \tag{23}$$

Its physical meaning is that H_2 cannot desorb reversibly under ambient temperature and pressure (T =298K and P=1bar) from the perspective of thermodynamic. Only when additional external conditions such as higher temperature or lower pressure are provided, can hydrogen gas desorb.

2) For the case of $\Delta G_{H_2^*}^{min} > 0$,

$$C_{H_2/site} = \frac{N}{A} = \frac{\int_{\Delta G_{H_2^*}^{min}}^{\Delta G_{H_2^*}^{max}} e^{-\frac{x}{k_B T}} dx}{\int_{\Delta G_{H_2^*}^{min}}^{\Delta G_{H_2^*}^{min}} \left(1 + e^{-\frac{x}{k_B T}}\right) dx} = \frac{-k_B T \left(e^{-\frac{\Delta G_{H_2^*}^{max}}{k_B T}} - e^{-\frac{\Delta G_{H_2^*}^{min}}{k_B T}}\right)}{\left(\Delta G_{H_2^*}^{ax} - \Delta G_{H_2^*}^{min}\right) - k_B T \left(e^{-\frac{\Delta G_{H_2^*}^{max}}{k_B T}} - e^{-\frac{\Delta G_{H_2^*}^{min}}{k_B T}}\right)}$$
(24)

Its physical meaning is that H₂ storage is a reversible process in which H₂ is stored upon application of external driving condition $\Delta G(T, P, E, B)$, whereas H₂ is desorbed when external driving condition $\Delta G(T, P, E, B)$ is removed.

3) For the case of $\Delta G_{H_2^*}^{min} < 0$ and $\Delta G_{H_2^*}^{max} > 0$, $N = \frac{\lambda M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{\Delta G_{H_2^*}^{min}} e^{-\frac{x}{k_B T}} dx$ $= \frac{\lambda M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{\Delta G_{H_2^*}^{min}} e^{-\frac{x}{k_B T}} dx + \frac{\lambda M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{0}^{\Delta G_{H_2^*}^{max}} e^{-\frac{x}{k_B T}} dx$ $= 0 + \frac{\lambda M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{0}^{\Delta G_{H_2^*}^{max}} e^{-\frac{x}{k_B T}} dx$ $= \frac{\lambda M k_B T \left(1 - e^{-\frac{\Delta G_{H_2^*}^{max}}{k_B T}}\right)}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}}$

Thus,

$$C_{H_2/site} = \frac{N}{A} = \frac{k_B T \left(1 - e^{-\frac{\Delta G_{H_2^*}^{max}}{k_B T}}\right)}{\left(\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}\right) - k_B T \left(e^{-\frac{\Delta G_{H_2^*}^{max}}{k_B T}} - e^{-\frac{\Delta G_{H_2^*}^{min}}{k_B T}}\right)}$$
(25)

Conclusively, for the case of $\Delta G_{H_2^*}^{max} > 0$, the reversible H₂ storage capacity $C_{H_2/site}$ can be expressed as

$$C_{H_{2}/site} = \begin{cases} \frac{-k_{B}T \left(e^{-\frac{\Delta G_{H_{2}^{*}}^{max}}{k_{B}T} - e^{-\frac{\Delta G_{H_{2}^{*}}^{min}}{k_{B}T}} \right)}{\left(\Delta G_{H_{2}^{*}}^{max} - \Delta G_{H_{2}^{*}}^{min} \right) - k_{B}T \left(e^{-\frac{\Delta G_{H_{2}^{*}}^{max}}{k_{B}T} - e^{-\frac{\Delta G_{H_{2}^{*}}^{min}}{k_{B}T}} \right)}, \ \Delta G_{H_{2}^{*}}^{min} > 0 \\ \frac{k_{B}T \left(1 - e^{-\frac{\Delta G_{H_{2}^{*}}^{max}}{k_{B}T}} \right)}{\left(\Delta G_{H_{2}^{*}}^{max} - \Delta G_{H_{2}^{*}}^{min} \right) - k_{B}T \left(e^{-\frac{\Delta G_{H_{2}^{*}}^{max}}{k_{B}T} - e^{-\frac{\Delta G_{H_{2}^{*}}^{min}}{k_{B}T}} \right)}, \ \Delta G_{H_{2}^{*}}^{min} < 0 \end{cases}$$

$$(26)$$

Next, we focus on the express for H₂ storage rate. According to Equation (2), it is obvious that adsorption rate (or reaction rate), namely forward rate r in Equation (2) is equal to one H₂ molecule storage rate on any unit site that can be explained as the one H₂ molecule adsorption speed. Thus, on the basis of Langmuir adsorption isothermal assumption that adsorption rate of adsorbate is proportional to the fraction of uncovered region of substrate surface (1- θ), where θ is coverage of adsorbate, any one H₂ molecule adsorption rate, r_i , can be given as

$$r_i = k_i (1 - \theta_i) C_{H_2} \tag{27}$$

where k_i and C_{H_2} are rate constant and molar concentration of H₂ molecules, respectively.

Additionally, based on microkinetic model in which Arrhenius equation describing reaction rate was modified approximately, the rate constant k_i in Equations (27) for particular H₂ molecule adsorption process in X-G-Ca system can be rewritten as

$$k_i = k_0 e^{-\frac{\Delta G_{H_2^*}}{k_B T}}$$
(28)

Thus, any one H₂ molecule adsorption rate r_i can be rewritten as

$$r_{i} = \frac{k_{0}C_{H_{2}}}{\frac{\Delta G_{H_{2}}^{i}}{k_{B}T}}$$
(29)

Consequently, according to $t_i = \frac{1}{r_i}$, the time t_i spent for adsorbing any one H₂ molecules can be given by

$$t_{i} = \frac{1 + e^{\frac{\Delta G_{H_{2}}^{i}}{k_{B}T}}}{k_{0}C_{H_{2}}}$$
(30)

Moreover, assuming that hydrogen molecules with the same Gibbs free energy change $\Delta G_{H_2^*}^i$ (or on the same energy level *i*) are simultaneously adsorbed on suface of X-G-Ca in the same time t_i ,

thus, based on $t = t_1 + t_2 + t_3 + \dots + t_M$ and Equation (30), the total time t spent for storing N hydrogen molecules can be expressed as

$$t = \frac{M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{\Delta G_{H_2^*}^{max}} \frac{1}{k_0 c_{H_2}} \left(1 + e^{\frac{x}{k_B T}} \right) dx$$
(31)
1) For the case of $\Delta G_{H_2^*}^{max} < 0$,
 $t = 0$

Its physical meaning is that this is a spontaneous H₂ storage process that does not involve time.

2) For the case of $\Delta G_{H_2^*}^{min} > 0$,

$$t = \frac{M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{\Delta G_{H_2^*}^{min}}^{\Delta G_{H_2^*}^{max}} \frac{1}{k_0 c_{H_2}} \left(1 + e^{\frac{x}{k_B T}}\right) dx = \frac{M \left[\left(\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}\right) + k_B T \left(e^{\frac{\Delta G_{H_2^*}^{max}}{k_B T}} - e^{\frac{\Delta G_{H_2^*}^{min}}{k_B T}}\right)\right]}{k_0 c_{H_2} \left(\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}\right) - e^{\frac{\Delta G_{H_2^*}^{max}}{k_B T}}\right]}$$
(32)

3) For the case of $\Delta G_{H_2^*}^{min} < 0$ and $\Delta G_{H_2^*}^{max} > 0$,

$$\begin{split} t &= \frac{M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{\Delta G_{H_2^*}^{max}} \frac{1}{k_0 c_{H_2}} \left(1 + e^{\frac{x}{k_B T}}\right) dx \\ &= \frac{M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{\Delta G_{H_2^*}^{min}} \frac{1}{k_0 c_{H_2}} \left(1 + e^{\frac{x}{k_B T}}\right) dx + \frac{M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{0}^{\Delta G_{H_2^*}^{max}} \frac{1}{k_0 c_{H_2}} \left(1 + e^{\frac{x}{k_B T}}\right) dx \\ &= 0 + \frac{M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \int_{0}^{\Delta G_{H_2^*}^{max}} \frac{1}{k_0 c_{H_2}} \left(1 + e^{\frac{x}{k_B T}}\right) dx \\ &= \frac{M \left[\Delta G_{H_2^*}^{max} + k_B T \left(e^{\frac{\Delta G_{H_2^*}^{max}}{k_B T} - 1\right)\right]}{k_0 c_{H_2} \left(\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}\right)} \end{split}$$

Namely,

$$t = \frac{M \left[\Delta G_{H_2}^{max} + k_B T \left(e^{\frac{\Delta G_{H_2}^{max}}{k_B T}} - 1 \right) \right]}{k_0 c_{H_2} \left(\Delta G_{H_2}^{max} - \Delta G_{H_2}^{min} \right)}$$
(33)

Conclusively, for $\Delta G_{H_2^*}^{max} > 0$, the total time t can be given by

$$t = \begin{cases} \frac{M\left[\left(\Delta G_{H_{2}^{*}}^{max} - \Delta G_{H_{2}^{*}}^{min}\right) + k_{B}T\left(e^{\frac{\Delta G_{H_{2}^{*}}^{max}}{k_{B}T} - e^{\frac{\Delta G_{H_{2}^{*}}^{min}}{k_{B}T}}\right)\right]}{e^{\frac{1}{k_{B}T} - e^{\frac{1}{k_{B}T}}}}, \ \Delta G_{H_{2}^{*}}^{min} > 0 \\ \frac{M\left[\Delta G_{H_{2}}^{max} - \Delta G_{H_{2}^{*}}^{min}\right]}{\frac{M\left[\Delta G_{H_{2}^{*}}^{max} + k_{B}T\left(e^{\frac{\Delta G_{H_{2}^{*}}^{max}}{k_{B}T} - 1}\right)\right]}{k_{0}c_{H_{2}}\left(\Delta G_{H_{2}^{*}}^{max} - \Delta G_{H_{2}^{*}}^{min}\right)}, \ \Delta G_{H_{2}^{*}}^{min} < 0 \end{cases}$$
(34)

Here,

For $\Delta G_{H_2^*}^{min} > 0$, the total sites *A* can be expressed as

$$A = \frac{\lambda M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \left[\left(\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min} \right) - k_B T \left(e^{-\frac{\Delta G_{H_2^*}^{max}}{k_B T}} - e^{-\frac{\Delta G_{H_2^*}^{min}}{k_B T}} \right) \right]$$
(35)

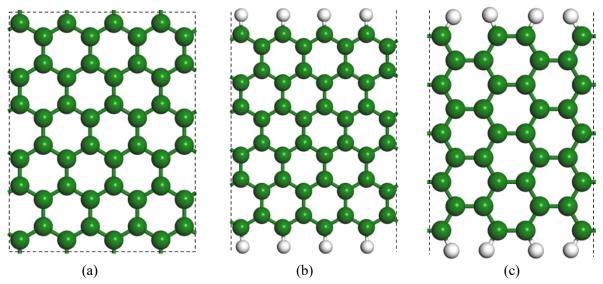
For $\Delta G_{H_2^*}^{min} < 0$, the total possible sites *A* can be given by

$$A = \frac{\lambda M}{\Delta G_{H_2^*}^{max} - \Delta G_{H_2^*}^{min}} \left[\Delta G_{H_2^*}^{max} - k_B T \left(e^{-\frac{\Delta G_{H_2^*}^{max}}{k_B T}} - 1 \right) \right]$$
(36)

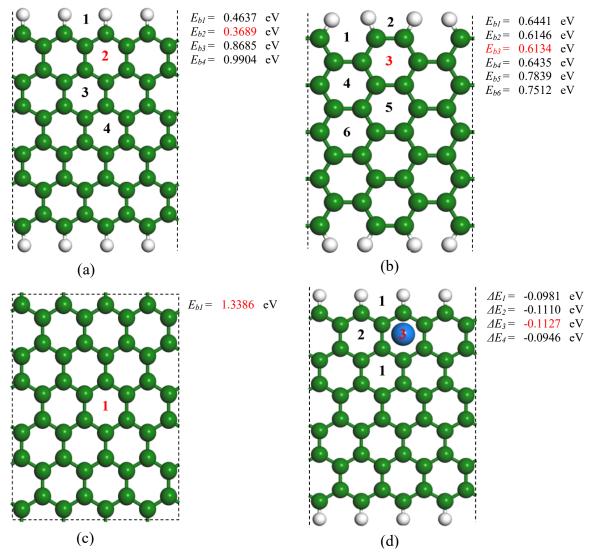
Thus, combining (34), (35) and (36), according to $\bar{t} = \frac{t}{A}$, the average time \bar{t} spent for storing H₂ molecules on per a site can be derived as

$$\bar{t} = \begin{cases} \frac{\left(\Delta G_{H_{2}^{*}}^{max} - \Delta G_{H_{2}^{*}}^{min}\right) + k_{B}T \left(e^{\Delta G_{H_{2}^{*}}^{max}} e^{\Delta G_{H_{2}^{*}}^{min}}\right)}{\lambda k_{0} c_{H_{2}} \left[\left(\Delta G_{H_{2}^{*}}^{max} - \Delta G_{H_{2}^{*}}^{min}\right) - k_{B}T \left(e^{-\frac{\Delta G_{H_{2}^{*}}^{max}}{k_{B}T}} - e^{-\frac{\Delta G_{H_{2}^{*}}^{min}}{k_{B}T}}\right)\right]}, \quad \Delta G_{H_{2}^{*}}^{min} > 0 \\ \frac{\lambda k_{0} c_{H_{2}} \left[\left(\Delta G_{H_{2}^{*}}^{max} - \Delta G_{H_{2}^{*}}^{min}\right) - k_{B}T \left(e^{-\frac{\Delta G_{H_{2}^{*}}^{max}}{k_{B}T}} - e^{-\frac{\Delta G_{H_{2}^{*}}^{min}}{k_{B}T}}\right)\right]}{\lambda k_{0} c_{H_{2}} \left[\Delta G_{H_{2}^{*}}^{max} - k_{B}T \left(e^{-\frac{\Delta G_{H_{2}^{*}}^{max}}{k_{B}T}} - 1\right)\right]}, \quad \Delta G_{H_{2}^{*}}^{min} < 0 \end{cases}$$

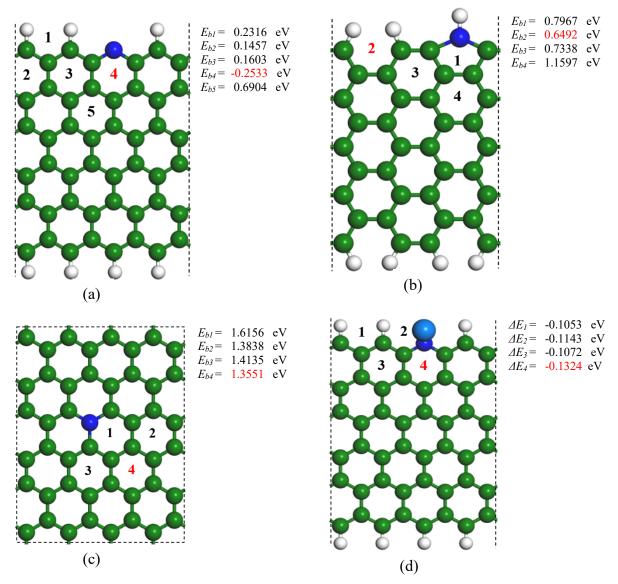
$$(37)$$

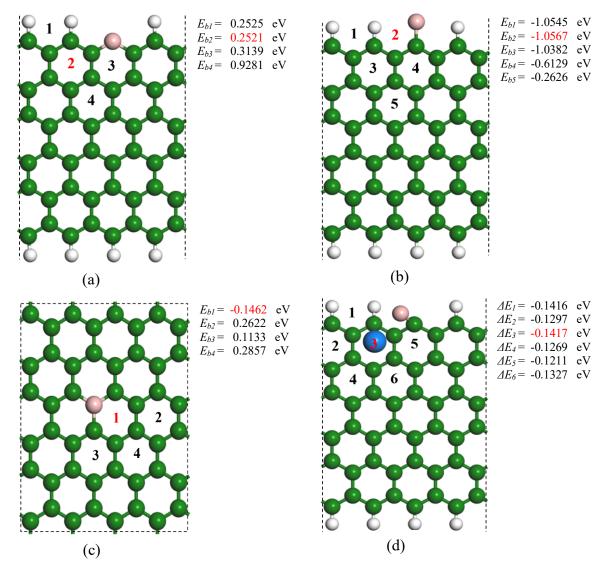

Finally, combining (26) and (37), hydrogen storage rate, $v_{H_2/site/s} = \frac{c_{H_2/site}}{\bar{t}}$ can further be expressed as

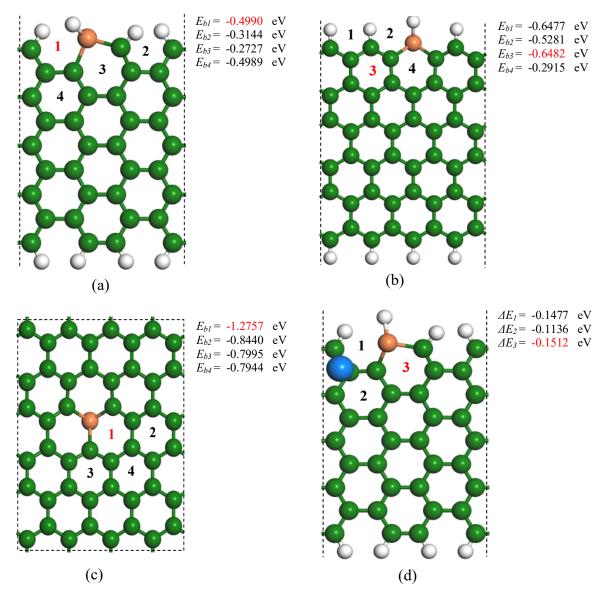
$$v_{H_{2}/site/s} = \begin{cases} \frac{-\lambda k_{0}c_{H_{2}}k_{B}T \left(e^{-\frac{\Delta G_{H_{2}}^{max}}{k_{B}T} - e^{-\frac{\Delta G_{H_{2}}^{min}}{k_{B}T}}\right)}{\left(\Delta G_{H_{2}}^{max} - \Delta G_{H_{2}}^{min}\right) + k_{B}T \left(e^{-\frac{\Delta G_{H_{2}}^{max}}{k_{B}T} - e^{-\frac{\Delta G_{H_{2}}^{max}}{k_{B}T}}\right)}, \ \Delta G_{H_{2}}^{i} > 0 \\ \frac{\lambda k_{0}c_{H_{2}}k_{B}T \left(1 - e^{-\frac{\Delta G_{H_{2}}^{max}}{k_{B}T}}\right) \left[\Delta G_{H_{2}}^{max} - k_{B}T \left(e^{-\frac{\Delta G_{H_{2}}^{max}}{k_{B}T} - 1}\right)\right]}{\left[\left(\Delta G_{H_{2}}^{max} - \Delta G_{H_{2}}^{min}\right) - k_{B}T \left(e^{-\frac{\Delta G_{H_{2}}^{max}}{k_{B}T} - e^{-\frac{\Delta G_{H_{2}}^{max}}{k_{B}T}}\right)\right] \left[\Delta G_{H_{2}}^{max} + k_{B}T \left(e^{-\frac{\Delta G_{H_{2}}^{max}}{k_{B}T} - 1}\right)\right]}, \ \Delta G_{H_{2}}^{i} < 0 \end{cases}$$

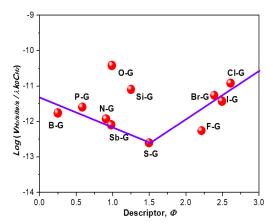

$$(38)$$

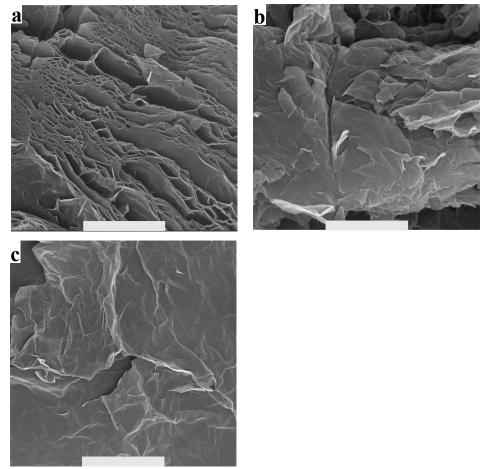
It deserves to note that the rate constant k_0 , Boltzmann factor λ , and H₂ concentration c_{H_2} in Equations are constants for a particular system.

