Supporting Information for mvlearnR for multiview

learning

Elise Palzer and Sandra E Safo
January 10, 2024

The package mvlearnR and accompanying Shiny App is intended for integrating data
from multiple sources (e.g. genomics, proteomics, metabolomics). Most existing software
packages for multiview learning are decentralized, making it difficult for users to perform
comprehensive integrative analysis. The new package wraps statistical and machine learning
methods and graphical tools, providing a convenient and easy data integration workflow.
For users with limited programming language, we provide a Shiny Application to facilitate
data integration. The methods have potential to offer deeper insights into complex disease
mechanisms. Currently, mvlearnR can be used for the following:

Prefiltering of each omics data via differential analysis (DA). We provide both su-
pervised and unsupervised options for DA or for filtering out noise variables prior to
performing data integration.

Integrating data from two sources using a variant of the popular unsupervised method
for associating data from two views, i.e. canonical correlation analysis (CCA).

Predicting a clinical outcome using results from CCA. We provide four outcome data
distribution type (i.e. gaussian, binomial, Poisson, and time-to-event data.)

Supervised integrative analysis (one-step) for jointly associating data from two or more
sources and classifying an outcome. This method allows to include covariates.

Supervised integrative analysis (one-step) for jointly associating structured data from
two or more sources and classifying an outcome. This method allows to include co-
variates.

Visualizatiing results from the DA or our integrative analysis methods. These plots
include: volcano plots, UMAP plots, variable importance plots, discriminant plots,
correlation plots, relevance network plots, loadings plots, and within- and between-
view biplots. These visualization tools will help unravel complex relationships in the
data.

Demonstrating our integration workflow via already uploaded synthetic and real molec-
ular and clinical data pertaining to COVID-19.

Currently, linear multivariate methods for integrative analysis and biomarker identification
are provided in mvlearnR. However, we have developed integrative analysis methods for dis-
ease subtyping (Zhang et al., 2022) and nonlinear integrative analysis methods for biomarker

identification (Jain and Safo, 2023, Safo and Lu, 2023, Wang et al., 2023, Wang and Safo,
2021) that will eventually be added to mvlearnR and the accompanying web application.
Other methods we develop in the future will be added. Thus, we envision mvlearnR and our
web application to be a one-stop place for comprehensive data integration, for both users of
R (or Python) and non-users of these software.

1 The Methods

The methods SELPCCA and SIDA in mvlearnR have been described in Safo et al. (2018)
and Safo et al. (2021), respectively. For completeness sake, we describe these methods below.
Since these methods are extensions of canonical correlation analysis (CCA)(Hotelling, 1936)
and linear discriminant analysis (LDA) (Hotelling, 1936), we briefly describe these two
methods.

1.1 Linear Discriminant Analysis

Suppose we have one set of data X with n samples on the rows and p variables on the
columns. Assume the n samples are partitioned into K classes, with n; being the number of
samples in class k, k = 1,..., K. Assume each sample belongs to one of the K classes and let
y; be the class membership for the ith subject. Let Xg = (X1, ..., Xn, k)" € R™*P | x €
RP be the data matrix for class k. Given these available data, we wish to predict the class
membership y; of a new subject j using their high-dimensional information z; € RP. Fishers
linear discriminant analysis (LDA) may be used to predict the class membership. For a K
class prediction problem, LDA finds K — 1 low-dimensional vectors (also called discriminant
vectors), which are linear combinations of all available variables, such that projected data
onto these discriminant vectors have maximal separation between the classes and minimal
separation within the classes. The within-class and between-class separation are defined
K n K
respectively as: S, = kzl 21(ka — o) (X —)" Sp = kzl ng (o, — (1) (fu, — o). Here,
—1i= -
fr, = (1/ng) Doi%, x4 is the mean vector for class k, fi is the combined class mean vector

K
and is defined as x = (1/n) > ngft,. The solution to the LDA problem is given are the
k=1

eigenvalue-eigenvector pairs (Xk,,g'k), A > o> Ay of S!S, for S,, = 0. Note that LDA
is only applicable to one set of data.

1.2 Canonical Correlation Analysis

Canonical correlation analysis on the other hand is applicable when there are two views.
Now, suppose we have two sets of data. X! = (x},--+ ,x1)T € R"*P and X? = (x3,--- ,x2)T €
R"¥4 p g > n, all measured on the same set of n subjects. The goal of CCA (Hotelling,
1936) is to find linear combinations of the variables in X!, say u = X'« and in X2, say
v = X233, such that the correlation between these linear combinations is maximized, i.e

p = max cor(u, v) = max cor(X'a, X?3). But

a8
max cor(X'a, X23) = ,
g Varyay/B 80

where X5 is the p x ¢ population covariance between X' and X2, and 311, andXss are the
population covariances of X' and X2, respectively. The population cross-covariances 35,
311, and Xy are estimated by their sample versions Si2, S11, and Sos, respectively. For
low-dimensional settings, these sample versions are consistent estimators of the population
covariances, for fixed p and ¢, and large n. However, for high-dimensional settings, these
sample versions are regularized. The vectors u and v are called the first canonical variates
for X! and X2, respectively. We note that the correlation coefficient is invariant to scaling,
thus one can choose the denominator be one and then consider the equivalent problem:

maé(cor(Xla7X2B) =a"Yp08 st a"Ba=1, BTE»pB=1.
(e

Using Langragian multipliers, it can be shown that the CCA solution to this optimizaiton
problem is given by a = S;l/zeh,@ = S;l/zfl, where e; and f; are the first left and right
singular vectors of Sfl/ 281285 12 respectively. We note that maximizing the correlation
is equivalent to maximizing the square of the correlation. To obtain subsequent canonical
variates, one can impose the following orthogonality constraints in the optimization problem:
af Yoy = B;Teef; = af X128, =0, for i # j, i,j = min(p, ¢, n).

1.3 Sparse CCA via SELP (SELPCCA)

The classical CCA method finds linear combinations of all available variables, and since
these weights are typically nonzero, it is difficult to interpret the findings. SELPCCA (Safo
et al., 2018) is a variant of CCA that shrinks some of the weights of the low-dimensional
representations e and 3 to zero, thus allowing to identify relevant variables contributing to
the overall dependency structure in the data. In particular, the authors in Safo et al. (2018)
proposed to solve the following optimization problem:

min [l st [S128; — p1S110l0 < 71
Hllﬁin 1Bl st ||S21é1 — 515228l < T
(1)

Here, (&, Bl) are the first nonsparse solution to the CCA optimization problem, and Ep)l
is the corresponding eigenvalue. Of note, Sll and Sgg are regularized versions of S;; and
ggg, respectively. The authors considered two forms of regularizations: S, = I, and
Sgg = 1I,, for standardized data, and the ridge regularization: Su = S11 + /log(p)/nI,
and Soy = Soy + log(g)/nI,. Also, 7y and 75 are tuning parameters which are chosen by
cross-validation. See Safo et al. (2018) for more details. For subsequent canonical directions
o, and B3;, i > 1, the authors solved the above sparse optimization problem on deflated
data.

