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Note S1 Definition of Microstructures
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Fig. S1. Definition of microstructures. (A) An example microstructure. (B) Symmetry constraints on microstructure patterns.
(C) Structural constraints on microstructure patterns depending on volume fractions of the rigid base material.

As the structural unit of microstructured composites in this work, a microstructure is digitally represented as a 20×20
binary matrix that uniquely defines the spatial arrangement of two base materials in a composite (Fig. S1A). The matrix is also
called a microstructure pattern. The soft base material is indicated by a value of 0 in a microstructure pattern while the rigid
material corresponds to 1. As a microstructure pattern is conceptually similar to an image, we refer to its elements as pixels to
avoid confusion with those in the finite element method (FEM).

To construct the design space for computational exploration, we additionally pose two types of constraints on microstructure
patterns. Symmetry constraints (Fig. S1B) require all microstructures to be invariant to reflections and 90-degree rotations
so that they have identical mechanical properties in horizontal and vertical directions. Structural constraints (Fig. S1C) limit
the volume fraction of the rigid material, denoted by φ , between 0.5 and 0.85. Also, pixels around the corner of a pattern are
restricted to 1 depending on φ . If 0.5 ≤ φ < 0.8, only the corner pixel is restricted; otherwise (0.8 ≤ φ ≤ 0.85), the rule extends
to every pixel whose center lies within a 4-pixel-wide radius from the corner vertex. The upper bound φ ≤ 0.85 ensures reliable
and consistent toughness measurements in mechanical testing because the fracture behaviors of very stiff microstructures
(φ > 0.85) tend to be highly stochastic and result in low toughness (59). The lower bound φ ≥ 0.5 excludes designs with
inferior Young’s modulus and toughness due to a predominant influence from the soft material. All constraints aggregated, the
design space of microstructures contains more than 1016 possibilities.

Our choice of pattern solution is primarily constrained by the 3D printer. A test specimen must contain a sufficient number
of microstructure units to achieve proper homogenization and minimize the boundary effect (Fig. S27B). If the resolution is too



high, the fine features of a microstructure pattern will be completely blurred during 3D printing as the size of each individual
pixel becomes comparable to a material droplet. However, if the resolution is too low, it will take a substantial number of
microstructure units to realize such homogenization (otherwise, the large interfaces between base materials will become flaws
and weaken the mechanical performance). This makes the resulting specimens virtually indistinguishable from single-phase
materials. Thus, we used a 20×20 resolution with a pixel size of 260 µm to create a meaningful design space while preserving
visible pixel boundaries in printed specimens.

Note S2 Interface Engineering
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Fig. S2. Dimensions of a toughness specimen with the area around the notch zoomed in. Coordinate axes indicate the
orientation of the specimen in 3D printing.
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Fig. S3. Schematics of interface engineering. (A) Definition and classification of interface areas. (B) Droplet arrangements
in interface areas. All coordinate axes conform with the definitions in Fig. S2.

Upon examination of printed specimens, we noticed that the interface between base materials is relatively strong but can still
be the weakest spot during crack propagation (60). Thus, we engineered the interface to enhance its strength and improve the
toughness of microstructures. This was done by applying manually designed droplet patterns in interface areas. As illustrated
in Fig. S3, interface areas are located around shared edges or vertices of adjacent pixels, where one base material transitions into
the other. There are three types of interface areas in total. Let (i, j) be the x and y indices of a pixel in an entire specimen model.
Type-1 areas connect two neighboring pixels (i, j) and (i+1, j) along the x direction, i.e., the direction of crack propagation.
Type-2 areas connect two neighboring pixels (i, j) and (i, j+1) along the y direction, i.e., the pulling direction in tensile testing.



Pixel dimensions The center area The interface area
x (ax) y (ay) x y x (dx) y (dy)

3 5 1 3 1 1
3 6 1 2 1 2
4 5 2 3 1 1
4 6 2 2 1 2

Table S1. Possible dimensions of a pixel and its subdivided areas after quantization into droplets for voxel printing. All
units are droplets.
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Fig. S4. Comparison of microstructure properties under different interface configurations. The tested configurations
include: default to the printer (default), not engineered (no engineering), and engineered (ours). Standard deviations from
multiple measurements are reflected in error bars.

Type-3 areas join all four surrounding pixels. Whenever an interface area covers two pixels of different material assignments,
droplets in that area are specially arranged to approximate a 50/50 mixture of base materials. Similarly, let (i′, j′) be the x and y
indices of a droplet in the specimen model. Droplets appear in alternating rows in Type-1 and Type-3 areas, where each droplet
(i′, j′) follows the parity of i+ j′. In contrast, droplets appear in alternating columns in Type-2 areas, each following the parity
of j+ i′. Such patterns remain constant in the z direction.