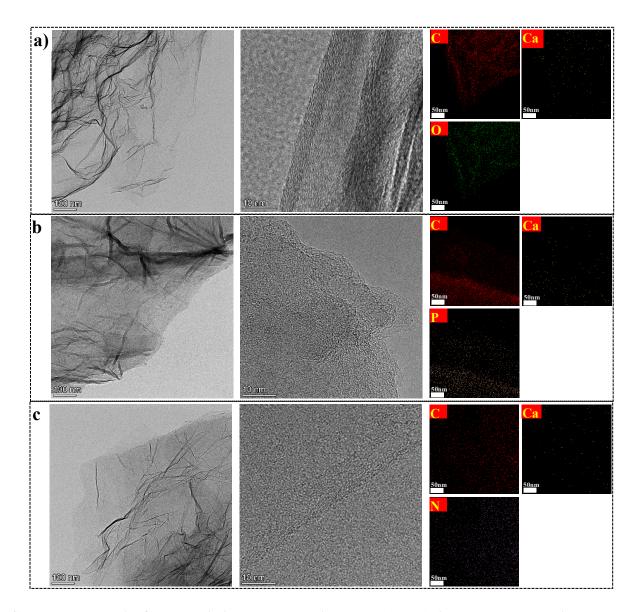

2. Supplementary Figures

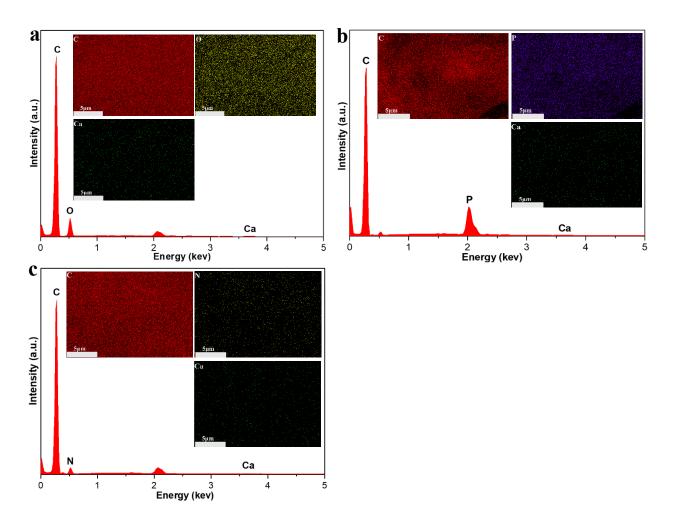

Supplementary Fig. 1 Summary of graphene models: (a) Graphene sheet model, (b) zigzag graphene nanoribbon and (c) armchair graphene nanoribbons.

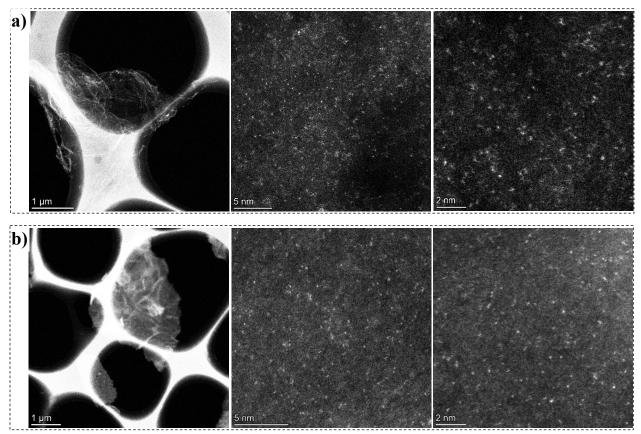

Supplementary Fig. 2 Investigated possible metal calcium atom (Ca) chemisorption sites and corresponding the binding energy upon adsorbing a calcium atom on hollow sites of (a) z-C, (b) a-C and (c) g-C graphene models. And the most stable graphene supported Ca single atom structure (z-C-Ca) (d) selected from all graphene supported Ca single models was used to check the optimal H₂ molecule adsorption sites from all possible H₂ adsorption sites and the adsorption energy change before and after H₂ molecule adsorption was calculated. We denoted possible active sites as the Arabic numbers, in which the red numbers represented the best ones with more negative binding energy (E_b) or adsorption energy(ΔE). (This marking and naming methods is the same in the following Supplementary Figs.)

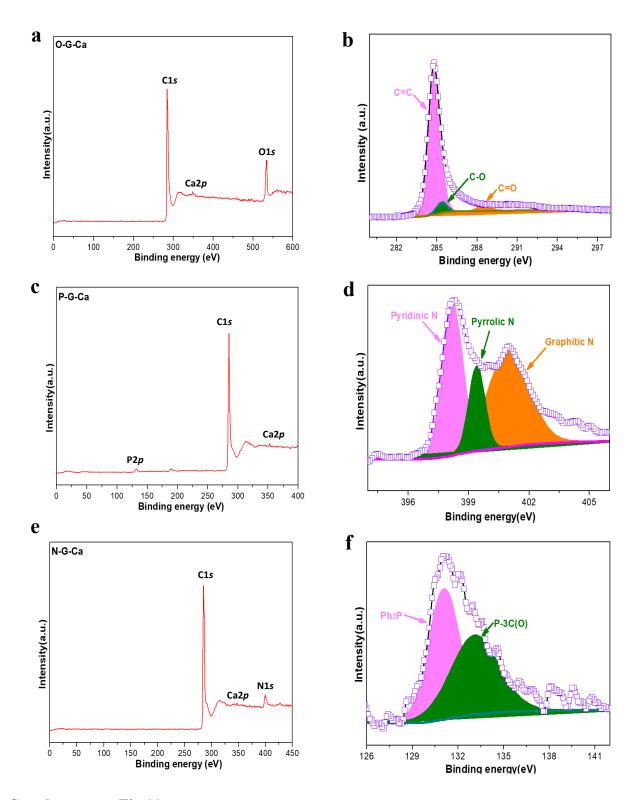

Supplementary Fig. 3 Investigated possible metal calcium atom (Ca) chemisorption sites and corresponding the binding energy upon adsorbing a calcium atom on hollow sites of (a) py-N, (b) pr-N and (c) g-N graphene models. And the most stable N-doped graphene supported Ca single-atom structure (py-N-G-Ca) (d) selected from all N-doped graphene supported Ca single models was used to check the optimal H₂ molecule adsorption sites from all possible H₂ adsorption sites and the adsorption energy change before and after H₂ molecule adsorption was calculated.

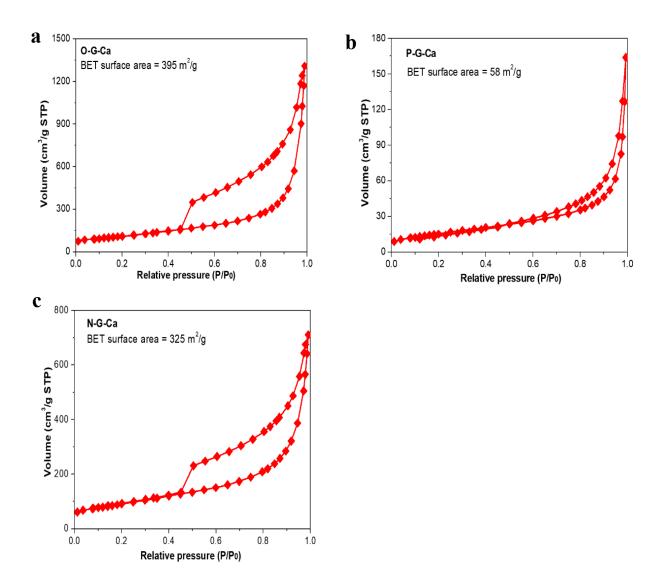

Supplementary Fig. 4 Investigated possible metal calcium atom (Ca) chemisorption sites and corresponding the binding energy upon adsorbing a calcium atom on hollow sites of (a) 2C-B, (b) B=C and (c) B-3C graphene models. And the most stable B-doped graphene supported Ca single-atom structure (B=C-G-Ca) (d) selected from all B-doped graphene supported Ca single-atom models was used to check the optimal H₂ molecule adsorption sites from all possible H₂ adsorption sites and the adsorption energy change before and after H₂ molecule adsorption was calculated.

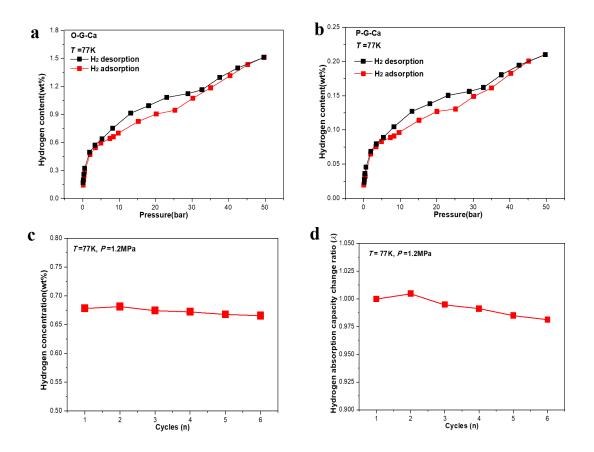

Supplementary Fig. 5 Investigated possible metal calcium atom (Ca) chemisorption sites and corresponding the binding energy upon adsorbing a calcium atom on hollow sites of (a) a-Si, (b) z-Si and (c) g-Si graphene models. And the most stable Si-doped graphene supported Ca single atom structure (a-Si-G-Ca) (d) selected from all Si-doped graphene supported Ca single-atom models was used to check the optimal H_2 molecule adsorption sites from all possible H_2 adsorption sites and the adsorption energy change before and after H_2 molecule adsorption was calculated.

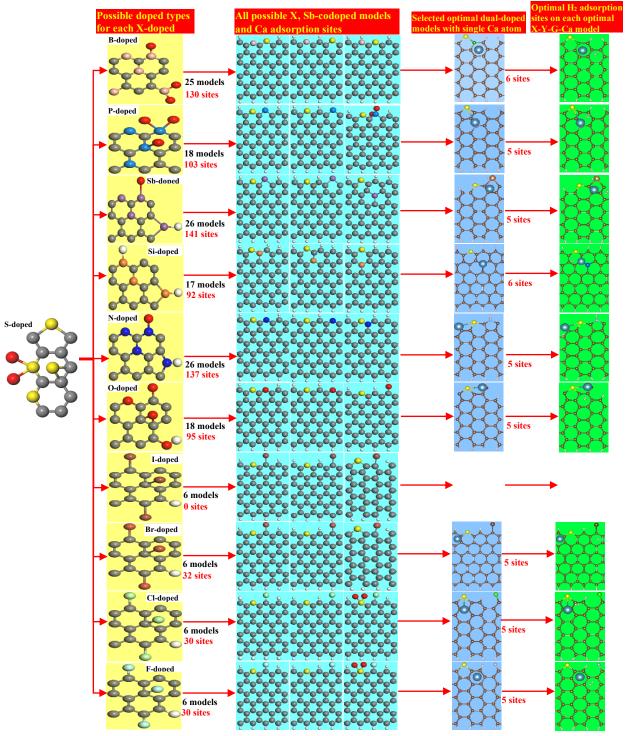

Supplementary Fig. 6 The volcano relationship between logarithm of parameter related to H₂ storage rate ($v_{H_2/site/s}/\lambda k_0 c_{H_2}$) and descriptor proposed Φ .

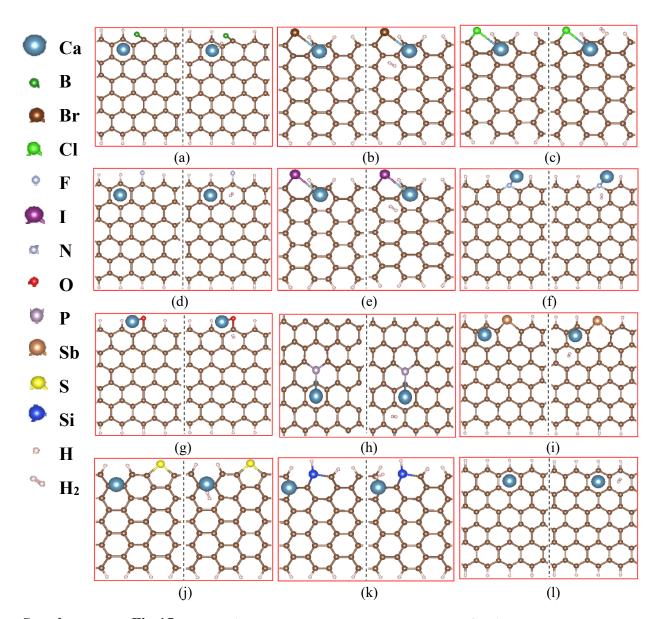

Supplementary Fig 7 Scanning electron microscopy images of different doped-graphene-supported Ca single atoms samples. O-, P-, and N-doped graphene with Ca single atoms samples corresponding to a, b, and c. (scale bar, 2 μ m) These SEM images indicated that these carbon-based all-solid-state Ca single atom H₂ storage materials have similar morphology.

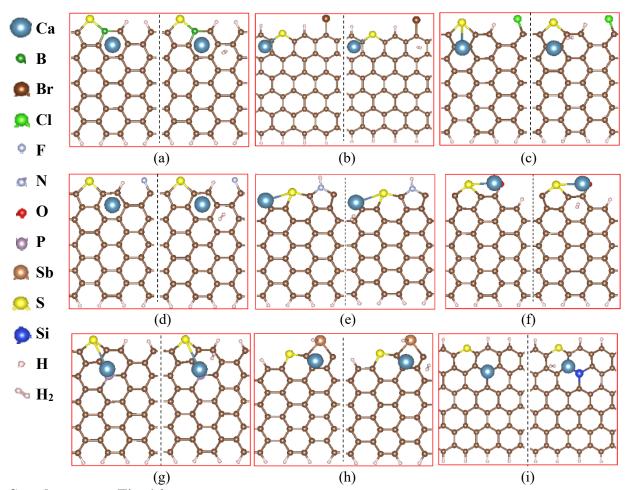

Supplementary Fig 8 Transmission electron microscopy (TEM) images, HR-TEM images and corresponding EDS elemental mapping of different doped-graphene-supported Ca single atoms samples. O-, P-, and N-doped graphene with Ca single atoms samples corresponding to a, b, and c. These TEM images indicated that these carbon-based all-solid-state Ca single atom H₂ storage materials have similar morphology once again.

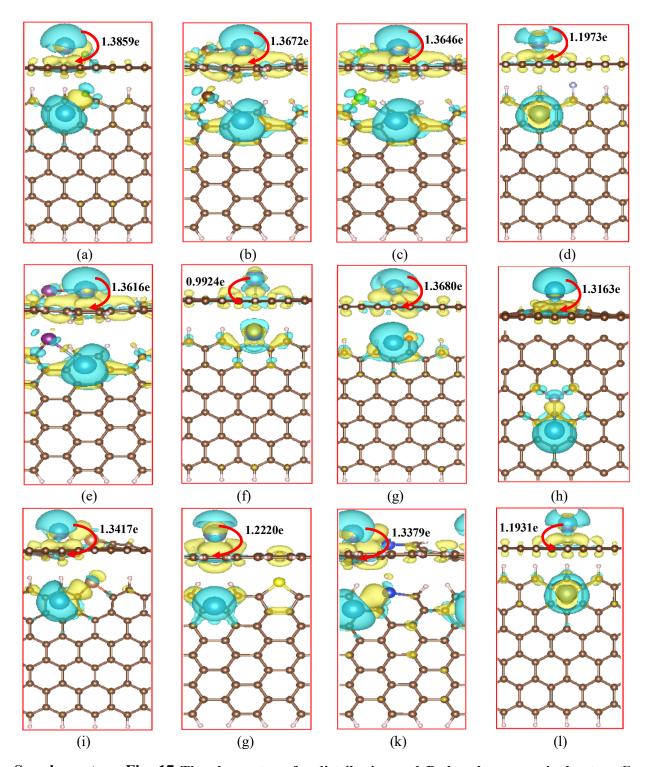

Supplementary Fig 9 Energy dispersive spectroscopy (EDS) measurements of different dopedgraphene with Ca single atoms samples including O-, P-, and N-doped graphene with Ca single atoms samples corresponding to a, b and c. Inset are EDS elemental mappings of carbon, dopants and metal atoms including C, P, N, and Ca.

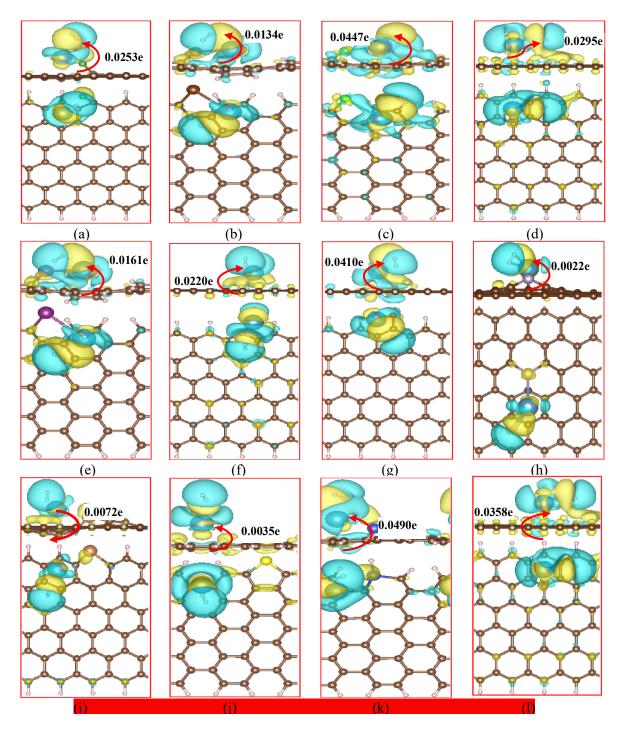

Supplementary Fig 10 Typical aberration corrected HAADF-STEM images of doped-graphenesupported Ca single atoms in different scale bars. a. and b. refer to N-G-Ca and P-G-Ca carbon-based Ca single-atom solid-state H₂ storage materials. Clearly, Ca can be dispersed atomically on dopedgraphene-support.

