Table S2. Plasmids used in this study.

Plasmid Name	Description	Source
pMQ30	Yeast-based allelic-exchange vector; <i>sacB</i> ⁺ , CEN/ARSH, URA3 ⁺ , Gm ^R .	[1]
pFLP2	Site-specific excision vector with cl857-controlled FLP recombinase. encoding sequence, sacB ⁺ , Amp ^R . Used to insert LD2722-based plasmids into P. aeruginosa strains.	[2]
pLD2722	Gm ^R , Tet ^R flanked by Flp recombinase target (FRT) sites to resolve out resistance cassettes.	[3]
pLD68	Gm ^R , Cm ^R mini-Tn7 <i>P_{A1/04/03}-yfp</i>	[1]
pLD3433	Gm ^R , Cm ^R mini-Tn7 <i>P_{A1/04/03}-mScarlet</i>	This study
pLD3655	Gm ^R , Cm ^R mini-Tn7 <i>P_{A1/04/03}-e</i> GFP	This study
pLD4042	$\Delta v fr$ (PA14_08370) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD4537	∆antABC (PA14_32160, PA14_32150, and PA14_32140) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD3079	Δ gacA (PA14_30650) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD4228	∆ <i>lasR (PA14_45960)</i> PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD3594	∆aer1 (PA14_44300) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD3579	$\Delta aer2$ (PA14_02220) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD3594	$\Delta aer1 \Delta aer2$ (PA14_44300 and PA14_02220) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD3979	$\Delta pilA$ (PA14_58730) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD4137	$\Delta pilT \Delta pilU$ (PA14_05180 and PA14_05190) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD4630	Δ ssg (PA14_66120) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD4832	Δ wapR (PA14_66110) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study

		-
pLD4631	$\Delta wbpM$ (PA14_23470) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD3939	∆cheY (PA14_45620) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD3629	$\Delta motA \ \Delta motB$ (PA14_65450 and PA14_65430) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD3630	Δ motC Δ motD (PA14_45560 and PA14_45540) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD3938	∆ <i>fliA (PA14_45630)</i> PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD3635	∆ <i>ptsP (PA14_04410)</i> PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD1204	∆ <i>dipA (PA14_66320)</i> PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD3910	∆ <i>cyaA PA14_69610</i> PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD3909	∆ <i>cpdA (PA14_65690)</i> PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pLD3609	∆ackA (PA14_53470) PCR fragment introduced into pMQ30 by gap repair cloning in yeast strain InvSc1.	This study
pJM260	miniCTX1-rhaSR-PrhaBAD-stRBS-aacC1	[4]
pLD3208	MCS-mScarlet GmR, TetR flanked by Flp recombinase target (FRT) sites to resolve out resistance cassettes. Cloned by swapping gfp sequence with mScarlet (Xhol + SacI).	[5]
pLD4358	Gm ^R , Cm ^R mini-Tn7 <i>P_{A1/04/03}::rhaSR-PrhaBAD mScarlet.</i> The <i>rhaSR-PrhaBAD</i> promoter was amplified from pJM260 using primers LD3920 and LD3920 and inserted into pLD3208 using Spel and Xhol.	This study

^{1.} Shanks RMQ, Caiazza NC, Hinsa SM, Toutain CM, O'Toole GA. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol. 2006;72: 5027–5036.

Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene. 1998;212: 77–86.

^{3.} Jo J, Cortez KL, Cornell WC, Price-Whelan A, Dietrich LE. An orphan cbb3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence. Elife. 2017;6. doi:10.7554/eLife.30205

^{4.} Meisner J, Goldberg JB. The Escherichia coli rhaSR-PrhaBAD Inducible Promoter System Allows Tightly Controlled Gene Expression over a Wide Range in Pseudomonas aeruginosa. Appl Environ Microbiol. 2016;82: 6715–6727.

Wang B, Lin Y-C, Vasquez-Rifo A, Jo J, Price-Whelan A, McDonald ST, et al. Pseudomonas aeruginosa PA14 produces R-bodies, extendable protein polymers with roles in host colonization and virulence. Nat Commun. 2021;12: 1–14.