In the context of voxel printing, a pixel may contain 3×5, 3×6, 4×5, or 4×6 droplets after quantization. Table S1 provides
the quantized dimensions of a pixel’s internal area contingent on the pixel size. Quantized dimensions of interface areas are
then derived from the pixels they intersect with. Type-1 and type-3 areas may contain 2×2 or 2×3 droplets, while type-2 areas
vary among 1×2, 1×3, 2×2, and 2×3 droplets in size.

We compared our method of engineering the interface between base materials against two baseline approaches. By default,
the 3D printer applies prescribed droplet configurations in interface areas that are invisible to the user. Conversely, the interface
is completely user-specified in voxel printing mode. Therefore, it is possible to perform no engineering and make transitions at
pixel boundaries as sharp as possible. To test these interface options, we randomly drew 5 samples from microstructures with
0.5 ≤ φ ≤ 0.75 and compared the mechanical properties of their printed specimens (Fig. S4).

Note S3 Computational Pipeline
3.1 Simulation
The simulator estimates the performance of microstructures without conducting physical measurements. Given an input
microstructure pattern, it simulates the actual mechanical testing process on printed specimens using FEM. Young’s modulus
and toughness are then computed from recorded stress-strain data. The two virtual testers inside the simulator use the same
material model but differ in implementation details and parameter settings.

The nonlinear stress-strain response of the base materials is approximated using a 2D Neo-Hookean model. We followed
the strain energy density function in Sifakis et al. (61):

W =
µ

2
(I1 −2− lnJ)+

λ

2
(lnJ)2 , (1)



where µ and λ are the Lamé parameters, J = det(F) is the determinant of the deformation gradient (F), and I1 = tr(C) is the
first invariant of the right Cauchy-Green deformation tensor (C = FTF). µ and λ are derived from Young’s modulus (E) and
Poisson’s ratio (ν) as follows

µ =
E ′

2(1+ν ′)
,

λ =
E ′ν ′

(1+ν ′)(1−2ν ′)
,

(2)

where E ′ and ν ′ are converted from E and ν as follows (62)

ν
′ =

ν

1+ν
,

E ′ =
E(1+2ν)

(1+ν)2 .
(3)

The Young’s moduli and Poisson’s ratios of the base materials were regarded as optimizable parameters in system identification
(Section 3.2).
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Fig. S5. Configuration of the FEM simulator. (A) Dimensions of the FEM grid in the toughness virtual tester. (B)
Dimensions of the FEM grid in the Young’s modulus virtual tester. (C) upsampling from a microstructure pattern to a 40×40
FEM subgrid. (D) An example simulation process of the toughness virtual tester. (E) An example simulation process of the
Young’s modulus virtual tester.

The virtual tester for toughness operates on a regular grid of 200×160 quadrilateral finite elements (Fig. S5A) where each
node has four degrees of freedom. The grid contains 5×4 tiles of microstructure units where each unit covers a 40×40 sub-grid.
Notably, a microstructure unit doubles the resolution of the pattern due to modeling the interface between base materials. The



interface was modeled as a third homogeneous material, referred to as the interface material. Finite elements of the interface
material and the base materials are equally sized. This is evidenced by our microscopic observation of printed specimens, which
indicates that the width of the interface is typically around 100 µm and comparable to half of the pixel size. The computation of
material assignment in a sub-grid is analogous to image upsampling. As shown in Fig. S5C, the FEM subgrid is superimposed
on the original pattern where the center of the bottom-left element aligns with the center of the bottom-left pixel. An element
inherits the corresponding pixel value if it is located entirely within a pixel; otherwise, the material assignment depends on
the values of surrounding pixels in the same way as interface engineering. To mimic the pre-cracking of real specimens, a
single-element-wide notch and a triangular cut were applied at the grid position of (0,80). The “removed” elements were
assigned with a void material and do not generate nodal forces under deformation. Overall, this configuration correlates well
with a printed specimen despite a simpler geometry to reduce computational cost. Dirichlet boundary conditions were enforced
on the displacement in the y-direction during testing. Nodal forces in each element were computed from the Neo-Hookean
model using four Gaussian quadrature points. Nodal velocities and displacements were then obtained from explicit time
integration. Crack initiation and propagation were modeled on a per-element basis. To that end, strain energy densities were
computed at the quadrature points together with nodal force contributions. An element was considered failed and reassigned
with a void material once the maximum strain energy density at quadrature points exceeded a certain threshold specific to
each material. Simulation terminated when the global strain went beyond 0.3 or the measured stress fell below 20% of the
ultimate tensile strength, with the only exception being the soft material for which the maximum strain was unlimited. In the
end, toughness was calculated by integrating the stress-strain curve.