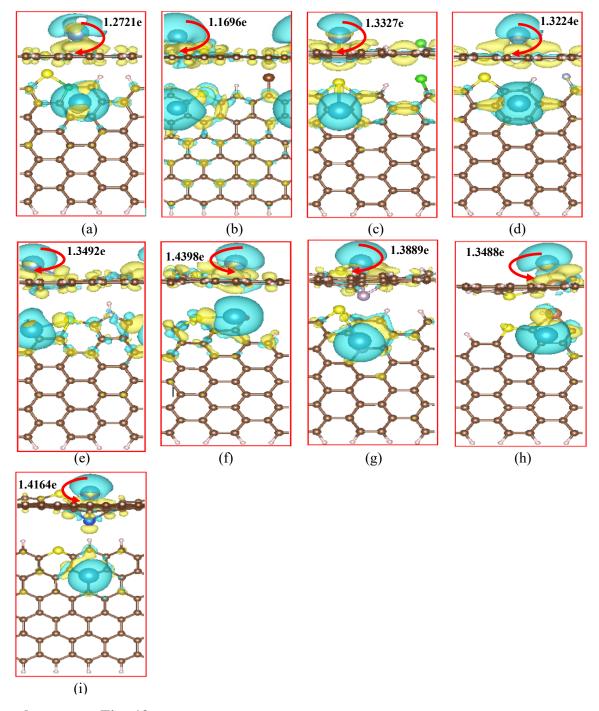

Supplementary Fig 11 Survey spectrum and high-resolution XPS spectra of heteroatoms in doped graphene samples. a, c and e correspond to survey spectrum of O-, P- and N-doped-graphene-supported Ca single atom samples, respectively. b, d and f correspond to high-resolution XPS spectra of O-, N- and P-doped graphene substrates.

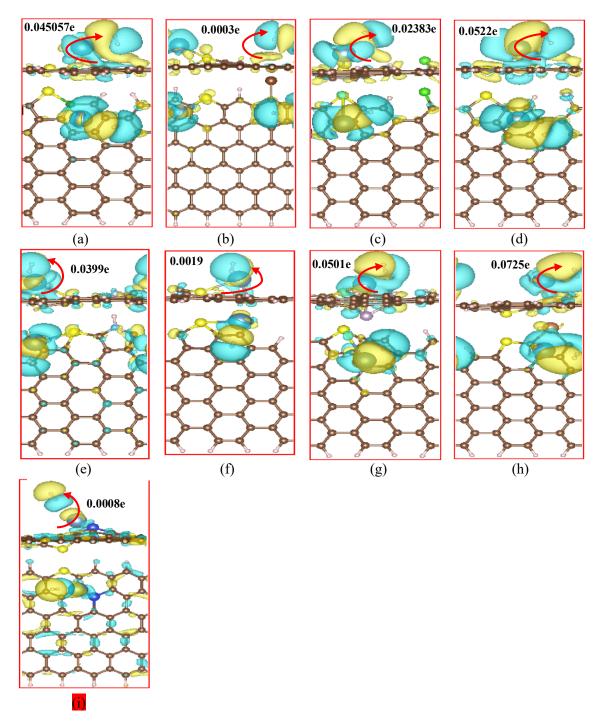

Supplementary Fig. 12 Nitrogen adsorption isotherms and BET surface areas for synthesized doped-graphene supported Ca single atoms. a. O-G-Ca, b. P-G-C and c. N-G-Ca sole-doped graphene with Ca single atoms used as carbon-based all-solid-state H₂ storage materials.

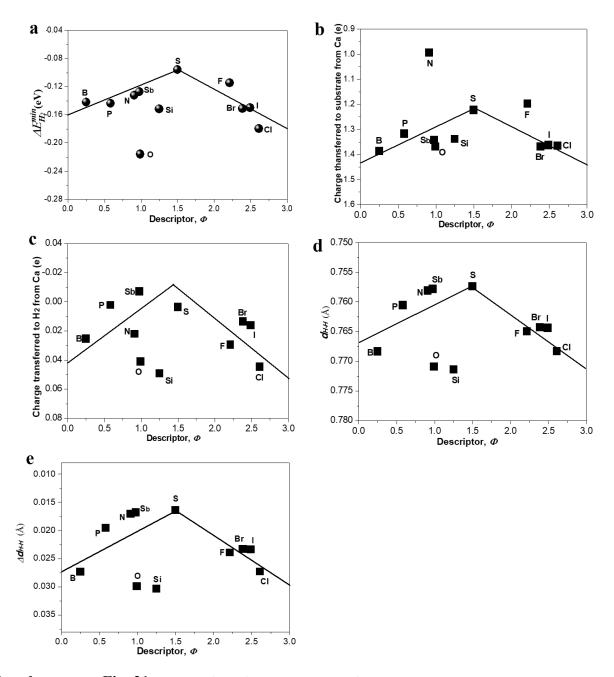

Supplementary Fig. 13 H₂ adsorption/desorption curve as function of pressure for sample a. O-G-Ca and b. P-G-Ca samples. c. hydrogen concentration (wt%) and d. hydrogen adsorption capacity change ratio (λ) as a function of cycle number (*n*) for representative sample N-G-Ca.

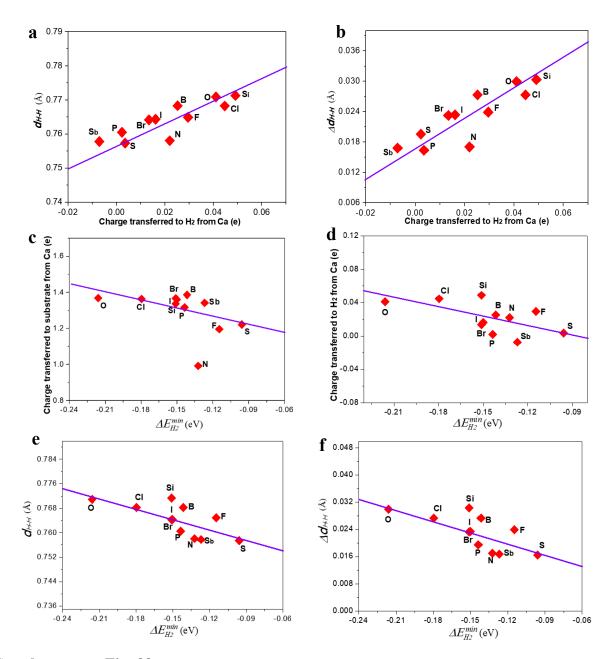

Supplementary Fig. 14 Selection process of optimal X, S-codoped graphene with Ca single atoms models and corresponding optimal H₂ adsorption sites. Here, all possible 154 models were constructed to cover each dual-doped configuration, and all possible 790 single atom Ca adsorption sites were tested via DFT calculation to screen out optimal X-Y-G-Ca models, which were used to search for optimal H₂ molecule adsorption sites from all possible 47 H₂ adsorption sites on selected optimal X-Y-G-Ca models. It deserves to note that all possible S-I-dual-doped models were tested to be unstable though DFT calculation, which cannot be employed to chemisorb single atom Ca.

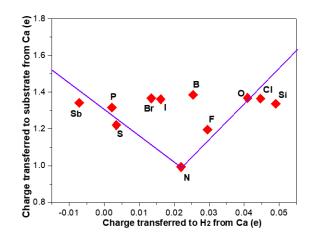

Supplementary Fig 15 Each optimal sole-doped graphene supported Ca single atom model where Ca was located on optimal active site and the corresponding optimal H₂ molecule adsorption site for (a) B=C-G-Ca, (b) a-Br-G-Ca, (c) a-Cl-G-Ca, (d) z-F-G-Ca, (e) a-I-G-Ca, (f) py-N-G-Ca, (g) py-O-G -Ca, (h) P-3C-G-Ca, (i) py-Sb-G-Ca, (j) th-S-G-Ca, (k) a-Si-G-Ca and (l) z-C-G-Ca models.

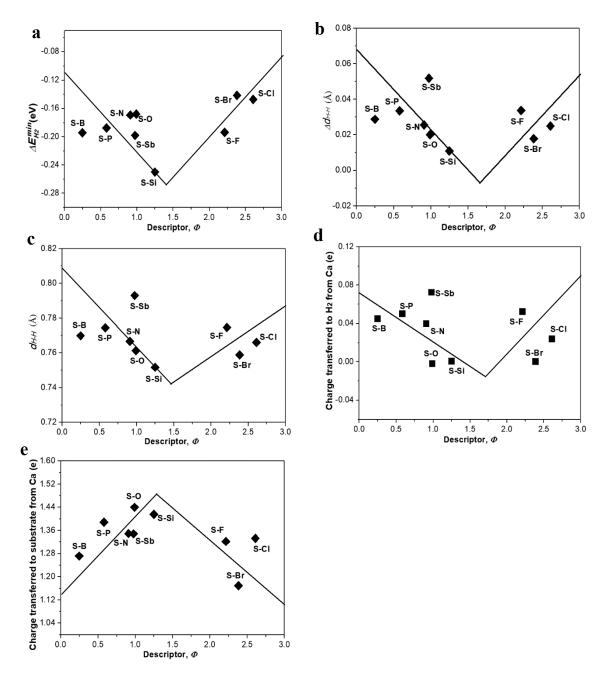

Supplementary Fig. 16 Each optimal dual-doped graphene supported Ca single atom model where Ca was located on optimal active site and the corresponding optimal H₂ molecule adsorption site for (a) S-B-G-Ca, (b) S-Br-G-Ca, (c) S-Cl-G-Ca, (d) S-F-G-Ca, (e) S-N-G-Ca, (f) S-O-G-Ca, (g) S-P-G-Ca, (h) S-Sb-G-Ca and (i) S-Si-G-Ca dual-doped supported Ca single atom models.

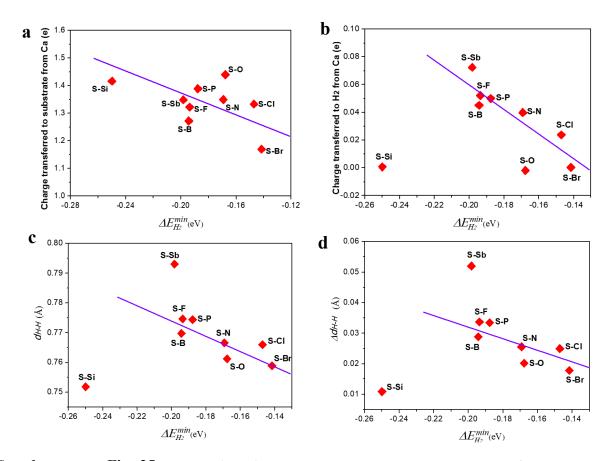

Supplementary Fig. 17 The charge transfer distribution and Bader charge on single atom Ca chemisorbed on optimal active site of each optimal sole-doped graphene model. The top view and side view of the electron charge distribution (a) B=C-G-Ca, (b) a-Br-G-Ca, (c) a-Cl-G-Ca, (d) z-F-G-Ca, (e) a-I-G-Ca, (f) py-N-G-Ca, (g) py-O-G-Ca, (h) P-3C-G-Ca, (i) py-Sb-G-Ca, (j) th-S-G-Ca, (k) a-Si-G-Ca and (l) z-C-G-Ca models. The blue and yellow colors indicate the positive and negative value of electron quantities, respectively, and red arrows imply the value of Bader charge transferred to substrate from Ca atom. The isosurface value is set to 0.003 e/Bohr³.

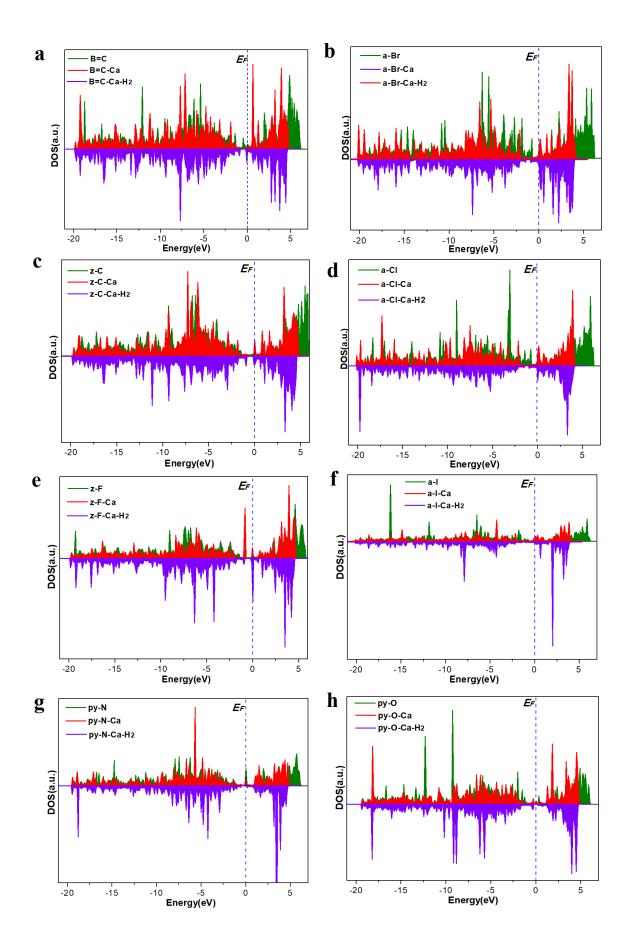

Supplementary Fig. 18 The charge transfer distribution and Bader charge on H₂ molecule adsorbed on optimal active site of each optimal sole-doped graphene model with single atom Ca. The top view and side view of the electron charge distribution (a) B=C-G-Ca(-H₂), (b) a-Br-G-Ca(-H₂), (c) a-Cl-G-Ca(-H₂), (d) z-F-G-Ca(-H₂), (e) a-I-G-Ca(-H₂), (f) py-N-G-Ca(-H₂), (g) py-O-G-Ca(-H₂), (h) P-3C-G-Ca(-H₂), (i) py-Sb-G-Ca(-H₂), (j) th-S-G-Ca(-H₂), (k) a-Si-G-Ca(-H₂) and (l) z-C-G-Ca(-H₂) models. The blue and yellow colors indicate the positive and negative value of electron quantities, respectively, and red arrows imply the value of Bader charge transferred to H₂ molecule from Ca atom. The isosurface value is set to 0.0002 e/Bohr³.

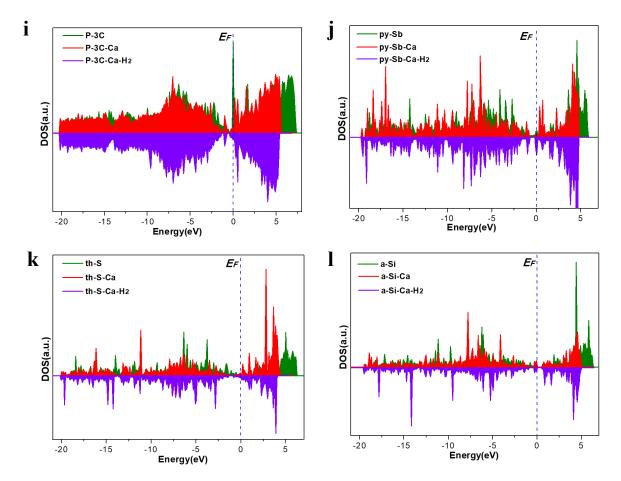

Supplementary Fig. 19 The charge transfer distribution and Bader charge on single atom Ca chemisorbed on optimal active site of each optimal dual-doped graphene model. The top view and side view of the electron charge distribution (a) S-B-G-Ca, (b) S-Br-G-Ca, (c) S-Cl-G-Ca, (d) S-F-G-Ca, (e) S-N-G-Ca, (f) S-O-G-Ca, (g) S-P-G-Ca, (h) S-Sb-G-Ca and (i) S-Si-G-Ca models. The blue and yellow colors indicate the positive and negative value of electron quantities, respectively, and red arrows imply the value of Bader charge transferred to substrate from Ca atom. The isosurface value is set to 0.003 e/Bohr³.


Supplementary Fig. 20 The charge transfer distribution and Bader charge on H₂ molecule adsorbed on optimal active site of each optimal dual-doped graphene model with single atom Ca. The top view and side view of the electron charge distribution (a) S-B-G-Ca(-H₂), (b) S-Br-G-Ca(-H₂), (c) S-Cl-G-Ca(-H₂), (d) S-F-G-Ca(-H₂), (e) S-N-G-Ca(-H₂), (f) S-O-G-Ca(-H₂), (g) S-P-G-Ca(-H₂), (h) S-Sb-G-Ca(-H₂) and (i) S-Si-G-Ca(-H₂) models. The blue and yellow colors indicate the positive and negative value of electron quantities, respectively, and red arrows imply the value of Bader charge transferred to H₂ molecule from Ca atom. The isosurface value is set to 0.0002 e/Bohr^3 .

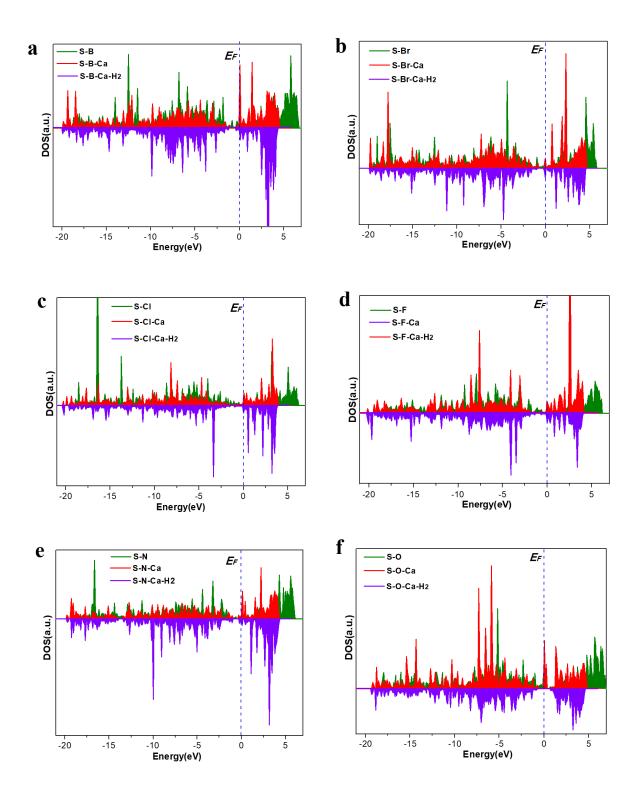

Supplementary Fig. 21 The relationships between descriptor Φ and related parameters extracted from each single-doped-graphene-supported Ca single-atom non-dissociative chemisorption solidstate H₂ storage materials structural model. a. relationship between the minimum H₂ adsorption energy change ($\Delta E_{H_2}^{min}$) and descriptor Φ for each doped-graphene with Ca single atoms. b. relationship between the charge transferred to doped-graphene substrate from Ca single atom and descriptor Φ for each dopedgraphene with Ca single atoms. c. relationship between the charge transferred to H₂ adsorbed on optimal site from Ca single atom anchored doped-graphene substrate from and descriptor Φ for each dopedgraphene with Ca single atoms. d. relationship between bond length (d_{H-H}) of H₂ molecule adsorbed on optimal site and descriptor Φ for each doped-graphene with Ca single atoms. e. relationship between bond length change (Δd_{H-H}) of H₂ molecule adsorbed on optimal site and descriptor Φ for each doped-graphene with Ca single atoms.