1.4 Prediction with SELPCCA

CCA and SELPCCA are unsupervised multivariate methods, with their main goal of finding
canonical vectors that maximize the overall dependency structure between two views. In
some biomedical applications, it is usually the case that an outcome variable, say y, is avail-
able and a specific interest might be to investigate how these canonical variates are related

to the outcome of interest. For this purpose, one can build regression models to associate
the outcome with these canonical variates. In our package, we provide selpPredict () for
this purpose. We provide options gaussian, binomial, poisson, and survival to model contin-
uous, categorical, count, or time-to-event data, respectively. We also provide the function
predict () to predict out of sample data using the learned low-dimensional representations
or canonical variates.

1.5 Sparse Integrative Discriminant Analysis (SIDA) for two or
more views

Instead of considering the two-step CCA approach proposed above when there is a clin-
ical outcome in addition to the views, the authors in Safo et al. (2021) developed the
method, SIDA, for jointly maximizing association between two or more views while also
maximizing separation between classes in each view. Although CCA is applicable to only
two views, SIDA is applicable to two or more views. SIDA combines the advantages
of LDA, a supervised learning method for maximizing separation between classes in a
view, and CCA, an unsupervised learning method for maximizing correlation between
two data types. Suppose there are d = 1,...,D views. Let X? = [X¢,X¢,...,X%],
X® g prxpa X4 ¢ Rrexpa o= 1,... K, d = 1,2,...,D be a concatenation of the K
classes in the d-th view. Let S{ and S¢ be the between-class and within-class covariances
for the d-th view. Let Sgj,5 < d be the cross-covariance between the d-th and j-th views.
Define M4 = 8¢ "Sd8d™""* and N = 8% /*S ;83" The authors solved the following
optimization problem for the basis discriminant vectors I'%:

Z t FdTMdrd 2(1 — ,0) 2 t FdTN 'FijTN' I\d
lm?Di‘DPZ r()er Z _ r(dj 5al'")

d=1 d=1,d#j

st tr(P9'TY) = K — 1.

r

[EREIN

Of note, p controls the influence of separation or association in the optimization problem.
The second term sums the unique pairwise squared correlations and weights them by w

so that the sum of the squared correlations is one. The authors showed that the nonsparse

~d
basis discriminant directions for the d-th view, I' | that maximize both associations and sep-
arations are given by the eigenvectors corresponding to the eigenvalues (Ad) that iteratively
solve the following eigensystems:

(61M1 + ClMlT + CQle + CQNL) rt = AlI‘l,

(clMDJrclMlT+CQNDj+cQN}j)rD — ApT?, 2)

where ¢; = p and ¢y = %, and Ny = Z(lz),j Nde‘jl"jTJ\/}-d, d,j=1,...D,j # d sums

all unique pairwise correlations of the d-th and the j-th views.

For sparsity or smoothness, they considered the following optimization problems:

nI1‘11n’P(I‘1) s.t ||(Cl./\/l1 +61M1T +C2N1j +02N;Fj)f‘1 —KlI‘lHoo <mn

minP(C?) st (@MP+aMP +oNp + oND)T —ApTP|w <. (3)
T

The authors considered two forms of penalty term P(I‘d), depending on whether spar-
sity only (data-driven) or sparsity and smoothness (knowledge-driven) is desired: P(I'¢) =
v llas or PEY) = 03002 il + (1= n) 3272 [lv;lla- In the latter, 47 is the i-th
row of the matrix product EnI‘d, and L,, is the normalized Laplacian of a graph, which is
view-dependent. Essentially, the first term in this penalty acts as a smoothing operator for
the weight matrices I'? so that variables that are connected within the d-th view are encour-
aged to be selected or neglected together. This was termed SIDANet (SIDA for structured
or network data). SIDANet is applicable when there exists prior biological information in
the form of variable-variable connections, which guides the detection of connected variables
that maximize both separation and association.

2 Visualizations of discriminant scores and canonical
correlation variates

Once the discriminant vectors or canonical correlation vectors have been estimated using
SIDA /SIDANet or SELPCCA respectively, the scores for each view, representing projections
of each view onto these vectors can be estimated. We provide DiscriminantPlots() and
CorrelationPlots() to visualize these scores. The DiscriminantPlots() function can be
used to visualize the first (assuming only two classes) or the first and second discriminant
scores (assuming > two classes). Each point on this plot represent a score for an individual.
Discriminant plots can showcase how well the discriminant vectors separate the classes.
Correlation plots on the other hand can be used to visualize the strength of association
between pairs of views as well as the separation of the classes. Figure S1 demonstrates sample
figures that can be generated by our DiscriminantPlots() and CorrelationPlots() in
mvlearnR. We provide different color options for the graphs.

Discriminant Plot for View 1 Correlation plot for views 1and 2, p = 0.91
Discriminant Plot for View 1 Discriminant Plot for View 2

(Class| (Class|

441 o1+t
o o

Density
04

0.2
Second Discriminant Score for View 1

First Discriminant Score for View 2

0.0

L R s 1
4 2 0 2 4 2 0 2 4 6
First Discriminant Score First Discriminant Score

First Discriminant Score for View 1 First Discriminant Score for View 1

Figure S1: Sample discriminant plots for two classes (left panel), for three classes (middle
panel) and correlation plot (right panel). Discriminant plots can demonstrate whether the
discriminant vectors separate the classes. Correlation plots demonstrate the strength of
association between pairs of views. It also shows how well the classes are separated.

3 Visualizations of variables selected

3.1 Relevance Network

Relevance Network (RN) (Butte et al., 2000, Gonzalez et al., 2012) have been proposed to
visualize pairwise relationships of variables in integrative analysis. Here, the nodes represent
variables, and edges represent variable associations. To construct RN, the correlation matrix
of pairwise associations is obtained from the data. Then, for a specific cutoff (say 0.7), if
the estimated correlation coefficients is greater (in absolute value) than this cutoff, an edge
is drawn between these two variables; otherwise, no edge is drawn and these two variables
are deemed not associated for this threshold. Further, variables/nodes with no link are
not represented in the RN. The cutoff is used to make the graph less dense, especially
when the number of variables is high. RN have potential to shed lignt into the complex
associations between different types of data. We provide the function networkPlot() to
visualize the pairwise relationships of variables selected by SELPCCA, SIDA, and STDANet.
We follow ideas in Gonzélez et al. (2012) to construct the RN for SELPCCA, SIDA, and
SIDANet. In particular, instead of computing the Pearson correlation coefficients between
each pair of variables in each view separately, we construct bipartite graph (or bigraph)
where variables/nodes from view X? are connected to variables/nodes from view X7, d #
jyd,j =1,...,D. Similar to Gonzélez et al. (2012), we construct the bipartite graphs using
a pairwise similarity matrix directly obtained from the outputs of our integrative analysis
methods.

