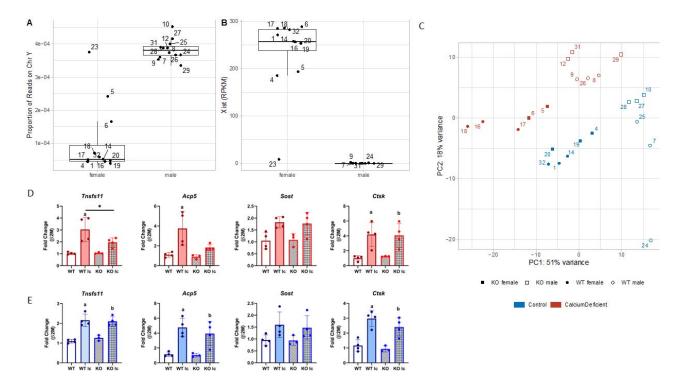


Supplementary Figure 1: Pup numbers for the lactation experiment and body weight measurements for the low-calcium-diet experiment

Panel A shows total pup numbers in WT and KO female mice that underwent pregnancy and 2 weeks of lactation. There is no significant differences in the pup numbers between genotypes. Students t-test was performed for statistical analysis. n= 8/group.


Panels B and C show total body weight of WT and KO female (B) and male (C) mice. No statistically significant difference was found among the groups, regardless of genotype or diet. 2-way ANOVA was performed. n= 4-5/group. As depicted here, red is female, and blue is male.

Supplementary Figure 2: Neither genotype nor dietary calcium alters muscle functions *in vivo* or *ex vivo*

Panels A and C show *in vivo* muscle plantarflexion force (reported as plantarflexion torque and plantarflexion fatigue) in WT and KO female (A) and male (C) mice on a control or a low calcium diet, panels B and D show muscle electrophysiology parameters of CMAP, SMUP, and MUNE in WT and KO female (B) and male (D) mice, and panels E and F show *ex vivo* EDL functional measurement (reported as specific force frequency, maximum rate of contraction, maximum rate of relaxation, half-relaxation time, and % fatigue) in WT and KO female (E) and male (F) mice

2-way ANOVA was performed. n= 4-5/group. As depicted here, red is female, and blue is male.

Supplementary Figure 3: Quality control and validation of RNA sequencing

Sanity check of data on the sample's sex. A: Boxplot of proportional of reads on chromosome Y. Male should have a higher value than female. B: Boxplot of RPKM of *Xist*. Males should have very low expression of *Xist*.

C: Scatter plot of PC1 and PC2 from Principal Component Analysis (PCA) of gene expression data.

D: qPCR analysis of *Tnsfs11*, *Acp5*, *Sost*, and *Ctsk* genes from osteocyte-enriched bone chips from female samples. n= 3-4/sample. Two-way ANOVA was performed for statistical analysis. Gene fold-change was normalized using β -2-microglobulin as the housekeeping gene. a= Significantly different from WT, b= Significantly different from KO, *= p< 0.05.

E: qPCR analysis of *Tnsfs11*, *Acp5*, *Sost*, and *Ctsk* genes from osteocyte-enriched bone chips from male samples. n= 3-4/sample. Two-way ANOVA was performed for statistical analysis. Gene fold-change was normalized using β -2-microglobulin as the housekeeping gene. a= Significantly different from WT, b= Significantly different from KO, *= p< 0.05.

Bone Parameters	Vi	rgin	Lactation						
Bone i diameters	WT	КО	WT	КО					
Femoral cortical bone parameters									
Ct. B. Ar/T. Ar (%)	47.4 ± 1.2	48 ± 1	35.2 ± 1.8 ^a	37.5 ± 1.8 ^{b, c}					
Ct. Th (mm)	0.18 ± 0.004	0.19 ± 0.005	0.13 ± 0.004^{a}	0.14 ± 0.01 ^{b, c}					
Ps. Pm (mm)	5.16 ± 0.2	5.2 ± 0.06	5.18 ± 0.16	5.2 ± 0.14					
Es. Pm (mm)	3.95 ± 0.1	4 ± 0.13	4.4 ± 0.11^{a}	4.3 ± 0.09^{b}					
Marrow cavity area (mm²)	0.93 ± 0.1	0.93 ± 0.04	1.16 ± 0.05^{a}	1.13 ± 0.05 ^b					
Femoral trabecular bone parameters									
BV/TV (%)	3.7 ± 1	4.5 ± 0.8	3.1 ± 0.7	4 ± 1.1					
Tb. Th (mm)	0.043 ± 0.002	0.044 ± 0.001	0.039 ± 0.002^{a}	0.039 ± 0.001 ^b					
Tb. Sp (mm)	0.37 ± 0.05	0.36 ± 0.03	0.57 ± 0.15^{a}	0.44 ± 0.09					
Tb. N (1/mm)	0.85 ± 0.2	1.06 ± 0.2	0.8 ±0.2	1.04 ± 0.25					

Bone parameters	Change	% Change			
Bono paramotoro	Chango	WT	КО		
Cortical Bone Area Fraction	Decrease	26%	22% *		
Cortical Thickness	Decrease	29%	24% *		
Ultimate Force	Decrease	38%	31% *		
Osteoclast Number/ bone parameter	Increase	141%	129%		
TRAP-positive osteocytes	Increase	101%	175% *		
Lacunar Area	Increase	26%	15% *		
Serum RANKL	Increase	170%	80% *		

Supplementary Table 1: FNDC5 KO mice femure are partially resistant to lactation-induced bone loss.