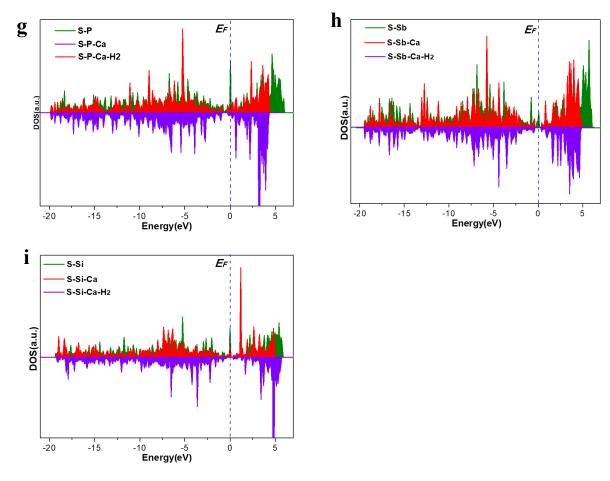

Supplementary Fig. 22 The relationships among related parameters extracted from each singledoped-graphene-supported Ca single-atom non-dissociative chemisorption solid-state H₂ storage materials structural model. a. relationship between d_{H-H} and charge transferred to H₂ from Ca single atom for each doped-graphene with Ca single atoms. b. relationship between d_{H-H} and charge transferred to H₂ from Ca single atom for each doped-graphene with Ca single atoms. c. relationship between the charge transferred to doped-graphene substrate from Ca single atom and $\Delta E_{H_2^*}^{min}$ for each doped-graphene with Ca single atoms. d. relationship between the charge transferred to H₂ molecule from Ca single atom and $\Delta E_{H_2^*}^{min}$ for each doped-graphene with Ca single atoms. d. relationship between the charge transferred to H₂ molecule from Ca single atom and $\Delta E_{H_2^*}^{min}$ for each doped-graphene with Ca single atoms. e. relationship between d_{H-H} and $\Delta E_{H_2^*}^{min}$ for each doped-graphene with Ca single atoms. f. relationship between Δd_{H-H} and $\Delta E_{H_2^*}^{min}$ for each doped-graphene with Ca single atoms. f. relationship between Δd_{H-H} and $\Delta E_{H_2^*}^{min}$ for each doped-graphene with Ca single atoms.

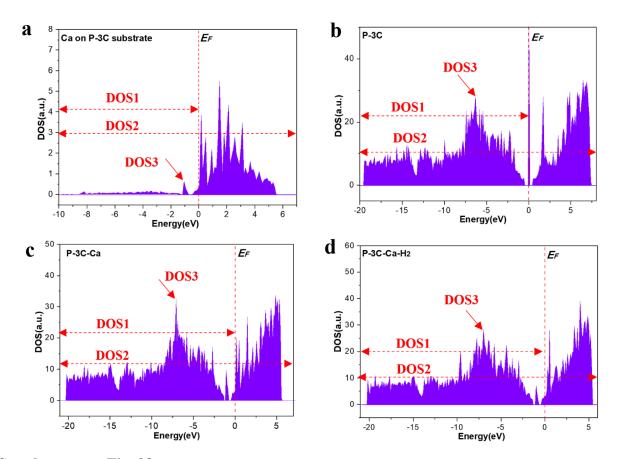

Supplementary Fig. 23 The relationships between charge transferred to doped-graphene substrate from Ca single atom and charge transferred to H₂ from Ca single atom for each single-doped-graphene-supported Ca single-atom non-dissociative chemisorption solid-state H₂ storage materials



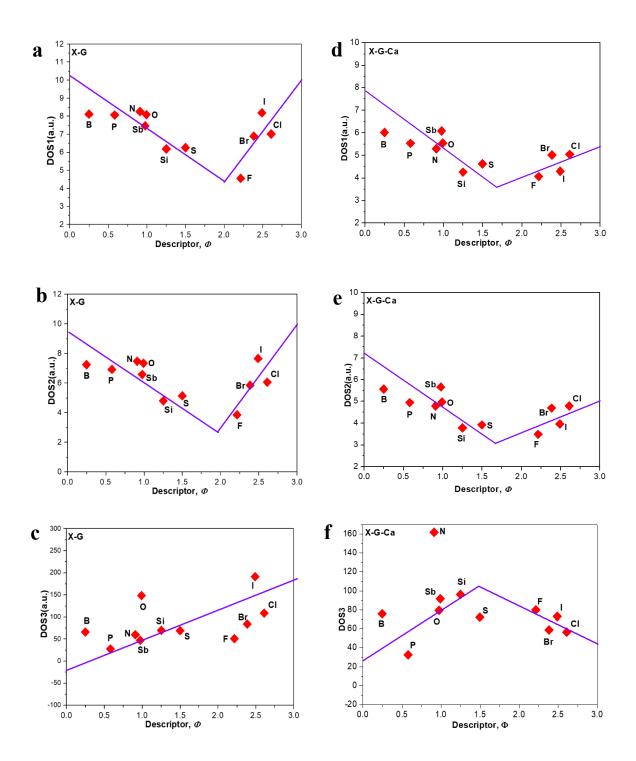
Supplementary Fig. 24 The relationships between descriptor Φ and related parameters extracted from each dual-doped-graphene-supported Ca single-atom non-dissociative chemisorption solidstate H₂ storage materials structural model. a. relationship between the minimum H₂ adsorption energy change ($\Delta E_{H_2^*}^{min}$) and descriptor Φ for each dual-doped-graphene with Ca single atoms. b. relationship between bond length change (Δd_{H-H}) of H₂ molecule adsorbed on optimal site and descriptor Φ for each dual-doped-graphene with Ca single atoms. c. relationship between bond length (d_{H-H}) of H₂ molecule adsorbed on optimal site and descriptor Φ for each dual-doped-graphene with Ca single atoms. d. relationship between the charge transferred to H₂ adsorbed on optimal site from Ca single atom anchored dual-doped-graphene substrate from and descriptor Φ for each dual-doped-graphene with Ca single atoms. e. relationship between the charge transferred to dual-doped-graphene substrate from Ca single atoms.

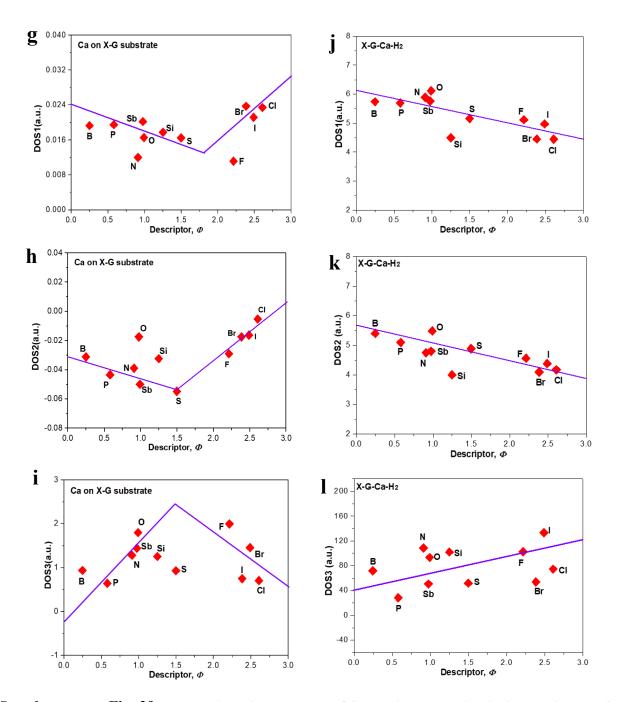



Supplementary Fig. 25 The relationships among related parameters extracted from each dualdoped-graphene-supported Ca single-atom non-dissociative chemisorption solid-state H₂ storage materials structural model. a. relationship between the charge transferred to dual-doped-graphene substrate from Ca single atom and $\Delta E_{H_2^*}^{min}$ for each dual-doped-graphene supported Ca single-atom model. b. relationship between the charge transferred to H₂ molecule from Ca single atom and $\Delta E_{H_2^*}^{min}$ for each dualdoped-graphene with Ca single atoms. c. relationship between d_{H-H} and $\Delta E_{H_2^*}^{min}$ for each dual-dopedgraphene with Ca single atoms. d. relationship between Δd_{H-H} and $\Delta E_{H_2^*}^{min}$ for each dual-dopedgraphene with Ca single atoms. d. relationship between Δd_{H-H} and $\Delta E_{H_2^*}^{min}$ for each dual-doped-graphene supported Ca single-atom model.

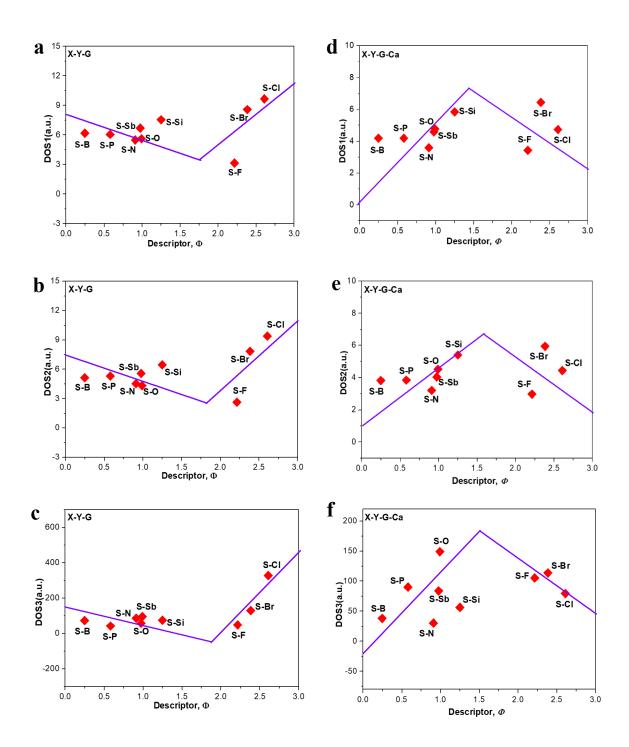


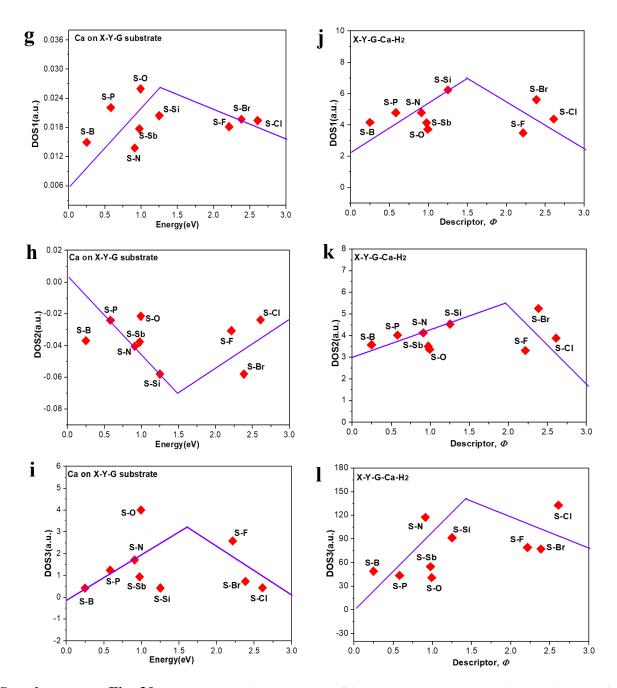
Supplementary Fig. 26 The DOSs of each optimal single-doped-graphene substrate (X-G), singledoped-graphene supported Ca single-atom mode (X-G-Ca) and single-doped-graphene supported Ca single-atom mode (X-G-Ca) with H₂ molecule adsorbed on optimal site (X-G-Ca-H₂). a. DOSs of B=C, B=C-Ca and B=C-Ca-H₂. b. DOSs of a-Br, a-Br-Ca and a-Br-Ca-H₂. c. DOSs of z-C, z-C-Ca and z-C-Ca-H₂. d. DOSs of a-Cl, a-Cl-Ca and a-Cl-Ca-H₂. e. DOSs of z-F, z-F-Ca and z-F-Ca-H₂. f. DOSs of a-I, a-I-Ca and a-I-Ca-H₂. g. DOSs of py-N, py-N-Ca and py-N-Ca-H₂. h. DOSs of py-O, py-O-Ca and py-O-Ca-H₂. i. DOSs of P-3C, P-3C and P-3C-Ca-H₂. j. DOSs of py-Sb, py-O-Sb and py-O-Ca-Sb. k. DOSs of th-S, th-S-Ca and th-S-Ca-H₂. I. DOSs of a-Si, a-Si-Ca and a-Si-Ca-H₂.





Supplementary Fig. 27 The DOSs of each optimal dual-doped-graphene substrate (X-Y-G), singledoped-graphene supported Ca single-atom mode (X-Y-G-Ca) and single-doped-graphene supported Ca single-atom mode (X-Y-G-Ca) with H₂ molecule adsorbed on optimal site (X-Y-G-Ca-H₂). a. DOSs of S-B-G, S-B-G-Ca and S-B-G-Ca-H₂. b. DOSs of S-Br-G, S-Br-G-Ca and S-Br-G-Ca-H₂. c. DOSs of S-Cl-G, S-Cl-G-Ca and S-Cl-G-Ca-H₂. b. DOSs of S-F-G, S-F-G-Ca and S-Br-G-Ca-H₂. c. DOSs of S-Cl-G, S-Cl-G-Ca and S-Cl-G-Ca-H₂. d. DOSs of S-F-G, S-F-G-Ca and S-F-G-Ca-H₂. e. DOSs of S-N-G, S-N-G-Ca and S-N-G-Ca-H₂. f. DOSs of S-O-G, S-O-G-Ca and S-O-G-Ca-H₂. g. DOSs of S-P-G, S-P-G-Ca and S-P-G-Ca-H₂. h. DOSs of S-Sb-G, S-Sb-G-Ca and S-Sb-G-Ca-H₂. i. DOSs of S-Si-G, S-Si-G-Ca and S-Si-G-Ca-H₂.




Supplementary Fig. 28 The definitions of three densities of electronic states (DOSs) evaluating the relationship between electronic structure and intrinsic descriptor Φ . As mentioned in previous work²⁻³, the three DOSs are expressed as DOS1(the weighted DOS center below Fermi level), DOS2 (the weighted DOS center in overall range of energy) and DOS3 (the position of the highest peak of DOS below Fermi level). **a.** Three DOSs including DOS1, DOS2 and DOS3 of Ca single atom on single-/dual-doped-graphene substrate. **b.** Three DOSs including DOS1, DOS2 and DOS3 of single-/dual-doped-graphene substrate. **c.** Three DOSs including DOS1, DOS2 and DOS3 of single-/dual-doped-graphene substrate. **c.** Three DOSs including DOS1, DOS2 and DOS3 of single-/dual-doped-graphene-supported Ca single-atom model. **d.** Three DOSs including DOS1, DOS2 and DOS3 of single-/dual-doped-graphene-supported Ca single-atom model with H₂ molecule adsorbed on optimal site. Here, the calculation equation of weighted DOS was given as DOS=($\Sigma_i \varepsilon_i d_i$)/($\Sigma_i \varepsilon_i$), where d_i is the DOS of each model at energy ε_i .

Supplementary Fig. 29 The relationships between DOS descriptors and intrinsic descriptor Φ for single-doped-graphene-supported Ca single-atom solid-state H₂ storage materials. a. b. and c. the relationships between DOS descriptors and intrinsic descriptor Φ for each optimal single-doped-graphene substrate (X-G). d. e. and f. the relationships between DOS descriptors and intrinsic descriptor Φ for the corresponding optimal single-doped-graphene with Ca atom chemisorption on optimal active site (X-G-Ca). g. h. and i. the relationships between DOS descriptors and intrinsic descriptor Φ for the corresponding Ca single atom anchored optimal single-doped-graphene substrate (Ca). j. k. and l. the relationships between DOS descriptor Φ for the corresponding optimal single-doped-graphene substrate (Ca). j. k. and l. the relationships between DOS descriptors and intrinsic descriptor Φ for the corresponding optimal single-doped-graphene substrate (Ca). j. k. and l. the relationships between DOS descriptors and intrinsic descriptor Φ for the corresponding optimal single-doped-graphene substrate (Ca). j. k. and l. the relationships between DOS descriptors and intrinsic descriptor Φ for the corresponding optimal single-doped-graphene-supported Ca single-atom substrate with H₂ molecule adsorbed on optimal H2 storage site. Here, DOS descriptors consisted of DOS1, DOS2 and DOS3.

Supplementary Fig. 30 The relationships between DOS descriptors and intrinsic descriptor Φ for dual-doped-graphene-supported Ca single-atom solid-state H₂ storage materials. a. b. and c. the relationships between DOS descriptors and intrinsic descriptor Φ for each optimal dual-doped-graphene substrate (X-Y-G). d. e. and f. the relationships between DOS descriptors and intrinsic descriptor Φ for the corresponding optimal dual-doped-graphene with Ca atom chemisorption on optimal active site (X-Y-G-Ca). g. h. and i. the relationships between DOS descriptors and intrinsic descriptor Φ for the corresponding Ca single atom anchored optimal dual-doped-graphene substrate (Ca). j. k. and l. the relationships between DOS descriptors and intrinsic descriptor Φ for the corresponding optimal dual-doped-graphene substrate (Ca). j. k. and l. the relationships between DOS descriptors and intrinsic descriptor Φ for the corresponding optimal dual-doped-graphene substrate (Ca). j. k. and l. the relationships between COS descriptors and intrinsic descriptor Φ for the corresponding optimal dual-doped-graphene substrate (Ca). j. k. and l. the relationships between COS descriptors and intrinsic descriptor Φ for the corresponding optimal dual-doped-graphene-supported Ca single-atom substrate with H₂ molecule adsorbed on optimal H₂ storage site. Here, DOS descriptors consisted of DOS1, DOS2 and DOS3.