Suppose we have applied SELPCCA to two views and we have obtained the canonical
loadings oy and 3,1 =1,..., L, for views 1 and 2, respectively. For [> 2, it is likely that
within a view, different variables will have nonzero coefficients for each canonical loading.
Therefore, we deem a variable to be selected if it has a nonzero coefficient in at least one
canonical loading. Let p’ and ¢’ be the number of selected variables in views 1 and 2,
respectively. Let A = (aj,...,a;)" € R %L be a concatenation of all L canonical loadings
for view 1. Let B = (fﬁ?, e ,fiz)T € RY*L be defined similarly for view 2. Given data
with these selected variables, we construct the canonical variates: U = Xielectedi and
V= Xgelectedﬁ. To construct the p’ X ¢’ similarity matrix for views 1 and 2, we first project
data for the selected variables to U, for view 1, V for view 2, or to a combination of U
and V. Since X! and X? are analyzed simultaneously in CCA, the projection of the data
onto a combination of U and V seems natural. Thus, we define Z = U + V. As noted in
Gonzélez et al. (2012), the Z variables are closest to X¢ and X7. Then, for the ith variable

X1 e X! eq (similarly X2 € X2,) and the Ith component z; € Z, we compute the
scalar inner product x4 = (X¢,2)),d=1,2;5=1...p'(or ¢'), [=1,...,L. Assuming that

the variables X¢, and z; are standardized to have variance 1, 24 = (X4, 2;) = cor(X¢,z,).

We compute the similarity matrix M between views 1 and 2 as M = x!1x2'T ¢ %plxq/, where
x! is a p’ x L matrix with the ilth entry =}, and x? is a ¢’ x L matrix with the ilth entry
x?. Each entry in the similarity matrix is between —1 and 1.

We construct the similarity matrix for SIDA and SIDANet in a similar fashion. Of note,
in SIDA and SIDANet, | = K —1. Although, the ls ; norm encourages the same variables to
be selected across all K — 1 components, empirically, this is not usually the case. Therefore,
we obtain overall variable selection as descrilzled above. We obtain the discriminant vectors
for the dth and jth views as U = Xielectedf and V = Xzelectedf‘], respectively. Given U

and V, we compute the similarity matrix for SIDA and SIDANet in a similar fashion.
We generate the relevance network from the similarity matrix. The nodes of the graph

represent variables for the pairs of views, and edges represent the correlations between pairs
of variables. The function networkPlot() in mvlearnR can be used to generate relevance
networks. Please refer to the bottom left and right panels of Figure S2 for sample relevance
network plots. Dashed and solid lines indicate negative and positive correlations respectively.
Circle nodes are View 1 variables, and rectangular nodes are View 2 variables. We provide
an option to tune the network through a correlation cutoff. For instance in the middle right
panel of Figure S2, we only show graph for variables with correlations greater than 0.9. The
plot suggest that variable V1031 from View 2 is highly correlated with variable V31 from
View 1. Since there is no edge between variable V38 and variables V1037, it indicates that
the correlation between these pairs of variables is smaller than 0.9.

3.2 Variable importance plots

We provide the function VarImportancePlot () [Top left panel of Figure S2] to visualize the
weights (in absolute value) of the loadings. Since the loadings are standardized to have unit
norm, a variable with larger weight contributes more to the association between the views
(for SELPCCA) or to the association between the views and discrimination of classes within
each view (SIDA and SIDANet). We only show the top 20 variables and their weights but
one can view data matrix for all variables.

3.3 Loadings plots

We provide the function LoadingsPlot () [Top right panel of Figure S2] to plot discrimi-
nant and canonical correlation vectors. These graphs are useful for visualizing how selected
variables from SIDA /SIDANet and SELPCCA contribute to the first and second discrimi-
nant (for SIDA and SIDANet) or canonical correlation (for SELPCCA) vectors. Variables
farther from the origin and close to the first or second axis have higher impact on the first or
second discriminant/canonical vectors, respectively. Variables farther from the origin and
between both first and second axes have similar higher contributions to the first and second
discriminant/canonical correlation vectors. In both situations, for SIDA and SIDANet, this
suggests that these variables contribute more to the separation of classes and association of
views. For SELPCCA, this suggests that these variables contribute more to the association
between the two views. This plot can only be generated for classification and association
problems with 3 or more classes (SIDA and SIDANet), or for CCA problems with two or
more canonical correlation vectors requested (i.e. ncancorr > 1 for SELPCCA). The angle
between two vectors also give an indication of how the two variables are correlated. In
particular, vectors that are close to each other suggests that the variables have high positive
correlation. Vectors that are about 90 degrees indicate that the two variables are uncorre-
lated. Vectors that have an angle close to 180 degrees indicate that the two variables have
negative correlation.

4 Visualization of loadings and scores simultaneously

Biplots are useful for representing both loadings and discriminant scores/canonical correla-
tion variates. We present biplots for each view and between views. In particular, we provide
the function WithinViewBiplot () to visualize the scores and loadings for each view sepa-
rately [Figure 1, Bottom left panel]. We also provide the function BetweenViewBiplot ()
to graph scores and loadings for pairs of views. The scores are the sum of scores for the two

views (Refer to Section on relevance network for more explanation). Please refer to Figure
1, Bottom right panel for a sample biplot between views. In this graph, dashed red vectors
represent loadings plot for the second view. And solid black vectors represent loadings plot
for the first view. Please refer to section 3.3 for a brief discussion on interpreting loadings
plots.

Variable importance for View 1 Canononical Vector 1

Loading Plot
PO1715
P30491
P06331
D6W5LE
PODPO1
P02765

P02766

AngEpore

P01715.

03

1

0.2

PO1717
Q9HDCI

AOAO75B6H9
G3XAPE
AOAOB7XOMS
QBUXBSB
AOAOG2JIW1
AOAOCADFPE
HOY300
P51884
Q15848
AOAOCADH33
AOAOBAJIV1
COJF17

0.1
| L

0.0

Second Canonical Vector for View 1

0.1

02

G3XAP6

T T T T
£ & -1.0 05 0.0 05
First Canonical Vector for View 1

%

o
¥

S o N
Normalized relative importance

Color key Color key

—— fonst ——
-0.78 073 078 \ 4 - 09 1
"":IZ:::--@—B
ford =77 TN T

SELPCCA Biplot for View 1

02766
ROTSRAH
PO171,

G3XAP6&

25 50
| I
T T
0.1 0.2
10 20 30

|

0.0
0
|

0.0
Second Discriminant Score
10

Second Discriminant Score for View 1
25

f

0.1

20

T T T T
-10 0 10 20 0
First Discriminant Score for View 1 First Discriminant Score

Classes 0 1 Classes 1 [A] 2 3

Figure S2: Sample plots for visualizing variables within and between views. Top left panel:
variable importance plot showing the relative importance of each variable. Variables with
largest absolute loadings rank high. The weights for each variable is normalized relative to
the largest weight. Top right panel: Loading plots. We provide loading plots for each view
to demonstrate the relationships between pairs of variables within each view. Variables that
are farther from the origin have higher impact on the axis the vector is close to. Vectors
that are close to each other suggest that the pairs of variables are correlated positively.
Vectors with an angle of about 180 degrees suggest that the variables have negative corre-
lation. Vectors with a 90 degree angle between them suggest that the two variables are not
correlated. Middle left and right panels: Relevance network showing variable-variable con-
nections between pairs of views with correlations > 0.73 [left panel] and > 0.9 [right panel].
Dashed and solid lines indicate negative and positive correlations, respectively. Color key
gives the direction of the associations where green indicates negative correlations and red
shows positive correlations. Bottom left panel: Within-view biplot. This plot shows the
scores and loadings together for a specific view. Bottom right panel: Between-view biplot.
This plot shows the scores and loadings from pairs of views together. The scores are the
sum of scores for each view. Solid and dashed lines represent vectors for Views 1 and 2,
respectively. In this example, variable V31 (from View 1) has a higher correlation with
variables V1031 and V1038 from View 2 cor%pared to Variable V1001 from View 2. This
finding is supported by the edge between V31 and V1038 and V1031 in the network plot
but no edge between V31 and V1001 given a correlation cutoff of 0.9.