While it is possible to compute nodal velocities and displacements using an implicit solver, we chose an explicit solver
since explicit solvers are generally preferred for nonlinear FEM simulations that involve dynamic failure. In particular, the
virtual tester must operate at a sufficiently small time step (around 10−7 s) to precisely capture the crack propagation in
microstructures and maintain numerical stability. Under such a strict requirement, explicit solvers are more efficient due to
simpler implementation and better compatibility with many-core hardware accelerators like graphical computing units (GPU).
However, we noticed that the virtual tester ran too slow at a strain rate that matched actual mechanical testing. In this case,
simulating a microstructure till an assumed failure strain of 0.02 required 1.62×108 time steps, taking almost one hour to
finish on an NVIDIA Tesla V100 GPU under maximum throughput. The running time is impractical to our computational
pipeline because the simulation budget will be too tight to allow for a proper exploration of the combinatorial design space. As
a workaround for this challenge, we used a much larger strain rate (equal to 20) to speed up the simulation while introducing
system-wide numerical damping to model material viscosity. Once the velocity field was updated in every time step, nodal
velocities vi, j were smoothed by a 3×3 filter defined as

v′i, j = (1−α)vi, j +
α

9

1

∑
k=−1

1

∑
l=−1

vi+k, j+l , (4)

where α = γ∆t is the product of the time step ∆t and a constant damping coefficient γ . Under the assumption that all nodes
have identical mass, this step effectively interpolates between the momentum of each node and the mean momentum in a 3×3
neighborhood. A larger γ leads to stronger damping effects and potentially accounts for more material viscoelasticity. Our
observations suggested that larger γ values work better with stiffer microstructures in suppressing oscillation. As there is no
trivial way to determine the value of γ for all microstructures, we optimized γ in system identification instead.

The virtual tester for Young’s modulus has a much smaller grid of 80×40 quadrilateral elements, consisting of 2×1
microstructure units (Fig. S5B). The material assignment to elements was computed using the same image upsampling method
and no notch or triangular cut was added. This configuration qualitatively matches the gauge area of an ASTM D638 Type 1
specimen. A constant displacement boundary condition was enforced in the y-direction where the global strain remained fixed
at 10−4. Nodal forces were computed from the aforementioned Neo-Hookean model. Explicit time integration was used to
update velocities and displacements. Negative exponential damping was applied to the velocity field as follows

v′i, j = vi, je−γ∆t , (5)

where ∆t ≈ 10−7 s was used as the time step and the damping coefficient γ was optimized through system identification. The
solver was allowed to reach a static equilibrium within 104 time steps, after which Young’s modulus was derived from the
gauge stress. Although an implicit linear elasticity solver is usually used to virtually measure Young’s modulus, we directly
reused the explicit solver in the toughness simulator for simplicity. Note that the Young’s modulus virtual tester is not the
bottleneck of the whole simulation.

In pursuit of maximal computation efficiency, our customized simulator was implemented using the Taichi programming
language (71), an emerging high-performance programming language tailored to computer graphics applications including
physics-based simulation. Taichi compiles our source code written in Python syntax into optimized machine programs that,



when executed, exploit the massive parallel computing power of GPUs. However, we found that simulating microstructures
sequentially resulted in low GPU utilization due to inadequate workload. Our solution was adding a batching mechanism to
enable concurrent simulation of multiple microstructures, where each microstructure can be evaluated using a unique set of
optimizable parameters. This allows for maximum GPU usage regardless of its power, resulting in a much higher throughput.
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Fig. S6. Time consumption and throughput of the simulator under various input batch sizes. The column on the left
contains results for Young’s modulus and the column on the right shows results for toughness. The toughness virtual tester was
evaluated under three strain limits: 0.02, 0.05, and 0.1.

We evaluated simulation speed by timing the simulator under different batch sizes and strain limits. All performance data
was collected on a machine with 8 CPU cores and an NVIDIA Tesla V100 GPU averaged across 5 consecutive runs. Results
are shown in Fig. S6. For Young’s modulus, simulation only becomes slower when at least 20 microstructures are batched
together. While increasing the batch size beyond this point leads to a much longer simulation time, the throughput continues
to improve, implying that GPU utilization is still approaching its maximum. A batch size of 100 is required to reach a peak
throughput of less than 0.015 s per sample. For toughness, the highest throughput occurs at a batch size of 20, where it takes
less than 0.2 s to stretch a sample to ε = 0.05. Relative to the sequential setting, our batching mechanism yields a 30× boost in
throughput for Young’s modulus and more than 3× for toughness regardless of the strain limit.