3. Supplementary Tables

Supplementary Table 1 Comparison of H₂ storage properties of various carbon-based materials

Carbon-based materials	H ₂ storage condition (T, P)	H2-uptake capacity (ρm & ρy)	Notes	Refs.
Zeolite-like carbon	77K, 2MPa	7wt.% & -	The zeolite-like carbons are prepared via chemical vapor deposition (CVD). The carbons possess surface area of up to $3200 \text{ m}^2/\text{g}$ and pore volume of up to $2.41 \text{ cm}^3/\text{g}$.	4
CAs		5.3 wt.% & -	The Carbon aerogels (CAs) materials were prepared through the sol-gel	
Co-CA	77K, 3MPa	2.1 wt.% & -	polymerization of resorcinol with formaldehyde in aqueous solution to	F
Ni-CA	,	2.3 wt.% & -	produce organic gels that are dried and subsequently pyrolyzed in an inert atmosphere.	5
N-doped microporous carbon	77K, 2MPa	6 wt.% & -	Nitrogen-doped, microporous carbon materials have been prepared using zeolite EMC-2 as a hard template and acetonitrile(C_2N_2) as the carbon source via chemical vapor deposition (CVD). The carbon products exhibited high surface areas (up to 3360 m ² /g), high pore volumes (up to 1.71 cm ³ /g) and high proportion of porosity (up to 85% of surface area and 73% of pore volume).	6
Activated carbon (AC)	77K, 2MPa	7.08 wt.% & - 43.2 g $H^2 L^{-1}$	This kind of activated carbon with further CO ₂ and KOH activations for hydrogen storage was prepared, the excellent hydrogen storage properties of which were attributed to high surface area of up to $3190 \text{ m}^2 \text{ g}^{-1}$, more available adsorption sites, higher edge orientation, and these pores with diameter between 1 and 2 nm.	7
Ultrahigh surface area carbons	77K, 2MPa	7.03 wt.% & 37 g H ² L ⁻¹	Ultrahigh surface area carbons (3000-3500 m ² g ⁻¹) have been obtained via chemical activation of polypyrrole with KOH. The carbon materials exhibit large pore volumes (up to 2.6 cm ³ g ⁻¹) and possess two pore systems: one of pores in the micropore range (1.2 nm) and the other in the small mesopore range (2.2-3.4 nm).	8
Li-doped CNTs	77K, 0.1 MPa	3.9wt.% & -	The doping of dispersed lithium (Li) onto multi-wall carbon nanotubes (CNTs) was performed by a solution method for hydrogen storage. This is an atomically dispersed Li, not Li nanoparticles.	9
CNT Ca-CNTs Co-CNTs Fe-CNTs Ni-CNTs Pd-CNTs	298K,0.1MPa	0.3wt.% & - 1.05 wt.% & - 1.5 wt.% & - 0.75 wt.% & - 0.4 wt.% & - 7 wt.% & -	These multiwalled carbon nanotubes (MWCNTs) were decorated by Ca, Co, Fe, Ni, and Pd particles, of which hydrogen storage capacity can be improved in two approaches: (i) H_2 adsorption via Kubas interaction and (ii) dissociation of H_2 molecules on the metal particles.	10
Graphene-like nanosheets	77K, 1MPa	1.2 wt.% & -	Graphene-like nanosheets have been synthesized by the reduction of a colloidal suspension of exfoliated graphite oxide. The graphene sheets with a BET surface area of $640 \text{ m}^2/\text{g}$ are found to be in a highly agglomerated state, with many wrinkles.	11
Hierarchical graphene	77K, 0.1MPa	4wt.% & -	The hierarchical graphene material composed of micropore (~0.8 nm), mesopore (~4 nm), and macropore (>50 nm) and with a specific surface area up to $1305 \text{ m}^2 \text{ g}^{-1}$.	12
GO GO-MWCNT	298K, 5 MPa	1.4 wt.% & - 2.6 wt.% & -	Self-aligned GO-Multiwalled carbon nanotube (MWCNT) hybrid frameworks with a high degree of orientation. The remarkable synergistic properties from combining GO and MWCNTs in a hybrid structure offer a	13
RGO-MWCNT)-	2.1 wt.% & -	novel yet simple way of designing GO based hybrid frameworks with extraordinary hydrogen storage capacities.	
Gr Pt-Gr Pd-Gr	303K, 5.7 MPa	0.07 wt.% &- 0.15 wt.% & - 0.16 wt.% &-	Graphene samples prepared by the exfoliation of graphitic oxide were decorated with platinum (Pt) and palladium (Pd) nano-particles by an electroless deposition technique.	14
HEG		0.53 wt.% & -	Nitrogen doping is more effective in increasing the adsorption of hydrogen than the machanically mixed Pd HEG nanocompacity. It should be	
Pd-HEG mixture	298K, 2MPa	0.63 wt.% & -	than the mechanically mixed Pd-HEG nanocomposite. It should be, however, borne that the Pd-HEG composite comprises of large sized Pd	15
N-HEG	,	0.88 wt.% & -	particle agglomerates. In case of the Pd-N-HEG specimen, where a more	15
Pd-N-HEG GP-NiB	77K, 0.1MPa	1.97 wt.% & - 4.4 wt.% & -	uniform dispersion has been achieved. A three-dimensional graphene material was doped with Ni-B nanoalloys via a chemical reduction process. The graphene doped with Ni (0.83 wt%) and B (1.09 wt%) shows the best hydrogen storage capacity, which is better than that of pristine graphene by three times.	16
rGO-Mg	473K,1.5MPa	6.5 wt.% & 0.105Kg H ₂ L ⁻¹	This is a new hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide	17

			(rGO)sheets. As rGO is atomically thin, this approach minimizes inactive	
			mass in the composite. Conjugated microporous polymers (CMPs) exhibits a relative small	
СМР	77K, 0.1MPa	1.6 wt.% & -	hydrogen uptake value of 1.6 wt% at 1 bar. Lithium-doped conjugated microporous polymers (Li-CMP) with ionic state Li content of 0.5wt.%	18
Li-CMP		6.1 wt.% & -	(optimal content) exhibits a significant maximum volume of 6.1 wt%.	
MXene	298K, 6MPa (H ₂)	8.8 wt.% & -	Hydrofluoric acid incompletely etched MXene, namely, a multilayered Ti_2CT_x stack that shows an unprecedented hydrogen uptake. The hydrogen release is controllable by pressure and temperature below 95°C. The storage	
Wittene	298K, 0.1MPa (air)	4 wt.% & -	mechanism is deduced to be a nanopump-effect-assisted weak chemisorption in the sub-nanoscale interlayer space of the material.	19
Oxygen-rich	77K, 2MPa	$\begin{array}{l} 8.1 \text{ wt.\% \& 44 g} \\ H_2 \text{ L}^{-1} \end{array}$	This study described cellulose acetate-derived carbons that combine high	
microporous carbons	77K, 3MPa	8.9 wt.% & 48 g $H_2 L^{-1}$	surface area $(3800m^2g^{-1})$ and pore volume (1.8 cm^3g^{-1}) that arise almost entirely (>90%) from micropores, with an oxygen-rich nature, which	20
CALCOLD	298K, 3MPa	1.2 wt.% & 6.5 g H ₂ L ⁻¹	exhibited excellent hydrogen storage properties.	
1 % Pd/Gr	298K, 5~6MPa	6.7~8.67 wt.% & -	This study developed a Pd-graphene nanocomposite with Pd loading amounts of 1 at.% (1% Pd/graphene) and 5 at. % (5% Pd/graphene) for	
5 % Pd/Gr	298K, 6MPa	7.16 wt.% & -	hydrogen storage. The spherically shaped Pd nanoparticles of 5-45 nm in size are homogeneously distributed over the graphene matrix.	21
Ni/Gr	298K, 0.1MPa(H ₂)	0.14 wt.% & -	This study has designed a Ni-graphene composite for hydrogen storage with Ni nanoparticles of 10 nm in size, uniformly dispersed over a graphene	22
Pt@GO/MOF	298K, 6MPa(H ₂)	1.18 wt.% & -	substrate. The hydrogen release could occur at an operating temperature below 150 °C and completes at 250 °C. In this work, series of Pt-loaded GO/MOF hybrid composites were prepared	22
hybrid composites	298K, 8MPa	0.77 wt.% & -	via in-situ synthesis method, in which Pt nanoparticles were well-dispersive and anchored tightly into GO/MOF units.	23
LBMH@G	623K, 0.3MPa	8.9 wt.% & -	Flexible and 3D-structured graphene serves as the flexible structure support and MgH ₂ nanoparticles homogeneously distributed on graphene serve as favorable heterogeneous nucleation sites to uniformly adsorb the solution containing LiBH ₄ and hence, construct LiBH ₄ around MgH ₂ nanoparticles, monodisperse 2LiBH ₄ -MgH ₂ nano-composite (LBMH@G) with a particle size of 10.5nm was controllably fabricated on graphene.	24
Graphene	303K, 0.1MPa	14.67 wt.% & -	A moderate, possibly scalable way involving Benkeser reaction was employed to obtain chemically hydrogenated Graphene nanosheets. Almost 15% (by weight) hydrogen was stored during hydrogenation of graphene under Benkeser reaction.	25
P-Doped Graphene		2.2 wt.% & -	P-substituted graphene material with multi-layers of graphene was prepared through a simple and effective hydrothermal reaction under the assistance	
RGO GO Graphite	298K, 10MPa	0.28 wt.% & - 0.20 wt.% & - 0.14 wt.% & -	of H ₃ PO ₄ as the phosphorous source, and showed a nearly \sim 2.2 wt% hydrogen sorption capacity at 298 K and 100 bar. This value is higher than that for reduced graphene oxide.	26
N-Doped graphene		1.5 wt.% & -	The nitrogen doped graphene was synthesized by hydrothermal route	
GO	298K, 9MPa	0.21 wt.% & -	utilizing 2-Chloroethylamine hydrochloride as nitrogen precursor in the presence of graphene oxide (GO). Nitrogen-doped graphene material is	27
Graphite Powder		0.14 wt.% & -	developed for its application in hydrogen storage at room temperature.	- /
Mg-Ni/GLM	623K,0.1MPa	6.5 wt.% & -	A novel method allowing to produce nickel-graphene composites containing nanosized Ni particles uniformly distributed over the graphene-like materials (GLM) surface has been developed, which are the effective catalysts of the hydrogenation of magnesium.	28
LiH@G	773K, 0.001 MPa	6.8 wt.% & -	This study reported a facile and scalable wet-chemical synthesis of LiH nanosheets with a thickness of only 2 nm, uniformly distributed on graphene. Chemical reaction of LiH@G with B ₂ H ₆ and BH ₃ NH ₃ synthesized LiBH ₄ and LiNH ₂ BH ₃ by adopting LiH@G as the nanoreactor.	
LiBH4@G	613K, 0.001 MPa	9.7 wt.% & -	Consequently, the as-formed LiBH ₄ /graphene hybrids (LiBH ₄ @G) and LiNH ₂ BH ₃ /graphene hybrids (LiNH ₂ BH ₃ @G) exhibit a curved thin, flaky morphology, in which LiBH ₄ with nanolayer thickness of 4nm and LiNH ₂ BH ₃ nanosheets are uniformly anchored on the graphene.	29
CNTs		1.21 wt.% (<0.01wt.%) &	The CNTs were grown by the CVD method using LPG and LaNis as the carbon source and catalyst, respectively. Pd was impregnated on the CNTs	
Pd-CNTs	77K(298K), 6.5 MPa	0.37 wt.% (0.125 wt.%)&	by the reflux method with hydrogen gas as a reducing agent, while V was embedded on the CNTs by the vapor deposition method. The average metal particle size deposited on the CNTs was around 5.8 nm for Pd and 3.6 nm	30
V-CNTs		0.4 wt.% (0.1 wt.%) & -	for V.	
MWCNTs	373K, - MPa	0.15 wt.% & -		

MWCNT/h-BN		2.3 wt.% & -	The work reported the hydrogen storage performance of multi-walled carbon nanotubes (MWCNT)/hexagonal boron nitride (h-BN) nanocomposites (MWCNT/h-BN), where ultrasonication method is adopted	31
No Alli CNS	504V MDa	Q_	for the synthesis of the MWCNT/h-BN nanocomposites. A bottom-up strategy was employed to confine NaAlH ₄ between graphene nanosheets with a millefeuille-liked multi-layer morphology, to further	
NaAlH₄@GNS	504K, - MPa	- & -	prepare the NaAlH4@GNS composite. The NaAlH4 particles were uniformly arranged between graphene layers, with a high loading up to 90%. This work proposed clay-graphene nanomaterials prepared by a green way	32
Clay-graphene nanocomposites	298K, 20MPa	0.1 wt.% & -	using sucrose (caramel) and two types of natural clays (montmorillonite and sepiolite) as precursors to evaluate their potential use in hydrogen storage.	33
P-doped porous carbon	298K, 10MPa	1.2 wt.% & -	The synthesis of heteroatom (P)-doped porous carbon with specific surface area of 1406 m ² /g derived from the paste of newly growing Indian banyan tree (<i>Ficus benghalensis</i>) is described.	34
Mg-(Ni- TiO ₂)@rGO	523K, 0.01MPa	4.3 wt.% & -	Ni and TiO ₂ co-doped reduced graphene oxide [(Ni-TiO ₂)@rGO] nanocomposite was synthesized and introduced into Mg via ball milling. The results demonstrated that the dispersive distribution of Ni and TiO ₂ with	35
1102)@100	0.011vii a		a particle size of 20-200 nm in the reduced graphene oxide matrix led to superior catalytic effects on the hydrogen storage properties. This study used optimized KOH activation procedure to prepare highly	20
Porous graphene scaffold	193K, 1.2MPa	4 wt.% & -	porous graphene scaffold materials with SSA values up to $3400 \text{ m}^2/\text{g}$ and pore volume up to $2.2 \text{ cm}^3/\text{g}$, which are among the highest for carbon materials.	36
rGO	298K, 8MPa	1.34 wt.% & -	In this paper, GO was found to exhibit better H_2 uptake capacity (1.90wt.%) as compared to rGO (1.34 wt.%) at room temperature. It can be said that the oxygen functional groups work as spacers in between the graphene layers	
GO	270 K , 6141 a	1.90 wt.% & -	and increase the inter-layer space which in turn accumulate more number of hydrogen molecules on surface of carbon nano-sheets.	37
GO	77K(298K), 9MPa	4.8(0.5) wt.% & -	The maximum storage capacity is 4.8 (0.5) wt% at 77 K (298 K) and at 9.0 MPa pressure, and the optimum GO interlayer distance for maximum H_2 uptake is 6.5Å, similar to the predicted distances from first-principles calculations for graphite materials.	38
Mg		0.0 wt.% & -	Reduced graphene-oxide-supported nickel (Ni@rGO) nanocomposite catalysts were synthesized, and incorporated into magnesium (Mg) hydrogen sterger meteoriele with the sim of improving the hydrogen sterger	
Ni@rGO	373K, 7MPa	0.0 wt.% & -	hydrogen storage materials with the aim of improving the hydrogen storage properties of these materials. The experimental results revealed that the	39
Mg-Ni Mg-Ni@rGO		4.7 wt.% & - 5.48wt.% & -	catalytic effect of the Ni@rGO nanocomposite on Mg was more effective than that of single nickel (Ni) nanoparticles or graphene.	57
Gr	_	2wt.% & -		
Ca/Gr reduced with ammonia Ca/Gr reduced	-	4.98 wt.% & -	In this work, a Ca/graphene nanocomposite was successfully synthesized. The XRF characterization results proved that the Ca was successfully loaded on the graphene matrix with the Ca percentage moving from 0.516% in graphite flakes to 8.227% in Ca/graphene composite reduced by ammonia.	40
with L-Ascorbic acid	-	3.99wt.% & -		
			Dual active metals Ni and Al doped graphene composites are prepared through in-suit reaction and self-assembly with high-temperature reduction	
Ni/Al/graphene	473K,	5.7wt.% & -	process. The maximum hydrogen storage uptake of such composites is up to 5.7 wt% at 473 K, and the dehydriding efficiency is high as 96%~97% at the dehydriding temperature of 380 K.	41
Li-doped CNT	653K,0.1MPa	20wt.% & 160 kg/m ³	Lithium- or potassium-doped carbon nanotubes can absorb 20 or 14 weight percent of hydrogen at moderate (200°C to 400°C) or room temperatures, respectively, under ambient pressure. The hydrogen stored in the lithium or	
K-doped CNT	298K,0.1MPa	14wt.% & -112 kg/m ³	potassium-doped carbon nanotubes can be released at higher temperatures, and the sorption-desorption cycle can be repeated with little decrease in the sorption capacity.	42
GR-supported MgH ₂ NPs	473K, 3MPa	5.7wt.% & -	GR-supported MgH ₂ NPs were first fabricated by the hydrogenation of dibutyl magnesium ((C ₄ H ₉) ₂ Mg) in cyclohexane (C ₆ H ₁₂) under the structure-directing role of GR.	43
Li-doped fulleranes	823K, -	5wt.% & -	This work synthesized polymeric lithium and sodium doped fulleranes $(6:1 \text{ mol ratio}, A_6C_{60})$ which can reversibly store hydrogen via a	
Na-doped fulleranes	823K, -	4wt.% & -	chemisorption mechanism through the formation of C–H bonds on the fullerene owing to the presence of the alkali metal. This study reports on hydrogen adsorption and desorption on titanium-	44
Ti-covered graphene	400K-800K, -	-&-	covered graphene in order to test theoretical proposals to use of graphene functionalized with metal atoms for hydrogen storage. At room temperature, titanium islands grow on graphene with an average diameter of about 10 nm.	45
Nanoporous materials	77K, -	10wt.% & 40g H ₂ L ⁻¹	In materials with particularly high BET areas, such as some MOFs, gravimetric storage capacities exceeding 10 wt% can be achieved, although only at cryogenic temperatures (77 K). The volumetric capacity achieved	46

			using either powder compaction, monolith formation or framework interpenetration can exceed 40 g H ₂ L ⁻¹ , but again only at 77 K.	
Bulk graphene	298K, 12MPa	1wt.% & -	It can be concluded that bulk graphene-related materials do not exhibit superior hydrogen storage parameters compared to other nanostructured carbon materials like activated carbons, carbon nanotubes or nanofibers. This paper reports Mg nanocrystals encapsulated by narrow, bottom-up	47
GNR-Mg nanocomposite	498K, 1.5MPa	7.1wt.% & -	synthesized graphene nanoribbons (GNRs) as environmentally stable and high-capacity hydrogen storage materials. As an encapsulation medium, GNRs offer similar functionalities as reduced graphene oxide to protect the encapsulated Mg nanocrystals from extensive oxidation, while allowing penetrations of hydrogen.	48
Mg-GNP composites	573K, 2MPa	-&-	This work shows that loading magnesium by graphene nanoplatelets (GNP) enhances the kinetics by more than an order of magnitude. The GNP presence reduces the Mg agglomeration, induced by de/hydriding, and accelerates the kinetics by connecting between Mg particles.	49
Multivalent VO ₂ epitaxial thin films	-	-	This study demonstrates that as many as two hydrogen atoms can be incorporated into each VO ₂ unit cell, and that hydrogen is reversibly absorbed into, and released from VO ₂ without destroying its lattice framework.	50

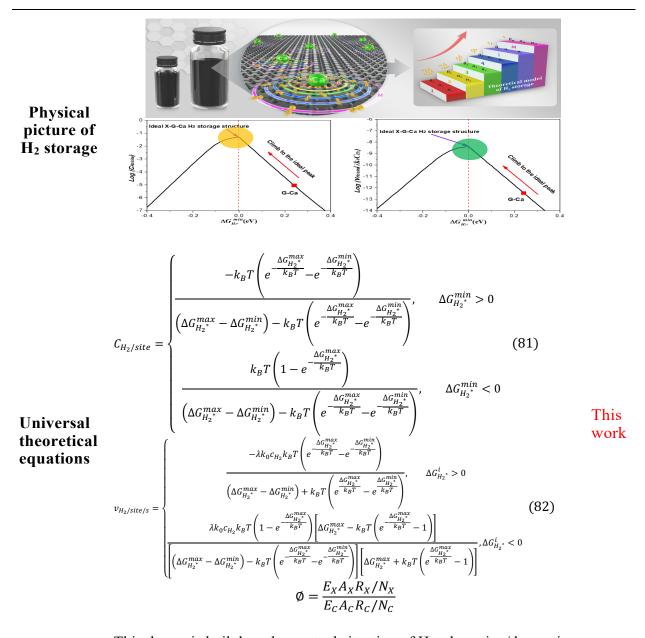
Supplementary Table 2 The definition of adsorption energy, maximum adsorption energy per H₂ (E_{ad}^{max} in unit of eV/H₂), theoretical maximum reversible hydrogen storage capacity (C), descriptor (Φ) corelating microstructure to hydrogen storage performance for current various carbon-based materials based on theoretical calculation investigation.