T
0.0 05

-05

5 Demonstration of SELPCCA and SELPCCA Predict
on COVID-19 Data

#load data
#load data
data("COVIDData")

#make omics data numeric

Proteomics= apply(as.matrix(COVIDData[[1]]), 2, as.numeric)
RNASeq= apply(as.matrix(COVIDData[[2]]), 2, as.numeric)
Clinical= COVIDData[[3]]

table(Clinical$DiseaseStatus)

Figure S3: Import COVID-19 data

set.seed(1234)

stratified <- Clinical %>%
group_by(DiseaseStatus) %>%
sample_frac(size = .9)

#train data

Proteomics2=cbind.data.frame(Clinical[,1], Proteomics)
Proteomics.Train=Proteomics2[Proteomics2[,1] %in% stratified$ID,]
Clinical.Train=Clinical[Clinical[,1] %in% stratified$ID,]

RNASeqg2=cbind.data.frame(Clinical[,1], RNASeq)
RNASeq.Train=RNASeq2[RNASeq2[,1] %in% stratified$ID,]

#test data

set.diff=setdiff(Clinical[,1],stratified$ID)
Proteomics.Test=Proteomics2[Proteomics2[,1] %in% set.diff,]
RNASeq.Test=RNASeq2[RNASeq2[,1] %in% set.diff,]
Clinical.Test=Clinical[Clinical[,1] %in% set.diff,]

#order data to ensure that the rows are the same
Proteomics.Train=Proteomics.Train[order (Proteomics.Train[,1]),]

Proteomics.Test=Proteomics.Test[order (Proteomics.Test[,1]),]

RNASeq.Train=RNASeq.Train[order (RNASeq.Train[,1]),]
RNASeq.Test=RNASeq.Test[order (RNASeq.Test[,1]),]

Clinical.Train=Clinical.Train[order(Clinical.Train[,1]),]
Clinical.Test=Clinical.Test[order(Clinical.Test[,1]),]

Figure S4: Train and Test splits. We split the data into 90% train and 10% test, keeping
the proportion of COVID-19 and non-COVID-19 cases as in the original data.

10

#Supervised filtering- Logistic regression with B-H adjusted pvalues

X=list (Proteomics.Train[,-1], RNASeq.Train[,-1])

Xtest.in=list(Proteomics.Test[,-1], RNASeq.Test[,-1]) #testing data will be subsetted to keep only variables tha
t are significant in training set

Y=Clinical.Train$DiseaseStatus.Indicator

filterOmics=filter.supervised(X,
Y,
method = "logistic",
padjust=TRUE,
adjmethod="BH",
thresh = 0.05,
center = FALSE,
scale = FALSE,
log2TransForm = FALSE,
standardize=TRUE,
Xtest = Xtest.in

)

Coef Pval Keep View
<dbl> <dbl> <lgl> <int>
P04196 -2.302249 0.0005777604 TRUE 1
P51884 -1.833268 0.0005777604 TRUE 1
P30491;P30685;P30490;P18464;P10319;P30498;P30483;P18463;P18465;P30487;P30488;P30485 1.155279 0.0012273746 TRUE 1
AOAO0C4DFP6;QINQ79-2;Q9NQ79;QINQ79-3;Q5T4F6 -2.242493 0.0012464527 TRUE 1
C9JB55 -2.553349 0.0012464527 TRUE 1
P02765;C9)V77 -1.492872 0.0012464527 TRUE 1
VIGYM3;P02652;VIGYE3;VIGYGY -1.549336 0.0012464527 TRUE 1
Q6UXB8;Q6UXB8-2 -1.660778 0.0013409020 TRUE 1
Q96PD5;Q96PD5-2 -1.498597 0.0014091137 TRUE 1
D6W5L6;P07988;HOY7V6 1.359330 0.0017111773 TRUE 1
1-10 of 10 rows
Coef Pval Keep View
<dbl> <dbl> <lgl> <int>
ASPM 2.334767 0.0003191221 TRUE 2
BIRC5 2.130810 0.0003191221 TRUE 2
BUB1 2.533314 0.0003191221 TRUE 2
BUB1B 2.368631 0.0003191221 TRUE 2
CCNB2 2.456306 0.0003191221 TRUE 2
cbc20 1.941254 0.0003191221 TRUE 2
CDC25C 2.448140 0.0003191221 TRUE 2
CDCA2 2.465166 0.0003191221 TRUE 2
CDCA5 2.400132 0.0003191221 TRUE 2
CDCA8 2.423595 0.0003191221 TRUE 2

10 rows

Figure S5: Supervised filtering with logistic regression. Example output table from super-
vised filtering showing Top 10 (sorted by p-values) molecules with estimated coefficients
(Coef), P-value (Pval), whether the variable is kept or filtered out (Keep), and the view
(View). View 1 is for proteomics data, and View 2 is for RNASeq data.

11

volcanoPlot(filterOmics)

-logqopadi

Volcano Plot for View 1
P04196 o
C94B55 VOGYM3 P30491
E9PEK4 P02766 DGW5L6 BOYT14
CO4F10 PO#717]
H P05109 P10809
PO?900°
2- ‘e L) £ P68431
P0%019
[] ..
. ,Q7B7LO0
s .’
------------------- geo8--------- U R
4
14
?.5
lk
0-
3 2 A 0 1 2
Log Odds Ratio
3.

g2

2

>

Ke]

Significance
@ FALSE

@ TRuE

Significance

@® FALSE
@ TRUE

Log Odds Ratio

Figure S6: Volcano plots for View 1 (Proteins) and View 2 (Genes).

12

umapPlot (filterOmics)

View 1 - UMAP on filtered data

2+ o % .. > .0..
° e o
[]
'.o. . . . ° - .o
14 .. s ° o ® ° o® °
° * e o
g .. [} ® ..
° ° ° . o
c 0 L4
g_ ° ° ° e © o ° .
£ ° °
o] L)
:_1. e ° ¢ ‘ o
< e o °
% e © °
-2 1 o ® L ° .’ a
°
® g0 ® []
® . °
=34 L °
3 2 4 0 1 2
UMAP Component 1
View 2 - UMAP on filtered data
e & Oo.
44 ee & ° o .
e %,
°
e ° o ° °
° °® o
ﬁ 2 e® o ° °
S *. .
g ° ® °,
O 01 °
o ® b o o ¢
g “ o ® . ° : .o °
=2] L4 °
°® o ° ° ° ¢e
-2 1 § o®
[® o © .
e e . ..' . P
& oo *
°
2 1 0 1 2

UMAP Component 1

Outcome
e 0
° 1
Qutcome
e 0
o 1

Figure S7: UMAP plots for View 1 (Proteins) and View 2 (Genes) on filtered data.