Femoral cortical and trabecular bone parameters of WT and FNDC5 KO female virgin and lactation mice. n = 5-8/group. Data presented as mean \pm standard deviation.

a= significant compared to WT control, b= significant compared to KO control, c= significant compared to WT low Ca diet, 2-way ANOVA, significance <0.05, n= 8/group.

Percentage change in different bone and serum parameters in WT and FNDC5 KO female mice with lactation. *= p<0.05 compared to WT.

Bone	Female Normal		Female Low Ca		Male Normal Diet		Male Low Ca Diet		
Parameters									
	WT	KO	WT	КО	WT	КО	WT	KO	
Ex vivo femur DXA									
BMD	75.4±	76.6±	65.4±	71.4±	74.6±	78.3±	68.2±	68.1±	
(mg/cm ²)	2.4	1.5	4.3 ^a	3.4 ^c	1.5	3 ^a	3	2 ^b	
BMC (g)	0.03±	0.03±	0.024±	0.027±	0.029±	0.032±	0.026±	0.025±	
	0.002	0.001	0.002 ^a	0.002 b,c	0.002	0.004	0.002	0.003 ^b	
Femoral cortical bone parameters									
Ct.	47.8±	48.4±	41.6±	45.2±	40.1±	43.6±	38.3±	39.1±	
B.Ar/T.Ar%	1.6	0.4	1.1 ^a	1.4 ^{b, c}	1.4	0.6ª	0.9	1.2 ^b	
Ct. Th (mm)	0.2±	0.2±	0.15±	0.17±	0.15±	0.2±	0.14±	0.14±	
	0.01	0.01	0.01 ^a	0.01 ^{b, c}	0.01	0.01 ^a	0.01	0.01 ^b	
Marrow	0.92 ±	0.86±	1.02 ±	0.9 ±	1.1 ±	1.03 ±	1.2 ±	1.08 ±	
Cavity Area	0.04	0.02	0.06 ^a	0.02 ^c	0.04	0.06 ^a	0.03	0.03 ^c	
Femoral trabe	cular bo	ne param	eters						
BV/TV (%)	3.6 ± 1.2	4.3 ± 1	3.2 ± 1	3.9 ± 1	6.1 ± 1.1	8.7 ± 1.9	5.3 ± 1.2	6.4 ±0.6	
Tb. Th (mm)	0.059±	0.059±	0.056±	0.055±	0.036	0.035 ±	0.035±0.	0.035 ±	
	0.002	0.004	0.002	0.001	±0.001	0.001	001	0.002	
Tb. Sp (mm)	0.38 ±	0.35 ±	0.51 ±	0.48 ±	0.274±	0.235 ±	0.278 ±	0.265 ±	
	0.03	0.02	0.12 ^a	0.08 ^b	0.025	0.021	0.027	0.01	
Tb. N (1/mm)	0.81 ±	0.95 ±	0.7 ±	0.91	1.7 ±	2.5 ^a ±	1.5 ± 0.3	1.8 ± 0.1	
	0.2	0.14	0.02	±0.13	0.34	0.5			
Femoral mech	Femoral mechanical properties								
Ultimate	19±1	19.4±	14.8±	16.4±	18.3±	17.6±	15±	12.7±	
Force (N)	1021	1.15	0.7 ^a	0.5 ^b	1	0.9	1.3ª	1.5 ^{b, c}	
Stiffness	78.6±	79.1±	56.8±	67±	76.7±	56.4±	56±	48.5±	
(N/mm)	3.2	4.9	5 ^a	4.3	5.6	4.75 ^a	10.2ª	4.9 ^{b, c}	
Energy to	2.9±	3.1±	1.8±	2±	3.6±	3.01±	2.5±	2.35±	
Failure (N)	0.3	0.6	0.5 ^a	0.3 ^b	0.9	0.6	0.3ª	0.14	

Supplementary Table 2: WT and FNDC5 KO female and male mice bone responds differently to a low-calcium diet

Femoral BMD, BMC, cortical and trabecular bone parameters, and mechanical properties of 4-5-month-old WT and KO female and male mice under a normal diet or a 2-week low calcium diet. n = 5/group. Data presented as mean \pm standard deviation.

a= significant compared to WT control, b= significant compared to KO control, c= significant compared to WT low Ca diet, 2-way ANOVA, significance <0.05, n= 4-5/group.