Materials	Simulation methods	Simulation software package	Hydrogen storage mechanisms	Definition of adsorption energy	E_{ad}^{max}	С	Φ	Refs.
Ni-Pd-Co metals decorated B-doped graphene	PAW-GGA- PW91	DFT@VASP	Hydrogen (H ₂) adsorption and hydrogen atom (H) spillover	$E_{ad} = E_{Total} - E_{surface} - nE_{H_2} $ (39)	-2.410	-	-	51
Al-doped graphene	PAW-LDA	DFT @DMol & ab initio MD@CASTEP	Hydrogen (H ₂) physisorption enhanced by doping Al into graphene	$E_{ad} = E_{graphene} - E_{surface} - nE_{H_2} $ (40)	-0.260	5.31wt.%	-	52
Al-adsorbed graphene	PAW-LDA	DFT @ DMol & ab initio MD	Hydrogen (H ₂) physisorption by adsorbing Al into graphene	$E_{b-H_2} = [E_{iH_2+Al-graphene} - (E_{Al-graphene} + iE_{H_2})]/i$ (41)	-0.193	13.8wt.%	-	53
Ca-adsorbed graphene	PAW-GGA- PBE	DFT@VASP	Hydrogen (H ₂) adsorption by Kubas effect and polarization	-	-0.200	5 wt.%	-	54
Ca-adsorbed CNTs	PAW-GGA- PBE	DFT@VASP	Hydrogen (H ₂) adsorption by Kubas effect	-	-0.200	5 wt.%	-	55
Light- element- doped fullerenes	USPP-LDA	DFT@VASP & QMC@ CASINO	Non-dissociative adsorption of H ₂ molecules	$E_a = E_{far} - E_{bond} \tag{42}$	0.650	1.7 wt.%	-	56
Li-adsorbed porous graphene	PAW-LDA	DFT@VASP	Polarization mechanism	$E_b = E(graphene + Li + H_2) - E(graphene + Li) - E(H_2)$ (43)	-0.265	12 wt.%	-	57
N-doped penta- graphene	PAW-GGA- PBE	DFT@ DMOL in MS	Stronger adsorption induced by negatively charged N-doped penta- Graphene	$E_{ads} = E_{total} - (E_{N-PG} + E_{gas}) $ (44)	-0.032	2.7 wt.%	-	58
Li-adsorbed graphene	PAW-GGA- PBE	DFT@VASP	Each Li atom absorbing H ₂ molecules by polarizing them	$ \overline{E}_{t} = [E(Li/graphene + iH_{2}) - E(Li/graphene) - iE(H_{2})]/i $ (45)	-0.170	16 wt.%	-	59
Al-adsorbed porous graphene	LDA with PWC	DFT@ DMOL	Each Al atom absorbing H ₂ molecules by polarizing them	$E_{ad-H_2} = E_{iH_2+Al-graphene} - (E_{(i-1)H_2+Al-graphene} + E_{H_2})$ (46)	-1.110	10.5wt.%	-	60
Pillared graphene	PAW-GGA- PBE	DFT&GCMC	Adsorbing H ₂ by charge induced dipole	-	-0.014	40g H ₂ /L	-	61
Ca-adsorbed porous graphene	GGA	DFT@VASP	Adsorption	-	-0.23	9 wt.%	-	62
CNTs	-	MD & VASP	Chemisorption	-	-	7.7 wt.%	-	63
Ti-anchored GO	PAW-GGA- PBE & PAW-LDA	DFT@VASP	Kubas effect	$E_{b} = E[Ti/HGO(H_{2})_{n-1}] + E(H_{2}) - E[Ti/HGO(H_{2})_{n}] $ (47)	-0.410	4.9 wt.% & 64g H ₂ /L	-	64
Ca-adsorbed Graphene	-	DFT@VASP	Ionic bonding and weak van der Waals interaction	-	-0.400	8.4 wt.%	-	65
Transition metal (TM)	USPP-GGA & PAW-GGA-	DFT@VASP	Kubas effect	-	-0.300	9.0 wt.%	-	66

to fullerenes	TDL							
Pd-adsorbed graphene	PAW-LDA	DFT@ DMOL	Polarization mechanism and orbital hybridization	$E_{av} = -[E_{Pd(H_2)_n} - E_{Pd} - nE_{H_2})]/n $ (48)	-1.315	3.6 wt.%	-	67
Pt4 cluster supported on pristine, B-, and N-doped graphene sheets	PAW-GGA- PBE	DFT@VASP	Co-existed dissociative and molecular adsorption of multiple H ₂ molecules	$E_{ads} = E[nH_2 - substrate] - E[(n - 1)H_2 - substrate] - E[H_2]$ (49)	-1.540	-	-	68
Ni-adsorbed graphene	PAW-GGA- PBE	DFT@ SIESTA	Adsorption	$\begin{aligned} &\Delta E_{ad-H_2} \\ &= [E_{Ni,G}(n_{H_2}, 1) - E_{Ni,G}(0, 1) - nE_{H_2}(\infty)]/n_{H_2} \\ &(50) \end{aligned}$	-1.210	2.8 wt.%	-	69
Cu and Pd- decorated graphene	PAW-GGA- PBE	DFT@QE	Adsorption	$\begin{aligned} \Delta E_b(H_2) \\ &= [E_{Graphene+Metal\ atom+Hydrogen} \\ &- E_{Graphene+Metal\ atom} \\ &+ E_{Hydrogen\ molecule}] \end{aligned} $ (51)	-0.960	-	-	70
Sc-decorated graphene with pyridinic-N defects	PAW-GGA- PBE	DFT@VASP	Adsorption	$E_{b} = -(E_{M-G} + nE_{H_{2}} - E_{M-G+nH_{2}})/n $ (52)	-0.400	2.8 wt.%	-	71
Ti-decorated <i>cis-</i> polyacetyl- ene	PAW-GGA- PBE	-	Adsorption	-	-	7.6 wt.% & 63 kg/m ³	-	72
Pd-decorated B-doped defective graphene	PAW-GGA- PBE	DFT@VASP	Co-existed van der Waals adsorption, hybridization, and electrostatic interaction	$E_{ads} = E[Pd + G + nH_2] -E[Pd + G + (n - 1)H_2] -E[H_2] $ (53)	-0.410	-	-	73
Mg- decorated graphene	PAW-GGA- PBE	DFT@ ESPRESSO	Weak van der Waals adsorption and electrostatic interaction	$E_{net-ads(H_2)} = E_{total-ads(H_2)} - E_{int(H_2)} $ (54)	-0.134	-	-	74
N- and B- doped penta- graphene	PAW-GGA- PBE	DFT@VASP	Co-existed dissociative and molecular adsorption of H ₂ molecules	$E = E_{tot} - (E_{sub} + E_{H_2}) \text{ for } H_2$ $E = E_{tot} - (E_{sub} + 1/2E_{H_2}) \text{ for }$ H (55)	-0.016	-	-	75
Li-decorated graphene	GGA- PBE+G+S+D	DFT@ CASTEP code in MS	Stroger chemisorption	$E_{ad} = \frac{E_{nH_2 + LiGR} - E_{LiGR} - nE_{H_2}}{n} $ (56)	-0.263	-	-	76
Li-decorated graphene with defects	GGA- PBE +D	DFT @DMol code in MS	Polarization interaction	$E_{ad} = \frac{E_{nH_2 + LiGR} - E_{LiGR} - nE_{H_2}}{n} $ (57)	-0.460	-	-	77
V-decorated porous graphene	GGA- PBE +D	DFT@ CASTEP code in MS	Attractive Coulomb interaction	$\overline{E_{ad}} = [E_{nH_2+V+PG} - E_{V+PG} - nE(H_2)]/n $ (58)	-0.791	4.6 wt.%	-	78
Defective graphene	GGA-PBE & vdW-DF2 GGA-PBE	DFT@QE	Adsorption	$E_b = \frac{E_{system+iH_2} - E_{system} - iE_{H_2}}{i} $ (59)	-0.073	7.0 wt.%	-	79
Ca-decorated graphene	& GGA-LDA &	DFT@VASP	Adsorption	-	-0.062	2.6 wt.%	-	80
Sc and Ti Containing Single- Walled	vdW-DF GGA- PBE+D	DFT @DMol	Kubas effect	E_{ads} $= E_{Sc/4ND-CNxNT+nH_2}$ $- E_{Sc/4ND-CNxNT} - E_{nH_2}$ (60)	-0.608	5.9 wt.%	-	81

PBE

atoms bound


Carbon				Eads				
Nanotubes				$= E_{Ti/4ND-CNxNT+nH_2} - E_{Ti/4ND-CNxNT} - E_{nH_2}$				
Ca-decorated	GGA-LDA			(61)				
boron-doped graphene Graphene	& GGA-PBE	DFT@ SIESTA	Polarization and hybridization	-	-0.400	8.4 wt.%	-	
with Boron Substitution	GGA-PBE	DFT @DMol	Chemisorption via H spillover	$\Delta E_H = E_{Sub-H} - E_{sub} - E_H \tag{62}$	-1.933	-	-	
Defective graphene	USPP-LDA	DFT@QE & MD	Adsorption	-	-	-	-	
Pt-adsorbed graphene	GGA-PBE	DFT@ CASTEP code in MS	Adsorption	$E_{ad} = E_{(g+H_2)} - E_g - E_{H_2} $ (63)	-0.083	8.4 wt.%	-	
Li-adsorbed graphene	USPP-LDA	DFT@VASP	Weak ionic bond, attractive Coulomb interaction and weak van der Waals interaction	-	-0.410	12.8 wt.%	-	
Li, Na and				F				
Mg- decorated BC ₃ graphene	GGA-LDA	DFT @DMol	Hybridizations	$E_{ad} = \frac{E_{nH_2/M/BC3} - E_{M/BC3} - nE_{H_2}}{n} $ (64)	-0.310	-	-	
TM-doped defected graphene	PAW-GGA- PBE	DFT@VASP	Adsorption of molecular hydrogen	-	-0.870	5.1 wt.%	-	
Si-doped SWCNTs and graphene	GGA-LDA	DFT @DMol & GCMC@DREI DING	Physisorption	$E(adsorption) = E(hostmaterial - H_2) -E(hostmaterial) -E(H_2) $ (65)	-0.190	2.5 wt.%	-	
Ti-embedded graphene	GGA-PBE	DFT@ ESPRESSO	Molecular chemisorption between physisorption and chemisorption	-	-0.310	6.3 wt.%	-	
Bare Cu atom and Cu- functionalized boron-doped graphene	PAW-GGA- LDA	DFT @DMol in MS	Adsorption in molecular form	$E_{ad} = \frac{E_{G+M+iH_2} - E_{G+M} - iE_{H_2}}{i} $ (66)	-1.352	4.2 wt.%	-	
Si-decorated graphene	LDA-CA	DFT @SIESTA	Adsorption in molecular form	$=\frac{E_b(H_2)}{m}$ $=\frac{E_{mH_2/Si-graph}-E_{Si-graph}-mE_{H_2}}{m}$ (67)	-0.190	15 wt.%	-	
Ca atom- and Ca dimers- decorated graphene	PAW-GGA- LDA	DFT@VASP	Hydrogen spillover storage	$E_b = \frac{E_T - E_0 - nE_{H_2}}{n} $ (68)	-1.020	7.7 wt.%	-	
B-doped Graphene	GGA- PBE+D	DFT @DMol	Adsorption in molecular form	$E_{ads} = -\frac{E_{adsorbent} - E_{adsorbent-H_2} + nE_{H_2}}{n}$ (69)	-0.060	5.3wt.%	-	
Li-adsorbed graphene	-	DFT@ CAM- B3LYP/6- 311G (d, p)	Adsorption in molecular form	$ \begin{aligned} & -E_{bind}(n, H_2) \\ & = -\frac{E(GR - Li - (H_2)_n) - E(GR - Li) + nE_{H_2}}{n} \\ & (70) \end{aligned} $	-0.170	-	-	
Li-adsorbed B-doped Graphene	GGA-PBE	DFT @DMol	Polarization	-	-0.130	-	-	
Graphene	GGA-PBE	DFT@ Gaussian	Spillover mechanism	$\varepsilon_b(n) = (E_{nH@g} - E_g - n\varepsilon_H)/n $ (71)	-2.350	-	-	
Li-doped fluorinated graphene	GGA-PBE	DFT @DMol	Adsorption from hybridization between Li and graphene	ΔE_n = $E[F + Li + graphene + (H_2)_n]$ - $E[F + Li + graphene$ + $(H_2)_{n-1}] - E[H_2]$ (72)	-0.266	16.2 wt.%	-	
Li-doped Graphene and nanotubes	USPP-LDA	DFT@ DACAPO	Physisorption	E_b = $E(Li + graphene + H_2)$ - $E(graphene + H_2) - E(H_2)$ (73)	-0.180	-	-	

Li-doped carbon nanotube	PAW-GGA- LDA	DFT@ Real- space code	Adsorption in molecular form	$\mu = E(System + H_2) - E(System) - E(H_2) $ (74)	-1.090	3.5 wt.%	-	100
Cs-doped C ₆₀	ωB97X-D	DFT@ Gaussian	Physisorption	$D_e(m) = E((H_2)_m C_{60} C s^+) - E((H_2)_{m-1} C_{60} C s^+) - E(H_2) $ (75)	-0.051	8.4 wt.%	-	101
Ca-decorated graphdiyne	GGA- PBE+D2	DFT@ ESPRESSO	Adsorption in molecular form	$ \overline{E}_{ads} = (E_{nH_2-Ca-GDY} - E_{Ca-GDY} - nE_{nH_2})/n $ (76)	-0.266	18 wt.%	-	102
K-decorated graphdiyne	B3LYP/6- 311G*	DFT@ Gaussian& MD@QNIOM	Physisorption in molecular form	-	-0.148	-	-	103
Corrugated graphene multilayer system	GGA-PBE	DFT&MD@CP MD	Physisorption in molecular form	-	-2.000	8.0 wt.%	-	104
g-C ₄ N ₃ and g-C ₃ N ₄	GGA-PBE	DFT @DMol	Physisorption in molecular form	$E_{ads}(n) = E_{adsorbent-nH_2}/n - E_{adsorbent} - nH_2 $ (77)	-0.250	7.1 wt.%	-	105

Supplementary Table 3 The comparison between current established H₂ storage theories and generalized Sabatier principle proposed in this work for adsorption-type hydrogen storage materials.

	Basic thermodynamic theory	Refs.				
Physical picture of H ₂ storage	_					
Universal theoretical equations	$\Delta \mu = \Delta h - T \Delta S$ (78) where $\Delta \mu$, Δh , ΔS and T are chemical potential change, enthalpy change and entropy change of hydrogen in free and adsorbed states and temperature, respectively.	106				
Comments	This is a simple analysis based on the fact that the difference in chemical potential of hydrogen in free and adsorbed states $\Delta \mu = \Delta h - T\Delta s$ controls the direction of adsorption/desorption. However, it cannot express hydrogen storage capacity and rate directly. More significantly, this theory is not able to establish the relationship between hydrogen storage performance and hydrogen storage materials, which leads to inferior guidance for design of hydrogen storage materials.					
	Statistical physics theory in equilibrium state					
Physical picture of H ₂ storage	-					
	$f = kT\partial lnZ/\partial\mu \qquad (79)$					
Universal theoretical	$f = \frac{\sum_{l=0} lg_l e^{l(\mu-\varepsilon_l)/kT}}{\sum_{l=0} g_l e^{l(\mu-\varepsilon_l)/kT}} (80)$					
equations	where Z is the grand partition function, μ is the chemical potential of H ₂ in the gas phase at given pressure p and temperature T, k is the Boltzmann constant, and f is the occupation (adsorption) number of H ₂ molecules per site.	72				
Comments	This theory is built in equilibrium state of H_2 adsorption/desorption without external driving condition. In reality, both hydrogen storage and release are driven by external condition such as temperature T and pressure P . In addition, it cannot express hydrogen storage rate directly. More significantly, this theory is not able to establish the relationship between hydrogen storage performance and microstructure of hydrogen storage materials, which leads to inferior guidance for design of hydrogen storage materials as mentioned above.					

Generalized design principle

This theory is built based on actual situation of H_2 adsorption/desorption under external conditions such as temperature *T* and pressure *P*. In addition, it can give the accurate equations of hydrogen storage capacity and rate directly. More significantly, this theory is able to establish the relationship between hydrogen storage performance and microstructure of hydrogen storage materials, which results into the superior guidance for design of hydrogen storage materials. It is the most complete theory for the design of hydrogen storage materials at present, and can realize the bottom-up design from electronic structure of hydrogen storage materials to hydrogen storage performance.

Supplementary Table 4 Electron affinity (E_X , unit eV), electronegativity (A_X), atomic radius (R_X , unit Å) and number of outermost electrons (N_X) of dopants, descriptor (Φ), the most negative adsorption energy change (ΔE , unit eV) at ground state and corresponding Gibbs free energy change (ΔG , unit eV) at ambient condition (298K, 0.1MPa) upon adsorbing a H₂ molecule on optimal active site of selected optimal doped-graphene-supported Ca single atom structure.

Dopants	$E_X(\mathrm{eV})$	Ax	$R_X(Å)$	N _X	$\phi = \frac{E_X A_X R_X / N_X}{E_C A_C R_C / N_C}$	ΔE (eV)	ΔG(eV)	Optimal doped-graphene- supported Ca single atom structures with H ₂
С	1.2621	2.55	0.863	4	1	-0.1127	0.2213	z-C-Ca (-H ₂)
В	0.2797	2.04	0.905	3	0.2479	-0.1416	0.1924	B=C-Ca (-H ₂)
Р	0.7466	2.19	1.233	5	0.5807	-0.1436	0.1904	P-3C-Ca (-H ₂)
Ν	1.4000	3.04	0.741	5	0.9084	-0.1324	0.2016	py-N-Ca (-H ₂)
Sb	1.0474	2.05	1.577	5	0.9753	-0.1271	0.2069	py-Sb-Ca (-H ₂)
Ο	1.4610	3.44	0.82	6	0.9892	-0.2160	0.118	py-O-Ca-H ₂)
Si	1.3895	1.90	1.312	4	1.2471	-0.1512	0.1828	a-Si-Ca (-H ₂)
S	2.0771	2.58	1.164	6	1.4972	-0.0959	0.2381	th-S-Ca (-H ₂)
F	3.4011	3.98	0.794	7	2.2113	-0.1146	0.2194	z-F-Ca (-H ₂)
Br	3.3636	2.96	1.164	7	2.3843	-0.1511	0.1829	a-Br-Ca (-H ₂)
Ι	3.0590	2.66	1.487	7	2.4894	-0.1501	0.1839	a-I-Ca (-H ₂)
Cl	3.6127	3.16	1.111	7	2.6095	-0.1797	0.1543	a-Cl-Ca (-H ₂)
S-B	0.2797	2.04	0.905	3	0.2479	-0.1943	0.1397	S-B-Ca (-H ₂)
S-P	0.7466	2.19	1.233	5	0.5807	-0.1877	0.1463	S-P-Ca (-H ₂)
S-N	1.4000	3.04	0.741	5	0.9084	-0.16923	0.16477	S-N-Ca (-H ₂)
S-Sb	1.0474	2.05	1.577	5	0.9753	-0.1983	0.1357	S-Sb-Ca (-H ₂)
S-O	1.4610	3.44	0.82	6	0.9892	-0.16783	0.16617	S-O-Ca (-H ₂)
S-Si	1.3895	1.90	1.312	4	1.2471	-0.2500	0.084	S-Si-Ca (-H ₂)
S-F	3.4011	3.98	0.794	7	2.2113	-0.1937	0.1403	S-F-Ca (-H ₂)
S-Br	3.3636	2.96	1.164	7	2.3843	-0.1416	0.1924	S-Br-Ca (-H ₂)
S-I	3.0590	2.66	1.487	7	2.4894	-	-	-
S-Cl	3.6127	3.16	1.111	7	2.6095	-0.1471	0.1869	S-Cl-Ca (-H ₂)

Supplementary Table 5 Summary of physicochemical characterization, hydrogen storage capacity measured experimentally at 77K and 5MPa, and calculation results on various doped-graphene-supported Ca single atoms non-dissociative chemisorption hydrogen storage materials (NCHSMs).