13

#can use simulated data
#data("selpData")

#Xdatal <- selpData[[1]]
#Xdata2 <- selpData[[2]]

#We use the filtered data from above and obtain first and second canonical correlation vectors
#We use cross-validation to choose tuning parameters for sparsity

Xdatal <- filterOmics$X[[1]] #proteomics

Xdata2 <- filterOmics$X[[2]] #RNASeq

mycvselpcca=cvselpscca(Xdatal, Xdata2, ncancorr=2)

[1] "Current iteration is 1"

[1] "Current iteration is 2"

[1] "Applying optimal tuning parameter on whole data"
[1] "Current Iteration Is: 1"

[1] "Current Iteration Is: 2"

[1] "Number of non-zero Xdatal or View 1: 78 54"

[1] "Number of non-zero Xdata2 or View 2: 32 9"

[1] "Corr(Xdatal*alpha,Xdata2*beta): 0.636 0.599"

[1] "Sparse CCA CovStructure used is: Iden"

Figure S8: Fitting SELPCCA with cross-validation on training data to choose optimal
hyperparameters and to obtain overall canonical correlation vectors on whole data based on
the optimal hyperparameter. We use the function cvselpscca().

14

VarImportancePlot (mycvselpcca)

Variable importance for View 1 CCA Vector 1

P01715 4
P30491 4
D6W5L6 4
PODPO1 4
P02765 4
P01717 4
P06331 1
AO0A075B6H9
P02792 4
Q6UXBS
VIGYM3
P14543 4
A0A0G2JIW1 -
C9JF17 q
G3XAP6 -
AOA0C4DFP6
Q96PD5 4
P06702 4
AO0A087X0MS -
P51884 4

00

e 2
%%
o N

Normalized relative importance

Variable importance for View 2 CCA Vector 1

7
A 00

UBE2C -
CDC6
DEPDC1B -
CCNA2 -
CDCA2 -
CDC25C
TICRR A
PCLAF -
CDK1
CDC45 -
BUB1B -
POLQ -
DLGAPS
NUSAP1 -
SHCBP1
SKAA1 -
KIF11 4
ZWINT A
CDC25A -
SPAGS5

%, |
%,
%%
%

Normalized relative importance

7
% -

Figure S9: Variable important plots for the first canonical vector for View 1 (Proteins) and

View 2 (Genes

=

. Top 20 variables with largest absolute weights for first canonical correlation

vector from application of SELPCCA are shown. For proteins, Uniprot IDs are shown on

variable importance plot.

#train data

Xdatal <- filterOmics$X[[1]]
Xdata2 <- filterOmics$X[[2]]
Y=filterOmics$Y
Xdata=list(Xdatal, Xdata2)

hatalpha=list(mycvselpccas$hatalpha[,1],mycvselpcca$hatbetal,1])

DiscriminantPlots(Xdata, Y,hatalpha,method.used="SELPCCA")

Discriminant Plot for View 1

Class
o
N 1
o 0
EE?]
2 o
O T
0O o
(@) ‘| ‘(//|| m! g I \IHH'
8 {—czmpe e UMM LB L T~
-10 -5 0 5 10
First Canonical Variate
Discriminant Plot for View 2
Class
2 o
g = _
S °
o
o Do | U |
S sy vV aany S
o T |

First Canonical Variate

Figure S10: Discriminant plots for SELPCC#fgbased on training data. Top Panel: proteins
and Bottom panel: genes. We use the function DiscriminantPlots() to generate these
plots. Class 0 is non-COVID-19 samples. Class 1 is COVID-19 samples.

#test data

Xtestl <- filterOmics$Xtest[[1]] teomics
Xtest2 <- filterOmics$Xtest[[2]]
Xtest.in=list(Xtestl, Xtest2)
Ytest.in=Clinical.Test$DiseaseStatus.Indicator

Seq

DiscriminantPlots(Xtest.in, Ytest.in, hatalpha,method.used="SELPCCA")

Discriminant Plot for View 1

wn
D wmn—
o Class

+1

0

o
T —
o Yy

Density
0.05

%
%
-

First Canonical Variate

Discriminant Plot for View 2

2 —Class
-
+1
0
S
2 -
w
c
()]
o v |
o
o | | ‘ ‘n\
O_E"_'—_——?+ _’-ﬂf ! \l f

First Canonical Variate

Figure S11: Discriminant plots for SELPCCA based on testing data. Top Panel: proteins
and Bottom panel: genes. We use the funcic%on DiscriminantPlots() to generate these
plots. Class 0 is non-COVID-19 samples. Class 1 is COVID-19 samples.

Y=Clinical.Train$DiseaseStatus.Indicator
WithinViewBiplot (mycvselpcca,Y,Xtest=NULL,keep.loadings = c(7,3))

SELPCCA Biplot for View 1

AOAOTSBEH 0276 o
=3 .. =©
H Q
[L
g PO171 Py \“

8 o
o) o
T o ® =©
&
>
w
°
5 ~
S, - S
ow G3XAP6 -
2
] PODJI9
[
w
<
o P 13639 -
N T T T T
-30 -20 20 30
F|rst Canonical Varlate for V|ew 1
Classes [®] o 1
SELPCCA Biplot for View 2
©
[aV)
@ o
2
2 _J URE2Ce é } =
Z D
E O
@ [X .
8 Te)
w
°
=
2.4
g 2 Q
= v p
g UPK3A o
Q
B e
' y
GPR3P>
T T T T T T
-20 -10 0 10 20 30

First Canonical Variate for View 2

Classes E| 0 1

Figure S12: Within-view biplots. Biplots are useful for representing both loadings
plot and discriminant scores/canonical correlation variates. We provide the function
WithinViewBiplot () to visualize the scores and loadings for each view separately. In this
plot, we only show labels for top 7 proteins and 3 genes with largest absolute weights. Top
Panel: Protein IDs shown are loaded on both the first and second canonical vectors. Pro-
tein ID AOAQ75B6H9 appears to be highly correlated with P02792. Bottom Panel: the gene
UBE2C is loaded on the first canonical vector; genes UPK3A and GPR35 are loaded on the
second canonical vector. Class 0 is non-COVID-19 samples. Class 1 is COVID-19 samples.