3.2 System Identificaton
System identification finds the optimal parameter setting of the simulator to match simulation results with physical measurements
(Fig. S7). We first define some mathematical notations before providing a formal description of the problem. For any
microstructure x, let f (x,θ) : X ×P → R denote the virtual tester for Young’s modulus with a parameter setting θ , where
X ⊂ {0,1}20×20 is the design space of microstructures and P ⊂R7 is the feasible set of θ . The estimated Young’s modulus of x
is directly obtained from Ê = f (x,θ). Similarly, let g(x,η) : X ×Q →C[0,∞) denote the virtual tester for toughness with a
separate parameter setting η , where Q ⊂ R10 is the feasible set of η . The output g is not a single number but a stress-strain
curve σ̂(ε) defined as a continuous function over non-negative strains. Thus, the toughness of x is estimated by computing the
following integral

T̂ = I[σ̂ ] =
∫

∞

0
σ̂(ε)dε. (6)

Both θ and η are tuples of optimizable simulation parameters, including

• Reference Young’s moduli of base materials (denoted as TB and VW) and the interface material (denotes as IF):
ETB,EVW,EIF;

• Reference Poisson’s ratios: νTB,νVW,νIF;
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Fig. S7. Schematics of the system identification problem. Each virtual tester has a separate set of optimizable parameters.
’⊖’ denotes error minimization via parameter optimization.

• Failure thresholds of strain energy density: WTB,WVW,WIF;

• A system-wide damping coefficient: γ .

Since fracture simulation is not involved in predicting Young’s modulus, we have

θ = (ETB,EVW,EIF,νTB,νVW,νIF,γ)

η = (ETB,EVW,EIF,νTB,νVW,νIF,WTB,WVW,WIF,γ).
(7)

Based on optimizable parameters, the prediction errors of virtual testers were minimized over a group of microstructures
Xc = {xi | i = 1,2, · · · ,N}, called the system identification dataset. The optimization process solved the following problems

θ
∗ = argmin

θ

N

∑
i=1

wi

∣∣Êi −Ei
∣∣

Ei

η
∗ = argmin

η

N

∑
i=1

wi

∣∣T̂i −Ti
∣∣+ λ̃ I [|σ̂i −σi|]

Ti
,

(8)

where Êi, T̂i, σ̂i are the predicted Young’s modulus, toughness, and stress-strain curve of each microstructure xi; Ei,Ti,σi are the
corresponding physical measurements. For Young’s modulus, the objective is simply the average relative prediction error over
the dataset. For toughness, the objective combines errors in both toughness values and stress-strain curves. Since stress-strain
curves are functions, the error between two curves is calculated by integrating their absolute difference. Geometrically, this
represents the symmetric difference of the areas under the curves. The two error terms are balanced by a multiplier λ̃ = 1.

Additionally, as there are fewer optimizable parameters than microstructures in the dataset, we postulate that the simulation
model might have an insufficient capacity to capture the variation of experiment data. Thus, each microstructure xi is weighted
by wi ∈ [0,1] to indicate priority. The weight is defined as the product of two components wi = w1iw2i that reflect two
intuitive principles. First, microstructures with better mechanical properties are prioritized for accuracy since Pareto-optimal
microstructures are our focus. To that end, the physical measurements y = (E,T ) of microstructures in the dataset were
normalized into ỹ = (Ẽ, T̃ ) in a unit square, and a piecewise-linear Pareto front was computed in the normalized performance
space. Then, the weight component w1i of microstructure xi was derived from the Euclidean distance between ỹi and the Pareto
front, denoted by di, via the following function (Fig. S9A)

w1(d) =


1 0 ≤ d < 0.2
1.4−2d 0.2 ≤ d < 0.6
0.2 d ≥ 0.6

. (9)

Second, to prevent any bias from an uneven sample distribution in the performance space, we introduce w2i as a penalty term for
excessively densely distributed microstructures. The distribution is estimated using a density heatmap ρ(ỹ) over the normalized
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Fig. S8. Measured stress-strain curves from the toughness test of six microstructures discovered by our pipeline. The
microstructures (A-F) are selected from random stratified sampling to cover a wide range of φ . We showcase the stress-strain
curves of all tested specimens (distinguished by color) for each design.
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performance space (Fig. S9B). The density heatmap is derived from a Gaussian mixture model

ρ(ỹ) =
N

∑
i=1

exp(−γd ∥ỹi − ỹ∥2
2) (10)

where γd is a parameter that controls the spread of each Gaussian function. Quantitatively, ρ(ỹ) estimates the number of
microstructures in the vicinity of any position ỹ, and variates smoothly between adjacent samples. Then, w2i is defined as a
weight discount for every sample xi whose density value exceeds a certain threshold, ρ0.

w2(ỹ) = min
{

ρ0

ρ(ỹ)
,1
}

(11)

In this study, we found γd = 200 and ρ0 = 2 to be a desirable parameter setting. Noteworthy, the design principles of sample
weights generalize to other problem domains. Proper modifications can be made when our approach is repurposed to other
computational design problems.