Sample	Surface area (m ² g ⁻¹)	Dopant concentration (at %)	Ca loading content from XPS (at%)	<i>Cm</i> (wt%)	C _{0/site} * (H ₂ site ⁻¹)	ΔG_{min} (eV)
O-G-Ca	395	13.11	0.43	1.51	0.002594754	0.118
N-G-Ca	325	7.61	0.33	1.33	0.002142234	0.202
P-G-Ca	58	2.41	0.40	0.21	0.002163223	0.190

Notes: C_m represents the specific capacity for H₂ storage measured in automatic high pressure gas sorption instrument. $C_{0/site}^*$ refers to specific capacity per unit H₂ molecule storage site after normalization (See normalization process in Note 1).

Dopants	$\phi = \frac{E_X A_X R_X / N_X}{E_C A_C R_C / N_C}$	Charge transferred to substrate from Ca (e)	Charge transferred to H ₂ from Ca (e)	<i>dн-н</i> (Å)	<i>∆dн-н</i> (Å)	Optimal doped- graphene- supported Ca single atom structures with H ₂
С	1	1.1931	0.0358	0.76682	0.02582	z-C-Ca-H ₂
В	0.2479	1.3859	0.0253	0.76832	0.02732	B=C-Ca-H ₂
Р	0.5807	1.3163	0.0022	0.76052	0.01952	P-3C-Ca-H ₂
Ν	0.9084	0.9924	0.0220	0.75806	0.01706	py-N-Ca-H ₂
Sb	0.9753	1.3417	-0.0072	0.75780	0.0168	py-Sb-Ca-H ₂
Ο	0.9892	1.3680	0.0410	0.77091	0.02991	py-O-Ca-H ₂
Si	1.2471	1.3379	0.0490	0.77134	0.03034	a-Si-Ca-H ₂
S	1.4972	1.2220	0.0035	0.75737	0.01637	th-S-Ca-H ₂
F	2.2113	1.1973	0.0295	0.76493	0.02393	z-F-Ca-H ₂
Br	2.3843	1.3672	0.0134	0.76425	0.02325	a-Br-Ca-H ₂
Ι	2.4894	1.3616	0.0161	0.76438	0.02338	a-I-Ca-H ₂
Cl	2.6095	1.3646	0.0447	0.7683	0.0273	a-Cl-Ca-H ₂
S-B	0.2479	1.2721	0.0451	0.76982	0.02882	S-B-Ca-H ₂
S-P	0.5807	1.3889	0.0501	0.77447	0.03347	S-P-Ca-H ₂
S-N	0.9084	1.3492	0.0399	0.76661	0.02561	S-N-Ca-H ₂
S-Sb	0.9753	1.3488	0.0725	0.79305	0.05205	S-Sb-Ca-H ₂
S-O	0.9892	1.4398	-0.0019	0.76119	0.02019	S-O-Ca-H ₂
S-Si	1.2471	1.4164	0.0008	0.75185	0.01085	S-Si-Ca-H ₂
S-F	2.2113	1.3224	0.0522	0.77466	0.03366	S-F-Ca-H ₂
S-Br	2.3843	1.1696	0.0003	0.75887	0.01787	S-Br-Ca-H ₂
S-I	2.4894	-	-	-	-	-
S-Cl	2.6095	1.3327	0.0238	0.76602	0.02502	S-Cl-Ca-H ₂

Supplementary Table 6 Summary of calculated Bader charge transfer, bond length (d_{H-H}) and bond length change (Δd_{H-H}) of hydrogen molecule (H₂) upon H₂ molecule adsorbed on optimal active sites of various doped-graphene-supported single atom Ca models.

Dopants	$\phi = \frac{E_X A_X R_X / N_X}{E_c A_c R_c / N_c}$	DOS1	DOS2	DOS3	Ca chemisorbed on optimal doped- graphene substrates
С	1	0.0144	-0.0233	0.6499	z-C(-Ca)
В	0.2479	0.0193	-0.0311	0.9400	B=C(-Ca)
Р	0.5807	0.0195	-0.0433	0.6430	P-3C(-Ca)
Ν	0.9084	0.0120	-0.0389	1.2824	py-N(-Ca)
Sb	0.9753	0.0202	-0.0175	1.4421	py-Sb(-Ca)
Ο	0.9892	0.0166	-0.0500	1.8044	py-O(-Ca)
Si	1.2471	0.0178	-0.0324	1.2547	a-Si(-Ca)
S	1.4972	0.0165	-0.0547	0.9325	th-S(-Ca)
F	2.2113	0.0112	-0.0291	6.1190	z-F(-Ca)
Br	2.3843	0.0237	-0.0174	0.7450	a-Br(-Ca)
Ι	2.4894	0.0212	-0.0162	1.4559	a-I(-Ca)
Cl	2.6095	0.0234	-0.0052	0.7031	a-Cl(-Ca)
S-B	0.2479	0.0149	-0.0369	0.4124	S-B(-Ca)
S-P	0.5807	0.0221	-0.0240	1.2408	S-P(-Ca)
S-N	0.9084	0.0138	-0.0404	1.7081	S-N(-Ca)
S-Sb	0.9753	0.0177	-0.0376	0.9288	S-Sb(-Ca)
S-O	0.9892	0.0260	-0.0214	4.0061	S-O(-Ca)
S-Si	1.2471	0.0204	-0.0579	0.4276	S-Si(-Ca)
S-F	2.2113	0.0182	-0.0305	2.5793	S-F(-Ca)
S-Br	2.3843	0.0198	-0.0580	0.7245	S-Br(-Ca)
S-I	2.4894	-	-	-	-
S-Cl	2.6095	0.0194	-0.0238	0.4381	S-Cl(-Ca)

Supplementary Table 7 Summary of calculated density of states (DOSs) including DOS1, DOS2 and DOS3 as defined above of single atom Ca chemisorbed on optimal doped-graphene substrates.

Dopants	$\phi = \frac{E_X A_X R_X / N_X}{E_C A_C R_C / N_C}$	DOS1	DOS2	DOS3	Optimal doped- graphene substrates
С	1	8.6167	7.6763	63.1807	z-C
В	0.2479	8.1234	7.2536	66.0034	B=C
Р	0.5807	8.0670	6.9374	28.0203	P-3C
Ν	0.9084	8.2645	7.4694	59.8546	py-N
Sb	0.9753	7.4815	6.5879	47.2730	py-Sb
0	0.9892	8.0967	7.3582	148.6560	py-O
Si	1.2471	6.1995	4.8070	70.0511	a-Si
S	1.4972	6.2615	5.1310	68.9286	th-S
F	2.2113	4.5627	3.8610	50.6584	z-F
Br	2.3843	6.8916	5.8625	84.2785	a-Br
Ι	2.4894	8.2029	7.6777	191.5190	a-I
Cl	2.6095	7.0157	6.0658	108.4480	a-Cl
S-B	0.2479	6.1938	5.1622	74.4984	S-B
S-P	0.5807	6.0762	5.3171	41.9430	S-P
S-N	0.9084	5.4990	4.5129	85.5226	S-N
S-Sb	0.9753	6.7059	5.5692	58.4166	S-Sb
S-O	0.9892	5.6394	4.3366	97.2307	S-O
S-Si	1.2471	7.5487	6.4523	75.6393	S-Si
S-F	2.2113	3.1751	2.6292	50.1810	S-F
S-Br	2.3843	8.5912	7.8241	130.6730	S-Br
S-I	2.4894	-	-	-	-
S-Cl	2.6095	9.6724	9.3778	328.9450	S-Cl

Supplementary Table 8 Summary of calculated density of states (DOSs) including DOS1, DOS2 and DOS3 as defined above of optimal doped-graphene substrates.

Supplementary Table 9 Summary of calculated density of states (DOSs) including DOS1, DOS2 and DOS3 as defined above of optimal doped-graphene-supported Ca single atoms models.

Dopants	$\phi = \frac{E_X A_X R_X / N_X}{E_C A_C R_C / N_C}$	DOS1	DOS2	DOS3	Optimal doped- graphene-supported Ca single atom structures
С	1	5.6698	5.2744	88.1415	z-C-Ca
В	0.2479	6.0114	5.5691	75.8996	B=C-Ca
Р	0.5807	5.5392	4.9436	32.4135	P-3C-Ca
Ν	0.9084	5.2976	4.7920	162.0420	py-N-Ca
Sb	0.9753	6.0837	5.6604	79.8720	py-Sb-Ca
0	0.9892	5.5540	4.9721	91.8413	py-O-Ca
Si	1.2471	4.2544	3.7817	96.2426	a-Si-Ca
S	1.4972	4.6233	3.9177	72.2745	th-S-Ca
F	2.2113	4.0618	3.4906	80.0595	z-F-Ca
Br	2.3843	5.0244	4.6906	58.5805	a-Br-Ca
Ι	2.4894	4.3074	3.9701	72.9811	a-I-Ca
Cl	2.6095	5.0459	4.7899	56.7659	a-Cl-Ca
S-B	0.2479	4.1954	3.8263	37.9123	S-B-Ca
S-P	0.5807	4.1883	3.8459	89.8705	S-P-Ca
S-N	0.9084	3.6005	3.2098	30.0677	S-N-Ca
S-Sb	0.9753	4.6005	4.0481	83.8409	S-Sb-Ca
S-O	0.9892	4.7736	4.5261	149.3290	S-O-Ca
S-Si	1.2471	5.8536	5.4089	56.5592	S-Si-Ca
S-F	2.2113	3.4477	2.9755	105.4540	S-F-Ca
S-Br	2.3843	6.4568	5.9491	113.9600	S-Br-Ca
S-I	2.4894	-	-	-	-
S-Cl	2.6095	4.7411	4.4453	79.6752	S-Cl-Ca

Dopants	$\phi = \frac{E_X A_X R_X / N_X}{E_C A_C R_C / N_C}$	DOS1	DOS2	DOS3	Optimal doped- graphene-supported Ca single atom structures with H ₂
С	1	5.1807	4.6770	51.1567	z-C-Ca-H ₂
В	0.2479	5.7347	5.4044	71.8251	B=C-Ca-H ₂
Р	0.5807	5.6977	5.1001	28.2980	P-3C-Ca-H ₂
Ν	0.9084	5.8917	4.7511	108.7990	py-N-Ca-H ₂
Sb	0.9753	5.7639	4.8021	50.5066	py-Sb-Ca-H ₂
0	0.9892	6.1136	5.4886	93.4630	ру-О-Са-Н2
Si	1.2471	4.4999	4.0013	102.2200	a-Si-Ca-H ₂
S	1.4972	5.1612	4.8884	51.8576	th-S-Ca-H ₂
F	2.2113	5.1177	4.5584	102.4620	z-F-Ca-H ₂
Br	2.3843	4.4520	4.0942	53.8409	a-Br-Ca-H ₂
Ι	2.4894	4.9701	4.3851	133.6880	a-I-Ca-H ₂
Cl	2.6095	4.4468	4.1668	74.6184	a-Cl-Ca-H ₂
S-B	0.2479	4.1796	3.5808	49.2472	S-B-Ca-H ₂
S-P	0.5807	4.7861	4.0307	43.8572	S-P-Ca-H ₂
S-N	0.9084	4.7952	4.1247	117.7220	S-N-Ca-H ₂
S-Sb	0.9753	4.1277	3.5123	55.1704	S-Sb-Ca-H ₂
S-O	0.9892	3.7217	3.3677	41.1686	S-O-Ca-H ₂
S-Si	1.2471	6.2488	4.5389	91.7678	S-Si-Ca-H ₂
S-F	2.2113	3.4967	3.3166	79.4677	S-F-Ca-H ₂
S-Br	2.3843	5.6319	5.2488	77.2373	S-Br-Ca-H ₂
S-I	2.4894	-	-	-	-
S-Cl	2.6095	4.3792	3.8848	132.8440	S-Cl-Ca-H ₂

Supplementary Table 10 Summary of calculated density of states (DOSs) including DOS1, DOS2 and DOS3 as defined above of optimal doped-graphene-supported Ca single atoms with H₂ molecules adsorbed on their optimal active sites.

4. Supplementary Notes

Note 1

Normalization process from experimental H₂ storage specific capacity C_m (wt%) to specific capacity per unit H₂ storage site $C_{\theta/site}$ ^{*} (H₂ site⁻¹)

First, H₂ molecule storage site can be simply regarded as hollow site of doped-graphene-supported Ca single-atom surface, implying that a H₂ molecule occupies averagely two net carbon atoms on doped-graphene-supported Ca single-atom surface. Based on geometric surface area of a carbon atom on graphene ($\sim 2.6 \times 10^{-20} \text{ m}^2$), geometric surface area per H₂ molecule storage site should be $5.2 \times 10^{-20} \text{ m}^2$ due to a hollow site comprising two net carbon atoms. Assuming the host material mass for H₂ storage is 1g, the H₂ mass stored on host material, namely the mass of H₂ stored per unit mass host material (g/g), can be calculated according to

$$C_m(wt\%) = \frac{m_{H_2}}{m_{H_2} + m_{Host}} \times 100\%$$
(83)

Here, $C_m(wt\%)$, m_{H_2} and m_{Host} are hydrogen storage specific capacity, the hydrogen molecules mass and host material mass, respectively. Taking nitrogen-doped-graphene-supported Ca singleatom host material (N-G-Ca) as an example, $C_m = 1.33$ wt% (experimental results at 77K and 5MPa) will lead to

$$m_{H_2} = \frac{c_m m_{Host}}{1 - c_m} = 0.0135g. \tag{84}$$

Thus, the amount of H_2 molecules stored was calculated to be 4.06×10^{21} according to

$$N = (m/M)N_A \tag{85}$$

Here, *N*, *m*, *M* and *N*_A are the amount, mass, molar mass, and Avogadro constant (~ 6.02×10^{23}), respectively. In addition, combining the surface area of N-G-Ca sample (~ $325 \text{ m}^2 \text{ g}^{-1}$), the total amount of H₂ molecules storage sites can roughly be estimated to be $325/(5.2 \times 10^{-20})=6.25 \times 10^{21}$. Consequently, specific capacity per unit H₂ storage site $C_{0/site}^*$ (H₂ site⁻¹) of doped-graphene-supported Ca single-atom surface mainly originating from heteroatom doping and Ca single atom loading can be estimated to be $0.33\% \times (4.06 \times 10^{21})/(6.25 \times 10^{21})=2.14 \times 10^{-3}$. Here, it deserves to note that although doping concentration has an impact on specific capacity of H₂ storage, its role is realized mainly via tuning metal Ca single atoms. Therefore, compared with Ca single atom loading, contribution of heteroatom doping concentration to specific capacity can be roughly ignored.

Conclusively, specific capacity per unit H₂ storage site $C_{0/site}^*$ (H₂ site⁻¹) of doped-graphenesupported Ca single-atom surface can be given by

$$C_{H_2/site}^{*} = \frac{5.2 \times 10^{-20} \times at\%(Ca) \times \frac{C_m}{1 - C_m} \times \frac{N_A}{M}}{S_a}$$
(86)

where at%(Ca), C_m , N_A , M, and S_a are Ca loading content, hydrogen capacity (wt%), Avogadro constant, molar mass and surface area, respectively.

Note 2

Normalization process from gravimetric capacity C_m (wt%) to area specific capacity C_a (g m⁻²) for carbon-based adsorption-type H₂ storage host materials

According to the calculation method of gravimetric capacity C_m (wt%) for H₂ storage, namely

$$C_m(wt\%) = \frac{m_{H_2}}{m_{H_2} + m_{Host}} \times 100\%$$
(87)

where $C_m(wt\%)$, m_{H_2} and m_{Host} are hydrogen storage gravimetric capacity, the hydrogen molecules mass and host material mass, respectively, the area specific capacity C_a (g m⁻²) can be expressed as

$$C_a(g \ m^{-2}) = \frac{c_m}{(1 - c_m)s_a} \tag{88}$$

where S_a is BET surface area of H₂ host materials.

Note 3

Predicted H₂ storage capacity for dual-doped-graphene-supported single-atom Ca NC-SHSMs (S-Si-G-Ca).

In experiment, the hydrogen storage capacity $C_m(wt\%)$ of as-prepared N-G-Ca at 77K and 2MPa was tested to be 0.8 wt%, the area specific capacity C_a (g m⁻²) can be calculated to 2.48×10^{-5} g m⁻² according to the above Equation (88) $C_a(g m^{-2}) = \frac{c_m}{(1-c_m)s_a}$ (S_a (~325 m² g⁻¹) is BET surface area of N-G-Ca).

In theory, based on the calculated Gibbs free energy change $\Delta G_{H_2^*}^{min}$ (~0.21 eV) before and after H₂ molecule adsorbed on the optimal site of N-G-Ca, for given $\Delta G_{H_2^*}^{max}$ (~0.5 eV), the specific capacity $C_{H_2/site}$, namely the averaged amount of H₂ molecules adsorbed one site can be calculated to be to 2.64 × 10⁻⁵ H₂/site according to the above Equation (26). Thus, based on the geometric area of one H₂ molecule storage site ($2S_c=5.2 \times 10^{-20} \text{ m}^2$) and Equation (85) $N=(m/M)N_A$ (N, m, M

and N_A (~6.02×10²³) are the amount, mass, molar mass, and Avogadro constant, respectively), the theoretical area specific capacity C_a^* (g m⁻²) was calculated to be 1.69 × 10⁻⁹ g m⁻².

Thus, the correction factor μ was calculated to 1.47×10⁴ according to Equation (89).

 $\mu = C_a / C_a *$

(89)

Here, C_a and C_a^* are the experimental area specific capacity (g m⁻²) and the theoretical area specific capacity (g m⁻²), respectively.

Under the same physical properties including BET surface area ($325m^2 g^{-1}$), Ca loading mass (0.33 at%), doping concentration (7.61 at%), and external conditions (77K and 2MPa) as that of as-prepared N-G-Ca NC-SHSMs in our experiment, the correction factor μ should be the same. Therefore, for dual-doped-graphene-supported single-atom Ca (S-Si-G-Ca), the calculated $\Delta G_{H_2^*}^{min}$ (~0.008 eV) can lead to the theoretical specific capacity $C_a^* = 1.776 \times 10^{-7} \text{ g m}^{-2}$. Thus, the predicted practical area specific capacity C_a (g m⁻²) of S-Si-G-Ca under the same conditions and physical properties as that of N-G-Ca was calculated to 2.61 × 10⁻³ g m⁻². Finally, the logarithm of area specific capacity

ln (C_a) was obtained to compare with the H₂ storage properties of other host materials including zeolite-like carbon⁴, N-doped microporous carbon⁶, activated carbon (AC)⁷, ultrahigh surface area carbon⁸, graphene-like nanosheet¹¹ and oxygen-rich microporous carbon²⁰ under the same external conditions (Supplementary Table S1).

5. Supplementary References

1. Gao, Y. et al. Highly pseudocapacitive storage design principles of heteroatom-doped graphene anode in calcium-ion batteries. *Adv. Funct. Mater.***1**, 1-9 (2023).

2. Jiao, Y., Zheng, Y., Kenneth, D. & Qiao, S. Z. Activity origin and catalyst design principles, for electrocatalytic hydrogen evolution on heteroatom-doped graphene. *Nat. Energy* **1**, 1-9 (2016).

3. Liu, Y. Y., He, G. J., Jiang, H., Parkin, I. P., Shearing, P. R. & Brett, D. J. L., Cathode design for aqueous rechargeable multivalent ion batteries: challenges and opportunities. *Adv. Funct. Mater.* **3**, 1-9 (2021).