18

Y=Clinical.Train$DiseaseStatus.Indicator

BetweenViewBiplot (mycvselpcca,Y,Xtest=NULL, keep.loadings = c(7,3))

SELPCCA Biplot for Views 1 and 2

o AOAO 02766 L
P0171
g _- UBF2Cg mm o e . @ i
: v Tl .
g 3XAPG
o] PODJIG i
&~
©
g P1363
3
°8 UPK34r i
o cPraY
C? I] I
-20 0 20 40

First Canonical Variate

Classes @ 0 1

Figure S13: Between-view biplots are useful for visualizing biplots for both views. This
plot allows us to assess how genes and proteins are related. Solid black vectors represent
loading plots for the first view (proteins). Dashed red vectors represent loadings plot for
the second view (genes). We generate this plot with the function BetweenViewBiplot ().
In this plot, we only show labels for the top 7 proteins and 3 genes with largest absolute
weights. The protein Immunoglobulin lambda variable 3-1 (UID P01715) appears to be
positively correlated with the gene UBE2C. The protein P02792 appears to be negatively
correlated with the genes UPK3A and GPR35. Class 0 is non-COVID-19 samples. Class 1
is COVID-19 samples.

19

-0.4 0.0 0.4

-0.8

networkPlot (mycvselpcca, cutoff=0.58)

Color key
(O MELK pacd
A}
061 -058 061 qDC25R \ZWINTIDDCdE
BUB1 \ \ | 7
[/
~ \y Z
GTSET \ “
CM19 |cpes
CCNAZ 0276
~
BUB1E 0171 AERN ﬁ"_;r
7\ PEPDC1B
\
HMMR SKA1| "y
/ I I~
v IKIF11
RRM2) \
SGO1 TICRR DLGA
CCNB:
POLQ

JBE2(C

Lo

HCBfl‘ NUSAP|

Figure S14: Relevance network plot. The nodes of the graph represent variables for the
pairs of views, and edges represent the correlations between pairs of variables. Dashed and
solid lines indicate negative and positive correlations, respectively. Circle nodes are View
1 variables (proteins), and rectangular nodes are View 2 variables (genes). We show edges
with correlations at least 0.58. The plot suggest that the protein P01715 is highly positively
correlated with many genes, and the protein P02765 is highly negatively correlated with
many genes.

20

#Use results from cvselpcca. One can also use selpPredict() to train the model by setting fitselpCCA=NULL.

Y.train=Clinical.Train$DiseaseStatus.Indicator
myresult=selpscca.pred(Xdatal, Xdata2, Y.train,fitselpCCA=mycvselpcca, family="binomial",showProgress=T)

Fitting SELPCCA Model
Fitting Prediction Model

print(summary(myresult[["mod.fit"]]))

##

Call:

stats::glm(formula = factor(Y) ~ ., family = stats::binomial,
data = selp.dat)

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 7.1934 2.4013 2.996 0.00274 **

X1_1 0.7856 0.3128 2.511 0.01203 *

X1_2 -0.6519 0.4968 -1.312 0.18946

X2_1 0.9732 0.3945 2.467 0.01362 *

X2_2 0.2319 0.4886 0.475 0.63502

-

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 103.500 on 107 degrees of freedom

Residual deviance: 16.346 on 103 degrees of freedom
AIC: 26.346

##

Number of Fisher Scoring iterations: 9

Figure S15: Prediction with the first two canonical variates from SELPCCA. Results suggest
that the first canonical variate for view 1 and view 2 are significantly associated with COVID-
19 status (p-value < 0.05). That is, the first canonical variates for views 1 (proteins) and 2
(genes) are able to discriminate between those with and without COVID-19.

21

newpredictions=predict(myresult, newdata=Xdatal, newdata2=Xdata2)
Y.pred=round(newpredictions$pred.mod)
train.metrics=PerformanceMetrics(Y.pred,Y.train,family='binomial', isPlot=TRUE)

Metrics

<dbl>

Accuracy 0.96296296
Error.rate 0.03703704
Sensitivity 0.97727273
Specificity 0.90000000
Matthews.Correlation.Coefficient 0.87727273
Balanced.Accuracy 0.93863636
Balanced.Error.Rate 0.06136364
F1.Score 0.97727273
False.Discovery.Rate 0.02272727
Positive.Predictive.Value 0.97727273

Figure S16: Train Performance metrics. We use the function PerformanceMetrics() to
obtain these metrics. Top panel: Train predictions.

22

Xtestl <- filterOmicsS$Xtest[[1]]

Xtest2 <- filterOmics$Xtest[[2]]
Y.test=Clinical.Test$DiseaseStatus.Indicator
newpredictions=predict(myresult, newdata=Xtestl, newdata2=Xtest2)
Y.pred=round(newpredictions$pred.mod)
test.metrics=PerformanceMetrics(Y.pred,Y.test,family='binomial',6 isP1lot=TRUE)

Accuracy

Error.rate

Sensitivity

Specificity
Matthews.Correlation.Coefficient
Balanced.Accuracy
Balanced.Error.Rate

F1.Score

False.Discovery.Rate

Positive.Predictive.Value

Metrics
<dbl>

0.8333333
0.1666667
1.0000000
0.0000000
0.0000000
0.5000000
0.5000000
0.9090909
0.1666667
0.8333333

Figure S17: Test Performance metrics. We use the function PerformanceMetrics() to

obtain these metrics. Top panel: Train predictions.

23

6 Demonstration of SIDA on COVID-19 Data

#can use simulated data

data("sidaData")

Xdata <- sidaData[[1]]

Y <- sidaData[[2]]

Xtestdata <- sidaDataf[[3]]
Ytest <- sidaData[[4]]

#We use the filtered data from above and obtain discriminant vectors that maximize association
#between gene and protein data while discriminating between those with and without COVID-19.
#We use cross-validation to choose variables

Xdatal <- filterOmics$X[[1]] #proteins

Xdata2 <- filterOmics$X[[2]] #RNASeqg

Y=filterOmics$Y+1l # class membership needs to be numeric, coded as 1, 2,

Xdata=list(Xdatal, Xdata2)

Xtestl <- filterOmics$Xtest[[1]] #proteomics
Xtest2 <- filterOmics$Xtest[[2]] #RNASeg
Xtest.in=list(Xtestl, Xtest2)
Ytest.in=Clinical.Test$DiseaseStatus.Indicator

#We apply the function cvSIDA() to obtain estimated SIDA discriminant vectors, correlation coefficients, and vari
ables potentially contributing to the association of the views and the discrimination between samples within each

view.

fit.cvsida <- cvSIDA(Xdata, Y,
Xtestdata = Xtest.in,
Ytest = Ytest.in+l, plotIt = F)

[1] "Getting tuning grid values"

[1] "Completed at time"

Time difference of 8.269799 secs

Begin 5 -folds cross-validation

[1] "Cross-validation completed at time"

Time difference of 1.211282 mins

[1] "Getting Results...... "

Estimated Test Classification Error is 0.08333333
Estimated Train Classification Error is 0.01851852
Estimated Test Correlation is 0.06680775

Estimated Train Correlation is 0.4129295

Number of nonzero coefficients in view 1 is 26
Number of nonzero coefficients in view 2 is 23
[1] "Total time used is"

Time difference of 1.555339 mins

#From implementing SIDA, we observed that 26 proteins and 23 genes have nonzero coefficients, which suggests that
these proteins and genes maximize both correlation between the proteomics and RNASeq data (estimated correlation

is 0.42) as well as separation between those with and without COVID-19.

Figure S18: Fitting SIDA with cross-validation on training data to choose optimal hyperpa-
rameters and to obtain overall discriminant vectors based on the optimal hyperparameter.
We use the function cvSIDA().