We used batched Bayesian Optimization (BO) as the optimizer for both θ and η . The BO algorithm outputs the best
solution after 200 iterations with 3 evaluations per iteration, hence performing 600N simulations at most. The manually
specified feasible ranges of simulation parameters are listed in Table S9 and S10. The algorithm was repeated with five different
random seeds and the solution that had the smallest loss value was chosen. To harness the high throughput of the simulator,
we implemented the algorithm using the GPyOpt library (63) and batched all 3N simulations in a BO iteration into a single
simulator run.

Sample E (GPa) Err. T (MPa) Err.
Exp. Sim. (%) Exp. Sim. (%)

TB 1.0094e-3 1.0091e-3 0.031 5.4335e-2 5.4271e-2 0.118
VW 2.6613 2.6613 0.0002 7.4217e-2 7.4484e-2 0.360
IF 0.5642 0.5642 0.003 0.8274 0.8193 0.984

Table S2. Simulation accuracy after system identification on each base material separately. The accuracy is measured by
relative errors (Err.) of simulation predictions (Sim.) from physical measurements (Exp.)

Round N
Rel. error: E (%) Rel. error: T (%)

Reference After Reference After
Avg. Max. Avg. Max. Avg. Max. Avg. Max.

1 18 31.09 93.15 6.53 22.95 135.59 767.44 22.85 62.23
2 26 25.19 93.15 6.29 20.40 108.26 767.44 23.92 100.53
3 34 21.11 93.15 6.32 22.75 93.09 767.44 24.68 84.30
4 42 18.95 93.15 6.50 25.40 82.38 767.44 27.10 88.87

Table S3. Simulation accuracy after system identification in each outer loop round since Round 1. Simulation errors of
the updated model after system identification are compared against the reference model (in Round 0). N denotes the number of
microstructures in the system identification dataset. Different from Fig. 3F, the error in each round is computed using
microstructures in the dataset only.

In Round 0, we fitted the simulation to the base materials using system identification, obtaining a reference simulation
model. It achieved almost perfect accuracy, where Young’s modulus predictions are within 0.1% off from measurements and
toughness prediction errors are below 1% (Table S2). However, after the system identification in each round, the updated
model had much smaller errors in predicting the performance of microstructures than the reference model (Table S3). From a
theoretical perspective, a possible explanation is that the localized mechanical performance of base materials might differ from
bulk properties due to the microstructured placement. Thus, modeling the base materials in microstructures using physical
measurements on bulk specimens could result in larger simulation errors.

For a complete reference, Table S11 and S12 list the physical measurements, simulation predictions, and relative errors of
all microstructures discovered by our computational approach in every round of the outer loop.

3.3 NMO - the Inner Loop
Microstructures with optimal trade-offs between simulated Young’s modulus and toughness were explored following the system
identification step. Here, a multi-objective optimization (MOO) problem was solved in the microstructure design space. As
pixel-wise material assignments are discrete variables, the MOO problem can be tackled using genetic algorithms like NSGA-II
(26). However, a naive NSGA-II implementation often suffers from low sample efficiency attributed to uninformative random
mutations and crossovers. Alternatively, topology optimization (TO) methods (16,58,64,65) formulate the MOO problem
as continuous optimization where the base material properties of finite elements are parameterized by continuous material
assignment variables. While the continuous formulation allows for gradient derivation with respect to material assignments,
TO algorithms are prone to local optima and do not easily scale up to multiple objectives. Particularly, if a full Pareto front is
desired rather than a single Pareto-optimal solution, TO has to harness many starting points and weighted combinations of
objectives to properly explore the design space. Another potential option is multi-objective Bayesian optimization (MOBO)
which performs a more guided exploration of the design space (29, 30, 66) than NSGA-II. Most MOBO algorithms leverage
Gaussian-process-based (GP-based) surrogate models that make fast and approximative performance predictions, thus greatly
reducing the number of simulations required. However, the surrogate models are heavily constrained by the Gaussian prior and



can struggle in approximating sophisticated discrete mappings. Furthermore, since the computational cost of fitting Gaussian
processes is cubic to the number of data points, the dataset is often limited to a few hundred in practice, which is far from
adequate to model the complex relationship between microstructure patterns and toughness.