4. Yang, Z., Xia, Y. & Mokaya, R. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. *J. Am. Chem. Soc.* **129**, 1673-1679 (2007).

5. Kabbour, H., Baumann, T. F., Satcher, J. H. & Saulnier, A. Toward new candidates for hydrogen storage: high-surface area carbon aerogels. *Chem. Mater.* **18**, 6085-6092 (2006).

6. Xia, Y. D., Mokaya, R., Grant, D. M. & Walker, G. S. A simplified synthesis of N-doped zeolitetemplated carbons, the control of the level of zeolite-like ordering and its effect on hydrogen storage properties. *Carbon.* **49**, 844-853 (2011).

7. Wang, H., Gao, Q. & Hu, J. High hydrogen storage capacity of porous carbons prepared by using activated carbon. *J. Am. Chem. Soc.***131**, 7016-7022 (2011).

8. Sevilla, M., Mokaya, R. & Fuertes, A. B. Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage. *Energy Environ. Sci.* **4**, 2930-2938 (2011).

9. Wang, Y. et al. Reversible hydrogen storage of multi-wall carbon nanotubes doped with atomically dispersed lithium. *J. Mater. Chem.* **20**, 6490-6494 (2010).

10. Reyhani, A. et al. Hydrogen storage in decorated multiwalled carbon nanotubes by Ca Co, Fe, Ni, and Pd nanoparticles under ambient conditions. *J. Phys. Chem. C* **115**, 6994-7001(2011).

11. Srinivas, G. et al. Synthesis of graphene- like nanosheets and their hydrogen adsorption capacity. *Carbon* **48**, 630-635 (2010).

12. Guo, C. X., Wang, Y. & Li, C. M. Hierarchical graphene-based material for Over 4.0 wt% physisorption hydrogen storage capacity. *ACS Sustain. Chem. Eng.* **1**,14-18(2013).

13. Aboutalebi, S. H. et al. Enhanced hydrogen storage in graphene oxide- MWCNTs composite at room temperature. *Adv. Energy Mater.* **2**,1439-1446(2012).

14. Huang, C. C. et al. Hydrogen storage in graphene decorated with Pd and Pt nano-particles using an electroless deposition technique. *Sep. Purif. Technol.* **82**, 210-215(2011).

15. Parambhath, V. B., Nagar, R. & Ramaprabhu, S. Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. *Langmuir* **28**,7826-7833(2012).

16. Wang, Y. et al. Hydrogen storage in a Ni-B nanoalloy-doped three-dimensional graphene material. *Energy Environ. Sci.* **4**, 195-200 (2011).

17. Cho, E. S. et al. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage. *Nat. Commun.* **7**, 10804-10812 (2016).

18. Li, A. et al. Lithium-Doped Conjugated Microporous Polymers for Reversible Hydrogen Storage. *Angew. Chem. Int. Ed.***122**, 3402-3405(2010).

19. Liu, S. Y. et al. Hydrogen storage in incompletely etched multilayer Ti_2CT_x at room temperature. *Nat. Nanotechnol.* **16**, 331-336 (2021).

20. Blankenship, T. S., Balahmar, N. & Mokaya, R. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. *Nat. Commun.* **8**,1545-1552 (2017).

21. Zhou, C. Y. & Szpunar, J. A. Hydrogen Storage Performance in Pd/Graphene Nanocomposites. *ACS Appl. Mater. Interfaces* **8**, 25933-25940 (2016).

22. Zhou, C. Y., Szpunar, J. A. & Cui, X. Y. Synthesis of Ni/Graphene Nanocomposite for Hydrogen Storage. *ACS Appl. Mater. Interfaces* **8**, 15232-15241(2016).

23. Zhou, H. et al. Enhanced room-temperature hydrogen storage capacity in Pt-loaded graphene oxide/HKUST-1 composites, *Int. J. Hydrogen Energy* **39**, 2160-2167(2014).

24. Xia, G. L. et al. Graphene-wrapped reversible reaction for advanced hydrogen storage, *Nano Energy* **26**, 488-495(2016).

25. Sarkar, A. K. et al. Hydrogen storage on graphene using Benkeser reaction. *Int. J. Energy Res.*38, 1889-1895(2014).

26. Ariharan, A., Viswanathan, B. & Nandhakumar, V. Heteroatom doped multi-layered graphene material for hydrogen storage application. *Graphene* **5**, 39-50 (2016).

27. Ariharan, A., Viswanathan, B. & Nandhakumar, V. Nitrogen doped graphene as potential material for hydrogen storage, *Graphene* **6**, 41-60 (2017).

28. Tarasov, B. P. et al. Hydrogen storage behavior of magnesium catalyzed by nickel-graphene nanocomposites, *Int. J. Hydrogen Energy* **44**, 29212-29223 (2019).

29. Xia, G. L. et al. Oxygen-free layer-by-layer assembly of lithiated composites on graphene for advanced hydrogen storage. *Adv. Sci.* **4**, 1-10 (2017).

30. Suttisawat, P. Y. et al. Investigation of hydrogen storage capacity of multi-walled carbon nanotubes deposited with Pd or V. *Int. J. Hydrogen Energy* **34**, 6669-6675(2009).

31. Muthu, R. N., Rajashabala, S. & Kannan, R. Hexagonal boron nitride (h-BN) nanoparticles decorated multi-walled carbon nanotubes (MWCNT) for hydrogen storage. *Renew. Energy* **85**, 387-394 (2016).

32. Huang, Y. K. et al. Layer-by-layer uniformly confined graphene-NaAlH₄ composites and hydrogen storage performance. *Int. J. Hydrogen Energy* **45**, 28116-28122 (2020).

33. Cristina, R. G. et al. Clay-supported graphene materials: application to hydrogen storage. *Phys. Chem. Chem. Phys.* **15**, 18635-18641(2013).

34. Ariharan, A., Viswanathan, B. & Nandhakumar, V. Phosphorous-doped porous carbon derived from paste of newly growing Ficus benghalensis as hydrogen storage material. *Indian J. Chem.* **55**, 649-656 (2016).

35. Zeng, L. A. et al. Enhanced hydrogen storage properties of MgH₂ Using a Ni and TiO₂ codoped reduced graphene oxide nanocomposite as a catalyst. *Front. Chem.* **8**, 1-8 (2020).

36. Klechikov, A. et al. Hydrogen storage in high surface area graphene scaffolds. *Chem. Commun.*51, 15280-15283(2015).

37. Rajaura, R. S. et al. Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide. *Int. J. Hydrogen Energy* **41**, 9454-9461(2016).

38. Kim, B. H. et al. Thermally modulated multilayered graphene oxide for hydrogen storage. *Phys. Chem. Chem. Phys.* **14**, 1480-1484(2012).

39. Lan, Z. Q. et al. Synthetical catalysis of nickel and graphene on enhanced hydrogen storage properties of magnesium. *Int. J. Hydrogen Energy* **44**, 24849-24855(2019).

40. Ngqalakwezi, A., Nkazi, D., Seifert, G. & Ntho, T. Effects of reduction of graphene oxide on the hydrogen storage capacities of metal graphene nanocomposite. *Catal. Today* **358**, 338-344 (2020).

41. Gu, J., Zhang, X. P., Fu, L. & Pang, A. M. Study on the hydrogen storage properties of the dual active metals Ni and Al doped graphene composites. *Int. J. Hydrogen Energy* **44**, 6036-6044 (2019).

42. Chen, P., Wu, X., Lin, J. & Tan, K. L. High H₂ Uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. *Science* **285**, 91-93 (1999).

43. Xia, G. L. et al. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. *Adv. Mater.* **27**, 5981-5988(2015).

44. Teprovich, J. A. et al. Comparative study of reversible hydrogen storage in alkali-doped fulleranes. *J. Alloys Compd.* **580**, 364-367(2013).

45. Mashoff, T. et al. Hydrogen storage with titanium-functionalized graphene, *Appl. Phys. Lett.* **103**, 013903-013907(2013).

46. Broom, D. P. et al. Concepts for improving hydrogen storage in nanoporous materials. *Int. J. Hydrogen Energy* **44**, 7768-7779 (2019).

47. Klechikov, A. G. et al. Hydrogen storage in bulk graphene-related materials. *Micropor. Mesopor. Mat.* **210**, 46-51(2015).

48. Wan, L. F. et al. Edge-functionalized graphene nanoribbon encapsulation to Enhance stability and control kinetics of hydrogen storage materials. *Chem. Mater.* **31**, 2960-2970(2019).

49. Ruse, E. et al. Hydrogen storage kinetics: the graphene nanoplatelet size effect. *Carbon* **130**, 369-376(2018).

50. Yoon, H. et al. Reversible phase modulation and hydrogen storage in multivalent VO₂ epitaxial thin films. *Nat. Mater.* **15**,1113-1119(2015).

51. Nachimuthu, S., Lai, P. J. & Jiang, J. C. Efficient hydrogen storage in boron doped graphene decorated by transition metals-A first-principles study. *Carbon* **73**, 132-140(2014).

52. Ao, Z. M., Jiang, Q., Zhang, R. Q., Tan, T. T. & Li, S. Al doped graphene: A promising material for hydrogen storage at room temperature. *J. Appl. Phys.***105**, 074307-074315(2009).

53. Ao, Z. M. & Peeters, F. M. High-capacity hydrogen storage in Al-adsorbed graphene. *Phys. Rev. B*, **81**, 205406-205412(2010).

54. Lee, H. et al. Calcium-decorated graphene-based nanostructures for hydrogen storage. *Nano Lett.* **10**, 793-798(2010).

55. Lee, H. et al. Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: First-principles calculations. *Phys. Rev. B* **80**, 115412-115416(2009).

56. Kim, Y. H. et al. Nondissociative Adsorption of H_2 Molecules in light-element-doped fullerenes. *Phys. Rev. Lett.* **96**, 016102-016106(2006).

57. Du, A. J., Zhu, Z. H. & Smith, S. C. Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations. *J. Am. Chem. Soc.* **132**, 2876-2877(2010).

58. Sathishkumar, N., Wu, S. Y. & Chen, H. T. Charge-modulated/electric-field controlled reversible CO₂/H₂ capture and storage on metal-free N-doped penta-graphene. *Chem. Eng. J.* **391**, 123577-123585(2020).

59. Zhou, W. W. et al. First-principles study of high-capacity hydrogen storage on graphene with Li atoms. *J. Phys. Chem. Solids* **73**, 245-251(2012).

60. Dou, S. X. et al. Hydrogen storage in porous graphene with Al Decoration. *Int. J. Hydrogen Energy*, **3**, 1-8(2014).

61. Dimitrakakis, G. K., Tylianakis, E. & Froudakis, G. E. Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. *Nano Lett.* **8**, 3166-3170(2008).

62. Reunchan, P. & Jhi, S. H. Metal-dispersed porous graphene for hydrogen storage. *Appl. Phys. Lett.* **98**, 093103-093109(2011).

63. Furuta, T., Goto, H., Ohashi, T. & Fujiwara, Y. Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures. *J. Chem. Phys.* **114**, 2376-2385(2003).

64. Wang, L. et al. Graphene oxide as an ideal substrate for hydrogen storage. *ACS Nano* **3**, 2995-3000 (2009).

65. Ataca, C., Aktürk, E. & Ciraci, S. Hydrogen storage of calcium atoms adsorbed on graphene: first-principles plane wave calculations, *Phys. Rev. B* **79**,1-4 (2009).

66. Zhao, Y. F. et al. Hydrogen storage in novel organometallic buckyballs. *Phys. Rev. Lett.* **94**, 155504-155511(2005).

67. Faye, O. et al. Hydrogen adsorption and storage on Palladium-functionalized graphene with NH-dopant: A first principles calculation. *Appl. Surf. Sci.* **392**, 362-374 (2017).

68. Chen, I. N., Wu, S. Y. & Chen, H. T. Hydrogen storage in N- and B-doped graphene decorated by small platinum clusters: A computational study. *Appl. Surf. Sci.* **441**, 607-612(2018).

69. Sigal, A., Rojas, M. I. & Leiva, E. P. Interferents for hydrogen storage on a graphene sheet decorated with nickel: A DFT study. *Int. J. Hydrogen Energy* **36**, 3537-3546(2011).

70. Choudhary, A. et al. First principles calculations of hydrogen storage on Cu and Pd-decorated graphene. *Int. J. Hydrogen Energy* **41**, 17652-17656 (2016).

71. Luo, Z. F., Fan, X. L., Pan, R. & An, Y. R. A first-principles study of Sc-decorated graphene with pyridinic-N defects for hydrogen storage. *Int. J. Hydrogen Energy* **42**, 3106-3113(2017).

72. Lee, H., Choi, W. I. & Ihm, J. Combinatorial search for optimal hydrogen-storage nanomaterials based on polymers. *Phys. Rev. Lett.* **97**, 056104-056110(2006).

73. Ma, L., Zhang, J. M., Xu, K. W. & Ji, V. Hydrogen adsorption and storage on palladiumdecorated graphene with boron dopants and vacancy defects: A first-principles study. *Phys. E* 66, 40-47(2015).

74. Amaniseyed, Z. & Tavangar, Z. Hydrogen storage on uncharged and positively charged Mgdecorated graphene. *Int. J. Hydrogen Energy* **44**, 3803-3811(2019).

75. Sathishkumar, N. & Wu, S. Y. Boron- and nitrogen-doped penta-graphene as a promising material for hydrogen storage: A computational study. *Int. J. Energy Res.* **43**, 4867-4878(2019).

76. Zheng, N. et al. A DFT study of the enhanced hydrogen storage performance of the Lidecorated graphene nanoribbons. *Vacuum* **171**,109011-109018(2020).

77. Zhang, X., Tang, C. M. & Jiang, Q. G. Electric field induced enhancement of hydrogen storage capacity for Li atom decorated graphene with Stone-Wales defects. *Int. J. Hydrogen Energy.* **2**, 1-10 (2016).

78. Yuan, L. H. et al. First-principles study of V-decorated porous graphene for hydrogen storage, *Chem. Phys. Lett.* **726**, 57-61(2019).

79. Yadav, S., Zhu, Z. H. & Singh, C. V. Defect engineering of graphene for effective hydrogen storage. *Int. J. Hydrogen Energy* **39**, 4981-4995(2014).

80. Wang, V. et al. Calcium-decorated graphene for hydrogen storage: A van der Waals density functional study. *Comp. Mater. Sci.* **55**, 180-185(2012).

81. Mananghaya, M., Yu, D., Santos, G. N. & Rodulfo, E. Scandium and titanium containing single-walled carbon nanotubes for hydrogen Storage: a thermodynamic and first principle calculation. *Sci. Rep.* **6**, 27370-27376 (2016).

82. Beheshti, E., Nojeh, A. & Servati, P. A first-principles study of calcium-decorated, borondoped graphene for high capacity hydrogen storage. *Carbon* **49**, 1561-1567(2011).

83. Wu, H. Y., Fan, X. F., Kuo, J. L. & Deng, W. Q. DFT study of hydrogen storage by spillover on graphene with boron substitution. *J. Phys. Chem. C* **115**, 9241-9249(2011).

84. Sunnardianto, G. K. et al. Efficient hydrogen storage in defective graphene and its mechanical stability: A combined density functional theory and molecular dynamics simulation study. *Int. J. Hydrogen Energy* **46**, 5485-5494(2021).

85. He, Y. L. & Wang, S. X. Hydrogen storage of platinum atoms adsorbed on graphene: first-principles plane wave calculations. *Appl. Mech. Mater.* **2**, 1057-1060(2013).

86. Ataca, E. C., Aktürk, S. C. & Ustunel, H. High-capacity hydrogen storage by metallized graphene. *Appl. Phys. Lett.* **93**, 043123-043130(2008).

87. Aydin, S. & Simsek, M. The enhancement of hydrogen storage capacity in Li, Na and Mgdecorated BC₃ graphene by CLICH and RICH algorithms. *Int. J. Hydrogen Energy* **44**, 7354-7370 (2019).

88. Bhattacharya, A., Bhattacharya, S., Majumder, C. & Das, G. P. Transition-metal decoration enhanced room-temperature hydrogen storage in a defect-modulated graphene sheet. *J. Phys. Chem. C* **114**, 10297-10301(2010).

89. Cho, J. H., Yang, S. J. & Park, C. R. Si-doping effect on the enhanced hydrogen storage of single walled carbon nanotubes and graphene. *Int. J. Hydrogen Energy* **36**, 12286-12295(2011).

90. Chu, S. B. et al. Titanium-embedded graphene as high-capacity hydrogen-storage media. *Int. J. Hydrogen Energy* **36**, 12324-12328(2011).

91. Faye, O. et al. Hydrogen storage on bare Cu atom and Cu-functionalized boron-doped graphene: A first principles study. *Int. J. Hydrogen Energy* **42**, 4233-4243(2017).

92. Ganji, M. D., Emami, S.N., Khosravi, A., & Abbasi, M. Si-decorated graphene: A promising media for molecular hydrogen storage. *Appl. Surf. Sci.* **332**, 105-111(2015).

93. Gao, Y. et al. Hydrogen spillover storage on Ca-decorated graphene. *Int. J. Hydrogen Energy* **37**,11835-11841(2012).

94. Tan, X., Tahini, H. A. & Smith, S. C. Conductive boron-doped graphene as an ideal material for electrocatalytically switchable and high-capacity hydrogen storage. *ACS Appl. Mater. Interfaces* **8**, 32815-32822(2016).

95. Tachikawa, H. & Iyama, T. Mechanism of hydrogen storage in the graphene nanoflakelithium-H₂ system. *J. Phys. Chem. C* **123**, 8709-8716 (2019).

96. Liu. C. S. & Zeng, Z. Boron-tuned bonding mechanism of Li-graphene complex for reversible hydrogen storage. *Appl. Phys. Lett.* **96**, 123101-123108(2010).

97. Lin, Y., Ding, F. & Yakobson, B. I. Hydrogen storage by spillover on graphene as a phase nucleation process. Phys. Rev. B 78, 041402-041409 (2008).

98. Li, Y. et al. The structural and electronic properties of Li-doped fluorinated graphene and its application to hydrogen storage. *Int. J. Hydrogen Energy* **37**, 5754-5761(2012).

99. Cabria, I., López M. J. & Alonso, J. A. Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping. *J. Chem. Phys.* **123**, 204721-204728(2005).

100. Sabir, A. K., Lu, W.C., Roland, C. & Bernholc, J. Ab initio simulations of H₂ in Li-doped carbon nanotube systems. *J. Phys-Condens Mater.* **19**, 086226-086232(2007).

101. Kaiser, A. et al. On enhanced hydrogen adsorption on alkali (cesium) doped C_{60} and effects of the quantum nature of the H₂ molecule on physisorption energies. *Int. J. Hydrogen Energy* **42**, 3078-3086(2017).

102. Ebadi, M., et al. Calcium-decorated graphdiyne as a high hydrogen storage medium: Evaluation of the structural and electronic properties. *Int. J. Hydrogen Energy* **43**, 23346-23356 (2018).

103. Froudakis, G. E. et al. Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake. *Nano Lett.* **1**, 531-533(2001).

104. Tozzini, V. & Pellegrini, V. Reversible hydrogen storage by controlled buckling of graphene layers. *J. Phys. Chem. C.* **115**, 25523-25528(2011).

105. Tan, X. et al. Charge modulation in graphitic carbon nitride as a switchable approach to high-capacity hydrogen storage. *ChemSusChem* **8**, 3626-3631(2015).

106. Li, J. et al. Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures. *J. Chem. Phys.* **119**, 2376-2385(2003).