24

VarImportancePlot(fit.cvsida)

Variable importance for View 1

P04196
P14543
E9PEK4 -
P55058
AOAQCA4DH32 -
P10809
P51884 |
P15144
095497 -
Q08380 -
P68104
DEWSL6 -
E7ES19 -
P0O1715
P30491
Q5VY30
PODPO1 -
P48740-2
P23083
000187 -

4

]

,‘_16\

o
2

0
>

7
%

Normalized relative importance

Variable importance for View 2

GOLGASQ -
ADGB +
TNFRSF6B -
SLC25A41
OBSL1
SHD -
GNB1L -
SHISAT -
LAMB3 -
BVES -
PLAAT3 4
FAM106A -
GNMT -
VN1R2 -
FAM3D -
KCNJ12 1
NRSN1
AIF1L -
IL4 4

MYH11 4

2

% .

[

'e‘js -
%

e

Normalized relat

o
5
7

% |

ive importance

Figure S19: Variable important plots for View 1 (Proteins) and View 2 (Genes) after im-
plementing SIDA. Top 20 variables with largest absolute weights are shown. For proteins,
Uniprot IDs are shown on variable importance plot.

#train data

Xdatal <- filterOmics$X[[1]]

Xdata2 <- filterOmics$X[[2]]

Y=filterOmics$Y # class membership needs to be numeric, coded as 1, 2,
Xdata=list(Xdatal, Xdata2)

DiscriminantPlots(Xdata, Y, fit.cvsida$hatalpha)

Discriminant Plot for View 1

Class
+1

Density
0.0 01 0.2 0.3 04

AN
-+ LAl [
-4 -2 0
First Discriminant Score

Discriminant Plot for View 2

Class
—H +1
0
<
> O
=
[72] |
o
a N |
o

S | =TT L #HHH\F

4 2 0 2 4
First Discriminant Score
Figure S20: Discriminant plots based on training data. Top Panel: proteins and Bottom

panel: genes. We use the function DiscriminantPlots() to generate these plots. Class 0
is non-COVID-19 samples. Class 1 is coviBbig samples.

#test data

Xtestl <- filterOmics$Xtest[[1]] #
Xtest2 <- filterOmics$Xtest[[2]] #
Xtest.in=list(Xtestl, Xtest2)

DiscriminantPlots(Xtest.in, Ytest.in, fit.cvsida$hatalpha)

Discriminant Plot for View 1

Density

First Discriminant Score

Discriminant Plot for View 2

Density
0.00 0.10 0.20 0.30

First Discriminant Score

Figure S21: Discriminant plots based on testing data. Top Panel: proteins and Bottom
panel: genes. We use the function DiscriminantPlots() to generate these plots. Class 0
is non-COVID-19 samples. Class 1 is COVIIg719 samples.

Xdatal <- filterOmics$X[[1]]
Xdata2 <- filterOmics$X[[2]]
Y=filterOmics$Y
Xdata=list(Xdatal, Xdata2)

CorrelationPlots(Xdata, Ytest=Y, fit.cvsida$hatalpha)

Correlation plot for views 1 and 2, p = 0.41

L
(]
~ ® ®
: S B L
S A ‘ ([
5 A 1!k “i
- A A
S A 5 A A ; o0 Classes
& A Aa N
£ A A 0
© A‘l A‘H‘l '.
£ A A A
t A A A
4,000
: ATE ARA
=] A
B A X ‘
i A,
A
A
First Discriminant Score for View 1
Figure S22: Correlation plots based on training data. We use the function

CorrelationPlots() to generate these plots. Class 0 is non-COVID-19 samples. Class

1 is COVID-19 samples.

28

networkPlot (fit.cvsida,cutoff=.1)

Color key

—— Goayr P00
-017 0.1 0.17 |
\ | .nggl
\
[
]

027 \

LYPD4

BVES

Figure S23: Relevance network plot for SIDA. The nodes of the graph represent variables for
the pairs of views, and edges represent the correlations between pairs of variables. Dashed
and solid lines indicate negative and positive correlations, respectively. Circle nodes are
View 1 variables (proteins), and rectangular nodes are View 2 variables (genes). We show
edges with correlations at least 0.1. The plot suggest that the gene FAM3D is negatively
correlated with many proteins (e.g. PO2766, P30491, Q08380), and positively correlated
with proteins such as AOADC4DFP6, E9PEK4, P04196, D6W5L6.

29

Y.pred=fit.cvsida$PredictedClass.train-1

Y.train=filterOmicsS$Y
train.metrics=PerformanceMetrics(Y.pred,Y.train,family='binomial',isPlot=FALSE)
print(train.metrics)

Metrics

<dbl>

Accuracy 0.98148148
Error.rate 0.01851852
Sensitivity 0.98863636
Specificity 0.95000000
Matthews.Correlation.Coefficient 0.93863636
Balanced.Accuracy 0.96931818
Balanced.Error.Rate 0.03068182
F1.Score 0.98863636
False.Discovery.Rate 0.01136364
Positive.Predictive.Value 0.98863636

Figure S24: Performance metrics. We use the function PerformanceMetrics() to obtain
these metrics.

30

Y.pred=fit.cvsida$PredictedClass-1
test.metrics=PerformanceMetrics(Y.pred,Ytest.in,family="'binomial', isPlot=FALSE)
print(test.metrics)

Metrics

<dbl>

Accuracy 0.91666667
Error.rate 0.08333333
Sensitivity 0.90000000
Specificity 1.00000000
Matthews.Correlation.Coefficient 0.77459667
Balanced.Accuracy 0.95000000
Balanced.Error.Rate 0.05000000
F1.Score 0.94736842
False.Discovery.Rate 0.00000000
Positive.Predictive.Value 1.00000000

Figure S25: Performance metrics. We use the function PerformanceMetrics() to obtain
these metrics.

31

JUIeSTAUW Ul SUOIIOUIN]J JUL.LIND JO QOE‘QEUWQQ -IS °19%L

"SOW099NO0 SNONUTUOD PUR
Areurq 10 syIom A[Jueliny) ‘[opour pajorpaid e I0j sourjewt soueuriopad seyeuIr)sy

() SOTI)ONOOURWIOFID]

UorjewiI)}sy 9oUurULIOLIoq

"MOIA T[O®d IOJ S9JRIIBA UOIYR[DIIO)) [eITUOUR,) IO S9I00G JUBUIMIIIOSI(T 10§ sjordig
"SMaTA Jo sired Uo9M)D(SIYRLIRBA [RITUOURD /SOI0S JURUIUILIOSIP 9ZI[ensia 0} sjoidig
"SpPOYJou SISATeUR 9AIYRISOIUT WIOI] SO[RLIBA PI)IS[9s JO UOIPRZI[RNSIA I0M)SN

$109994 (VDD TAS 105)

UOTJR[OLI0D [edTuOURd I0 (PNVJIS PUR YIS 10)) JURUIIILIOSID PUODDS PUR JSIY o) 0
9JNQLIFUOD SO[QRLIBA PIJII[OS MOY SZI[RNSIA 0F SIOJDIA [BITUOURD PUR JUBUIWILIISIP SI0[J