Inspired by MOBO, we developed a neural network-accelerated multi-objective optimization algorithm (NMO) that is
specially tailored to the design space of microstructure patterns, harnessing the impressive capabilities of deep learning. The
NMO workflow is illustrated in Fig. 2a. In the beginning, a set of 10 microstructures were randomly sampled from the design
space and simulated to obtain their performance, constituting an initial dataset. In every iteration, the dataset was used to train
the predictor, which acts as a surrogate model for the simulator. Ten predicted Pareto-optimal samples were then computed
by solving a surrogate multi-objective optimization problem where simulation was replaced by the surrogate model. As the
surrogate model is much cheaper to evaluate, we applied NSGA-II to solve the surrogate problem, which ran for 200 generations
at a population size of 100. Then, the predicted best microstructures were verified in simulation before being added to the
dataset for the next iteration. The algorithm lasted for 500 iterations as dictated by a pre-specified budget of 5,000 simulations.
Due to its iterative nature, NMO transforms into the inner loop of our pipeline, where simulation data and proposed designs
alternately flow between the simulator and the predictor.
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Fig. S10. CNN architectures used in the predictor. (A) Definitions of the architectural units of CNNs. (B) Prediction
networks of Young’s modulus and toughness constructed from an architecture template.

NMO has several major improvements over MOBO. Most importantly, the surrogate model is based on convolutional neural
networks (CNN), which specializes in image-based reasoning, instead of Gaussian processes. We model toughness and Young’s
modulus using two separate residual networks (52). Both networks were constructed from the same architecture template
demonstrated in Fig. S10. The template is a concatenation of one stem convolution layer, one or more residual blocks, a global
average pooling layer, an optional dropout layer, and a fully connected layer. The network for toughness has a relatively larger
capacity, with 5 residual blocks and a penultimate dropout layer for regularization. The network for Young’s modulus is much
smaller, with only 2 residual blocks. The networks were progressively trained on the dataset of microstructures discovered by
the algorithm, where an Adam optimizer (67) was used at a learning rate of 1e-3. The network for toughness underwent 300
training epochs whereas the network for Young’s modulus went through 100 epochs. The maximum batch size was 2,048. To
alleviate overfitting on small datasets, the networks were penalized by weight decay coefficients of 1e-2 and 1e-6, respectively.
On a side note, the user may employ more complex network architectures, e.g., Vision Transformers (ViTs) (68), to accelerate
the inner loop when applying our computational pipeline to alternative design problems. Our work uses CNNs as they typically
perform better than ViTs in data-efficient scenarios and entail minimal expert knowledge of advanced neural network models
for microstructure patterns.

The next improvement is a customized mutation operator in NSGA-II specially designed for microstructure patterns.
Normally, NSGA-II strikes a balance between exploitation and exploration of the design space using a mutation operator and a
crossover operator. In our case, we omitted the crossover step but augmented the mutation operator to enforce exploration. The
customized mutation operator carried out one of the following options probabilistically.

• With p1 = 0.86, flip a random pixel;

• With p2 = 0.11, rewrite a rasterized line of pixels with a unified random value of 0 or 1, where the starting and ending
positions are randomly chosen;

• With p3 = 0.03, select a random pixel as the top-left corner, then rewrite a square region of pixels (the size of the square
is randomly designated) with the complement of the top-left pixel.



After that, symmetry was restored by mirroring the changes across the entire pattern. Note that the mutated pattern might
violate the structural constraints on the design space. Thus, potential violations were resolved through the procedure below

1. If the resulting φ falls below 0.5 after mutation, the pattern is flipped, and the four corner pixels are reassigned with the
stiff material.

2. If other violations still exist, the operator continues applying new mutation attempts without undoing any changes until
the violation is cleared.

Our implementation of the mutation operator takes into account that the toughness of a microstructure is directly affected by
structural features in the pattern, such as pixels, beams, and chunks of the soft material. It balances between exploitation and
exploration by modifying these structural features at multiple scales probabilistically.

The last improvement is a deduplication mechanism using hash tables. It prevents the algorithm from rediscovering previous
samples in later iterations and allows the algorithm to escape local optima during exploration. Normally, single-pixel mutations
create limited variation and easily result in duplicate patterns. With a hash table, however, the mutation operator automatically
switches to larger perturbations once the hash table entries of neighboring patterns are filled. The exploration then continues in
other regions of the design space. In our definition, the hash value of a microstructure pattern (viewed as a flattened array of
binaries x = (b1,b2, · · · ,b400)) was computed as

hash(x) =

(
400

∑
i=1

biki−1

)
mod m (12)

where k = 99,997 and m = 100,000,007 are prime numbers. Each hash table had m entries. NMO had a global hash table,
while each run of the surrogate problem solver used a separate table. After the modified NSGA-II algorithm finished, the
predicted Pareto-optimal microstructures were ordered by non-dominated sorting and checked for hash collision inside the
global hash table. The first 10 collision-free samples were validated by the simulator.

