1 Supporting Information

2

Reviving the Potential of Vermiculite-Based Adsorbents: Exceptional Ibuprofen Removal on Novel Amide-Containing Gemini Surfactants Xianqi Hu*, Zhuang Ma

6 Department of Chemical Engineering, Hebei Petroleum University of Technology, Hebei 067000, P. R. China

- 7 *Corresponding author: Xianqi Hu (huxianqi@cdpc.edu.cn)
- 8 9

1 2

1.1. Characterization

The FT-IR spectroscopy (FT-IR, Nicolet IS10 FT-IR spectrometer), X-ray diffractometer
(XRD, BRUCKER D8 ADVANCE), thermogravimetric analysis (TG-DTG, NETZSCH STA 449
F5/F3 Jupiter), EA (Vario EL cube) were conducted to for structural characterization.

The structural characters of organo-Vts were characterized by: Fourier transformed infrared
spectroscopy (FT-IR, Nicolet Magna 560 E.S.P FT-IR spectrometer in the range of 4000-400 cm⁻¹
at resolution of 4 cm⁻¹), X-ray diffractometer (XRD, in the 2θ range from 1° to 10° at the scanning
rate of 1° min⁻¹), thermogravimetric analysis (TG-DTG, METLER TOLEDO, from 30 to 800 °C at
10 °C min⁻¹, nitrogen atmosphere), elemental analysis (EA, Vario MACRO cube). All samples were
all dried at 60 °C overnight before characterization.

12 1.2. Adsorption experiment

Batch adsorption experiments were adopted for evaluating the adsorption performance of organo-Vts. Analysis about the influence factor (modifier dosage, adsorption time, initial IBP concentration, temperature and solution pH) and adsorption mechanism (adsorption kinetics, isotherms and thermodynamics) was conducted by mixing 0.03 g of organo-Vts and 30 mL of IBP solution under varying conditions, respectively. The concentration IBP is measured by UV-vis. The adsorption amounts (q_e , mg g⁻¹) were obtained by the following equation [S1]:

$$19 q_e = \frac{C_0 - C_e}{m} V (S1)$$

where q_e is the adsorption amount onto adsorbent (mg/g), C_0 and C_e are the initial and equilibrium dye concentrations (mg/L), respectively, *m* represents the mass of adsorbent (g) and *V* stands for the volume of solution (mL).

Standard batch adsorption experiments were carried out on three organo-Vts by changing the modifier dosage (5*3 groups), adsorption time (9*3 groups), orthogonal experiment of temperature and concentration (15*3 groups), pH values (5*3 groups), and regeneration cycles (3*2 groups). All parallel adsorption experiments were conducted in three times. Therefore, almost 324 groups of batch adsorption tests were conducted.

- 28 1.3 The adsorption kinetics, isotherms and thermodynamics
- 29 The equations of pseudo-first- (S2), pseudo-second order (S3) and intra particle diffusion (S4)

models, the Langumir (S5), Freundlich (S6) and Redlich-Peterson (S7), as well as thermodynamic
parameters (S8 and S9) are expressed as follows:

$$\log(q_e - q_t) = \log q_e - \frac{k_1}{2.303}t$$
(S2)

$$\frac{t}{q_1} = \frac{1}{k_2 q_2}$$

3

4

5

$$=\frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
(S2)
(S2)

$$q_{\rm t} = k_{\rm i} t^{1/2} + C \tag{S4}$$

6 where k_1 (min⁻¹) and k_2 (g (mg min)⁻¹) were the pseudo-first-order and pseudo-second-order rate 7 constants. q_e (mg g⁻¹) and q_t (mg g⁻¹) were the adsorption capacities at equilibrium and at time *t* 8 (min), which represents contact time. All these unknown parameters can be determined from plots 9 of log ($q_e - q_t$) against *t* and t/q_t against *t*. k_{id} (mg g⁻¹ min^{-1/2}) is the rate constant of the intra-particle 10 diffusion kinetic model, the values of *C* and k_{id} can be determined from the intercept and slope of 11 the linear plotted of q_t against $t^{1/2}$, respectively.

12 The Langmuir, Freundlich and Redlich-Peterson isotherms were expressed as follows:

13
$$q_e = \frac{Q_m K_L C_e}{1 + K_L C_e}$$
(S5)

$$q_e = K_f C_e^{1/n}$$
(S6)

15
$$q_e = \frac{AC_e}{1 + BC_e^s}$$
(S7)

where $q_e \text{ (mg/g)}$ is the adsorption capacity onto per unit mass of adsorbent at equilibrium, C_e is the solute equilibrium concentration (mg/L), $q_m \text{ (mg/g)}$ is maximum adsorbed amount in the theoretical. $k_L \text{ (L/mg)}, k_f \text{ (mg/g)}$ and *n* represent the constants of Langmuir and Freundlich, respectively. *A* (L/g) and *B* ((L/mg)^g) are the Redlich–Peterson model constant. *g* fluctuated between 0 and 1 with two limiting behaviors: Langmuir form for g = 1 and Henry's law form for g = 0.

21 Thermodynamic parameters could be calculated using the following equations:

$$\ln K_L = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT}$$
(S8)

$$\Delta G^{\circ} = -RT \ln K_L \tag{S9}$$

1	where $K_{\rm L}$ is the Langmuir constant, $q_{\rm e}$ and $C_{\rm e}$ have the same definitions with above equations. R is
2	the universal gas constant (8.3145 J/(mol K)) and T represents the absolute temperature in Kelvin.
3	The values of ΔH° and ΔS° can be extrapolated from intercept and slop of ln $K_{\rm L}$ versus $1/T$.
4	
5	
6	

7 Table S1 Elemental analysis data of HDAB, HDAHD and HDAPX

	Elemental analysis (wt%)						
Samples	С		Н		Ν		
	Cal.	Test	Cal.	Test	Cal.	Test	
HDAB	60.8	59.93	10.43	11.01	6.45	7.37	
HDAHD	59.31	60.09	11.11	10.18	6.44	7.42	
HDAPX	62.88	63.12	10.04	10.96	6.11	7.09	

8

9

10

Fig. S1 The TG curve of Na-Vt.