“eyep astmired I0J SIO}09A JUBUIWILIISIP POJEUIN}SO USIM)O(UOTJR[OIIOD SUIZI[NSIA I0] S10[J

‘uorjeredos sse[o SUIZI[ENSIA 10]
(VODJTHS 10j) soyerrea [estuoued pue (YIS 10J) SOI00S JURUIULIISIP S)0[J

()20TdTgMeTAUTUITH
O a2o1dtgmeTpussnisg
() 20TdqIONIOU

() sao1ds3utpeo]
() S30TJUOTIRTOIIO)

() S30TdIURUTUTIOST(

"Po199[9s So[qRLIRA I0] SSUIPRO] 9Injosqe oY) Jo ydeisd y ()1oTdedueaiodurre)

‘Surre)[y posiaredns Iogye symsoar o) Jo JYIN() & 301d 03 uorjouny reddeipy () 20Tddeum
‘SuLre)[y pesiazedns Iojye symsar o) Jo sjo[d ourofoa 10§ uorpouny radderpy ()aoTdoueoTon SuoryRZI[eNSI A

1ONVAIS Pue y(IS 1o] yoeoidde uoreoyisser)) ()£zTsseroepts

“JONVIS 10 ‘O[qe[rear JI ‘SojeLIRAOD SUIPN[OUL J0U

‘MOTA T[ORD I10] sonfeA pLid 1ojewrered Surung apraold 0} UOIOUN]

VIS I0J ‘S[qe[reAr JI ‘S9)eLIRA0D SUIP[OUTL j0U

‘MOTA T[DBS I10] SonfeA pLis 1vjewrered Surung apraord 01 UoOUN

‘driyszequiowr sse[o jorpaid 0} ejep 3uryse) 10 Sururer) oY)

M POsn TS} oIR DIYM ‘RjeD SUIUIRI) UO POsk(‘UOIJRULIOJUL {IOMISU [IIM
®epIs 10] s1ojourered Juruny fewrrydo 309[0s 03 UOIJEPI[RA SSOID SP[OJU SULIOJIDJ
‘sIogowrered urung pexy I0j ‘(sdIysuoljelol 9[(RLIRA-O[(RLIRA) TUOI}RULIOJUT
eordoorq Iotrd Jo uorpeIodIooul [iIm SISATRUR JURUIWLIOSIP PUR UOI}RISOIUI JUIO[
diyszequowr sseo jorpaid 0} ejep Jurysey

IO Sururer) 9y} YIIM Pasn UL} oIk YOoIym ‘Bjep SUrurRI)} U0 Pase(

epls 10J stojourered guruny ewrydo 109[es 01 UOIJRPI[RA SSOID SP[OJU SULIOJIDJ
‘s1ojourered 3urun) poxy JIoj SISATRUR JURUIWLIOSIP PUR UOIJRISOIUT JUIO[

po1poxd YOO JTHS 10] erep ojdures-Jo-1no JI0J UOIIdIPaL]

oW009N0 poyads-a1d © I0] [oPOW [RAIAINS

I0 IN'TH) ® P[IN 0} SIMNSOI) S9SN UL [, “RIRP SUIUIRI] UO PIsk(

VOOJTAS 10§ s1ojeurered Suruny rewrgdo 10970s 03 UOIYRPI[RA SSOID P[OJ-U SULIOLISJ
“VOOJTHAS uo paseq uoroipald pue uorjeisejur 10j yoeordde dojs-om) y

() eoSueisunyepts

() @8uessungepts

() 38NVAISAD

() aouepTs

() varsas
()epts
() V¥00dT14as " aotpaxd

()pexd-eoosdres

32

uoljeISoIUl vjep posiaredng

‘s1ojourered SUTUN) PoXI 10§ SI0}09A UOIYR[AIIOD [edTuHouRD asreds oY) SoeTIISH
*10709A TOT}R[ALIOD [RIIUOUERD

yora 10] YOO JTAHS jJo siojeurered Surung jo spunoq Iamof pue roddn ureyqQ

“eyep SUIUTRI) UO Paseq

VOOJTAS 10} s1ojourered Surung reurydo 30979 0) UOIIRPI[RA SSOID P[OJ-U SULIOLIS]

()eoosetdraTnum
()e8ueIsunyAd

()eoosdyesad

UoI)RIZOUI R)RP posiatodnsu()

"STTeA\-TRSTLI] puR ‘1899-1 ‘O1ISISO[‘Ieaul] oIk suoljdo SurLe)l "Sur)r] posiatedng

(Opestazadns 199TTJ

"90URLIRA ST J[NRJO(] "SULIYY)] pue ooueLrea are suonyd(-Surmeyi pesiarednsun ()pestarsdnsun-I9aTTF Surrer g
1ONVAIS 10} ojdurexs ejep poyenuilg (ele@louepIS)EBIEp
VIS 10} ojdurexs ejep pojenuUIIg (ereqepts)ejep
VOOSdTAS 10} ojdurexs ejep poyenurs (ereqdTes)eqep

6T-ATAOD 0% Surturejsod ejyep SOTWONNIN (®1eQqIA0D)BIEP eje(] Surjrodury

uorydrosa(J suorjouN g asoding

References

Butte, A. J., Tamayo, P., Slonim, D., Golub, T. R., and Kohane, I. S. (2000). Discovering
functional relationships between rna expression and chemotherapeutic susceptibility using
relevance networks. Proceedings of the National Academy of Sciences, 97(22):12182-
12186.

Gonzilez, 1., Cao, K.-A. L., Davis, M. J., and Déjean, S. (2012). Visualising associations
between paired ‘omics’ data sets. BioData mining, 5:1-23.

Hotelling, H. (1936). Relations between two sets of variables. Biometrika, pages 312-377.

Jain, S. and Safo, S. E. (2023). A deep learning pipeline for cross-sectional and longitudinal
multiview data integration. arXiv preprint arXiv:2312.01238.

Safo, S. E., Ahn, J., Jeon, Y., and Jung, S. (2018). Sparse generalized eigenvalue problem
with application to canonical correlation analysis for integrative analysis of methylation
and gene expression data. Biometrics, 74(4):1362-1371.

Safo, S. E. and Lu, H. (2023). Scalable randomized kernel methods for multiview data
integration and prediction. arXiv preprint arXiv:2304.04692.

Safo, S. E., Min, E. J., and Haine, L. (2021). Sparse linear discriminant analysis for multiview
structured data. Biometrics, n/a(n/a).

Wang, H., Lu, H., Sun, J., and Safo, S. E. (2023). Interpretable deep learning methods for
multiview learning. arXiv preprint arXiv:2302.07930.

Wang, J. and Safo, S. E. (2021). Deep ida: A deep learning method for integrative discrimi-
nant analysis of multi-view data with feature ranking—an application to covid-19 severity.
ArXiv.

Zhang, W., Wendt, C., Bowler, R., Hersh, C. P., and Safo, S. E. (2022). Robust integrative
biclustering for multi-view data. Statistical methods in medical research, 31(11):2201-
2216.

33