The exploration efficiency of NMO was evaluated using Pareto hypervolume growth within a budget of 5,000 simulations.
Our modified NSGA-II algorithm was also evaluated. Compared with NMO, it still benefits from the custom mutation operator
and the hash table albeit not having any surrogate model. For reference, we included a baseline NSGA-II implementation that
performs single-pixel mutations and one-point crossovers at a rate of 0.1 and 0.8, respectively. Any crossover or mutation
attempt that violated design constraints was reverted before trying the next one. Hence, the NSGA-II baseline is generally more
conservative in exploration.

For TO, we chose bidirectional evolutionary structure optimization (BESO) (27,57) and solid isotropic material with
penalization (SIMP) (58) as representatives since previous works have tackled tough composite design using both strategies
(69, 70). Considering that they only optimize a single objective by definition, we extended them to finding the Pareto front
by randomly sampling many weighted combinations of normalized Young’s modulus and toughness as meta-objectives. To
enforce exploration, we run BESO using multiple random initial solutions and set multiple random target volume fractions for
SIMP. This way, both algorithms balance exploitation and exploration without leveraging any expert knowledge of Young’s
modulus or toughness, making a fair comparison with our method. Implementation-wise, we augmented the FEM simulator to
support gradient calculation through auto-differentiation (71). We adopted the extended BESO method from (72) and solved
SIMP using method of moving asymptotes (MMA). For MOBO algorithms, we evaluated DGEMO (29) and TSEMO (30) as
baselines. DGEMO has state-of-the-art performance in several synthetic MOO benchmarks, while TSEMO is more commonly
adopted.

Here, we additionally introduce the detailed optimization setting for TO-SIMP, where the MMA solver maximizes a
weighted combination of normalized Young’s modulus and toughness. An active constraint is imposed on the volume fraction
of the rigid base material (φ ). Below we provide the optimization statement in mathematical notations. Let ρ ∈ [0,1]20×20

denote the density field of a microstructure unit. SIMP defines the element-wise Young’s modulus Ee as

Ee(ρe) = ρ
p
e Erigid +(1−ρ

p
e )Esoft (13)

where ρe refers to the density of the element e; p denotes the SIMP penalization exponent; Erigid and Esoft represent the Young’s
moduli of rigid and soft base materials. Let Ẽ(ρ) be the normalized Young’s modulus given by the Young’s modulus simulator,
T̃ (ρ) be the normalized toughness given by the toughness simulator. The following problem is solved using MMA:

max
ρ

w1Ẽ(ρ)+w2T̃ (ρ)

s.t.
∫

Ω

ρ dΩ ≤ φmax

ρ obeys p4m symmetry

(14)



Since the optimizer only converges to one microstructure design at a time, we repeat this process using randomly sampled w1,
w2, and φmax to explore the design space in different directions. We use a constant SIMP penalization p = 8 in all cases without
continuation.

Regarding the evaluation methodology, ten microstructures were simulated per iteration for all algorithms except TO which
does not break down to generations. NMO and NSGA-II were run for 500 iterations. MOBO algorithms were capped by 200
iterations for an acceptable time consumption as fitting Gaussian processes became extremely slow with hundreds of samples.
For TO algorithms, we paired random meta-objectives and initial designs (or target volume fractions) into optimization tasks
and allowed the algorithm to execute as many optimization tasks as possible before exhausting the evaluation budget. All
algorithms were repeated on the same five random seeds, which led to identical starting samples. The resulting curves of Pareto
hypervolume growth were averaged.
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Fig. S11. Pareto hypervolume growth of the gamut using various optimization algorithms in Round 0. Candidates are
NMO, NSGA-II, TO, and MOBO algorithms. Solid curves are averages. Colored regions indicate standard deviations.

Round Pareto hypervolume Improv.
Vtarget

#Samples till Vtarget Improv.
NSGA-II Ours (%) NSGA-II Ours (×)

0 1.6154 1.8412 13.98 1.7202 20000 2200 9.10
1 1.6012 1.8835 17.63 1.8225 20000 4190 4.78
2 0.9956 1.0904 9.52 1.0776 19760 3240 6.10
3 1.0406 1.2016 15.47 1.0911 19950 1830 10.90
4 0.9457 1.0078 6.57 1.0078 17140 4990 3.44

Table S4. Comparison in exploration efficiency between NMO and our modified NSGA-II in each outer loop round.
Exploration efficiency is measured by: (1) the discovered Pareto hypervolume within 5,000 simulations (unit: 1015 N2m−4); (2)
the number of simulated samples before reaching a target Pareto hypervolume, denoted by Vtarget. Vtarget is equal to the Pareto
hypervolume of NSGA-II at 20,000 simulations by default. If NMO does not reach that hypervolume within 5,000 simulations,
we change Vtarget into NMO’s hypervolume at 5,000 simulations instead.

