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Supplementary Figure 1. ContScout run time statistics. Run time, measured as wall time minutes, were
plotted as a function of query proteome size. Runs were performed using 24 CPU cores with the RAM
usage being limited to 150 GB. Scatter plot contains 478 data points.
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Supplementary Figure 2: ContScout performance assessment on directed synthetic mixes. A set of
artificially contaminated genomes with source-recipient pairs mimicking biologically realistic contamination
scenarios were generated. Matrix of box plots shows area under the curve (AUC) value distributions for the
classification predictions made by ContScout, where column position of charts corresponds to the
taxonomic rank at which decontamination was performed. Each row holds data from one directed source-
recipient pair. Rows are labeled as follows: Alg2Pl=alga in plant, Ba2Ba=Dbacteria in bacteria, Fu2Fu=fungi
in fungi, Ho2Mo=human in mouse, Ne2Pi=nematode in pig, Pla2ZMo=Plasmodium in mosquito,
Waz2Le=parasitic wasp in its moth host, Ye2ye=yeast in yeast. For more information on the mixed genomes
see Supplementary Data 1. Within each of the boxplots, axis x refers to the amount of contamination
proteins (100, 200, 400, 800, 1600 or 3200) that was spiked in the recipient genome. Each boxplot is based
on 100 independent replications.
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Supplementary Figure 3: example of a hard-to resolve case. Atrtificially contaminated mixtures were
between Acanthamoeba castellanii and Homo sapiens genomes were generated representing both
contaminant-recipient directions. Matrix of box plots shows area under the curve (AUC) value distributions
for the classification predictions made by ContScout, where column position of charts corresponds to the
taxonomic rank at which decontamination was performed. Data for the two separate contaminant-recipient
directions are presented in separate rows. Within each of the boxplots, axis x refers to the amount of
contamination proteins (100, 200, 400, 800, 1600 or 3200) that was spiked in the recipient genome.
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Supplementary Figure 4: Gene tree of the pyridoxal kinase protein family. Gene tree for of the
ubiquitous pyridoxal kinase protein family has been inferred from the unfiltered 36-genome data set. Dotted
lines around clades in the tree indicate major taxonomic groups, with animals being represented in blue,
plants in green, fungi in magenta, and bacteria in pale purple. The Quercus suber protein Quersube_4764,
that is positioned among fungal sequences, is labelled in green while Bombus impatiens protein
Bombimpa_11962, that is most similar to bacterial sequences, is labelled in blue.
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Supplementary Figure 5: Effect of contamination on the evolutionary history of the pyridoxal kinase
family. Gene loss / gain events for the pyridoxal kinase family were inferred with COMPARE! from both the
unfiltered and decontaminated 36-genomes data set and were mapped on the 3 species tree. Circle sizes
are proportional to the number of events at internal nodes. Gene losses are represented by red circles
while gains are indicated by blue circles Thick dark stroke lines around circles highlight loss / gain
estimates that were affected by contamination. All changes that are shown in the figure are the
consequence of two contaminating proteins within the family: Quersube_4764 and Bombimpa_11962.



Supplementary Table 1 Comparison of ContScout with FCS-GX. Abbreviations: TP=true positives,
FP=false positives, KFC=known fungal contigs.

Short Name Species Lineage FCS-GX ContScout Both
only only

Aspergillus . 14
Aspzol zonatus fungi 0 0 (TP:14)

. . . 19 3 124
Papixuth Papilio xuthus animal (TP:19) (TP:2, FP:1) (TP:124)

Quersube Quercus suber lant 6 85 542

P (KFC: 35/35)




Supplementary Table 2 Third-party software tools used for data manipulation, data analysis and

visualization throughout the study.

Name Version URL
ape? 55 https://cran.r-project.org/web/packages/ape/index.html
BASTA3 14 https://github.com/timkahlke/BASTA
Biostrings** 2.62.0 https://bioconductor.org/packages/release/bioc/html/Biostrings.html
BUSCO* 5.4.4 https://busco.ezlab.org/
Compare?! v2023.03 https://github.com/zsmerenyi/compaRe
570993be7f5f31ee357
Conterminator® 183c9118bf3aa755758 https://github.com/steineggerlab/conterminator
70
ContScout* V2023.09 https://github.com/h836472/ContScout/tree/NatComm
Diamond® 2.04 https://github.com/bbuchfink/diamond
FCS-GX’ v0.4.0-3-g809662 https://github.com/ncbi/fcs
GenomicRanges® | 1.46.1 https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
ggplot2° 3.4.1 https://ggplot2.tidyverse.org/
hipMCL*°® V2020 06 https://bitbucket.org/azadcse/hipmcl/src/master/
Interproscantt V5.44.79.0 https:/ftp.ebi.ac.uk/pub/software/unix/iprscan/5/
Mafft!2 7.0.407 https://mafft.cbrc.jp/alignment/software/
bb0alb3569b9fe115f3
MMSeqs2®? bf63e5balda234748d https://github.com/soedinglab/MMseqs2
e23
OrthoFinder' v2.4.1 https://github.com/davidemms/OrthoFinder
pheatmap** 1.0.12 https://CRAN.R-project.org/package=pheatmap
phytools*® 0.7-80 https://cran.r-project.org/web/packages/phytools/index.html
pROC?® 1.18.0 https://cran.r-project.org/web/packages/pROC/
RY 4.1.0 https://cran.r-project.org/bin/
RAXML?® 8.2.12 https://github.com/stamatak/standard-RAxXML
RColorBrewer** 1.1-2 https://cran.r-project.org/web/packages/RColorBrewer/index.html
rtracklayer 1.54.0 https://bioconductor.org/packages/release/bioc/html/rtracklayer.html
TrimAI*® 1.2rev59 http://trimal.cgenomics.org/
Write XLS** 6.4.0 https://cran.r-project.org/web/packages/WriteXLS/index.html

* present work

** R package without any scientific publication
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