Fig. S11 demonstrates the Pareto hypervolume growth of evaluated algorithms in Round 0. NMO secured victory with
the fastest growth and the largest final hypervolume. The modified NSGA-II algorithm also pulled ahead of baseline NSGA-
II considerably in hypervolume growth. In contrast, the TO variants failed to cover a decent Pareto hypervolume despite
completing dozens of optimization tasks. They not only suffered from local optima but had to consume a majority of the budget
on intermediate solutions along optimization trajectories, which crippled their sample efficiency. Both MOBO algorithms
severely underperformed as well due to the aforementioned weaknesses of Gaussian processes. Furthermore, even when
compared against our modified NSGA-II, NMO took up to an order of magnitude fewer simulations to reach the same Pareto
hypervolume (Table S4). These results showcase NMO’s evidently superior sample efficiency over other state-of-the-art
structural optimization or generic MOO algorithms. In addition, we would like to note that NMO is compatible with any MOO



algorithm when solving the surrogate problem. It is recommended to choose an algorithm that adequately fits the design task
for ideal exploration efficiency in practice.
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Fig. S12. Impact of network regularization on the Pareto hypervolume growth of NMO in all outer loop rounds. "Ours"
means our hyperparameter setting including a large weight decay of 1e-2 plus a penultimate dropout layer. The unit of the
hypervolume is 1015 N2m−4.

By tuning the CNNs’ hyperparameters, we noticed that network regularization plays an important role in accelerating
hypervolume growth. In this experiment, our CNNs were compared against two less regularized variants, one using a smaller
weight decay (1e-6) and the other excluding dropout before the fully-connected layer. As shown in Fig. S12, our networks
outperformed less regularized versions and led to better hypervolume growth in most test cases. While the no-dropout variant
had negligible wins in Rounds 2 and 4, the small-weight-decay variant kept trailing behind. Considering the relatively small
amount of training data, a reasonable explanation is that regularization prevents the networks from overfitting and improves
generalization to unseen samples. Thus, properly regularized networks can be better at discovering high-performing samples in
simulation.

As an additional test, we evaluated the prediction accuracy of CNNs on training datasets in the last iteration of NMO
(Fig. S13). The network for Young’s modulus achieved very high accuracy with an average relative error of less than 2%. The
network for toughness had larger errors in comparison, at 16.7% and 13.6%, respectively. Nonetheless, perfect accuracy is
unnecessary in this case since the microstructures for simulation validation in the modified NSGA-II were selected by Pareto
dominance rather than performance values. Therefore, it is sufficient to predict correct property rankings, which is indicated
by the correlation coefficient (r) between predictions and the ground truth. Here, our network for toughness managed to get
r > 0.97 and demonstrated much faster hypervolume growth than other evolutionary algorithms. As a side note, searching for
the best network architecture or hyperparameter setting is beyond the scope of this work and thereby left for future research.
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Fig. S13. CNN prediction accuracy in the last iteration of NMO. The examples shown are Round 0 and Round 4 with a
random seed of 0. Simulation results are regarded as the ground truth. r means correlation coefficient.

3.4 Selection of Validation Samples
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Fig. S14. The selection process of validation microstructures near the Pareto front. M = 5 and L = 1 are used in this
illustration for simplicity.

The simulated gamut discovered by NMO typically contains a large pool of microstructures and a few samples are selected
for physical validation due to a limited experiment budget. Overall, the selected samples should cover a wide performance



range and be distinguished from existing samples in appearance. To fulfill these requirements, we propose a two-stage selection
approach visualized in Fig. S14.

The first stage extracted samples closest to the gamut boundary. This step can be done in various ways depending on the
shape of the gamut. We employed a simple method where samples in the gamut were ranked in the order of Pareto dominance.
By definition, Pareto-optimal samples of the entire gamut are in the 1st rank, and the i-th rank contains microstructures on the
Pareto front of a partial gamut where those in higher ranks are removed. We regarded samples up to the 3rd rank as near the
boundary. Meanwhile, the gamut was intersected by two benchmark lines l1 and l2. l1 is a polyline that connects the physical
measurements of homogeneous composites. l2 is a horizontal line going through the sample with the largest Young’s modulus in
simulation. Samples that were both near the boundary and above the benchmark lines were deemed as candidates for selection.

In the next stage, the candidate samples, S ⊂ X , were classified into two groups of radial bins B1,B2, · · · ,BL and
BL+1,BL+2, · · · ,BM . M denotes the total number of samples to select, and L denotes the number of samples to select from the
first group and that 0 ≤ L < M. To that end, we mapped the properties of samples in S to a normalized performance space in
[−1,1]× [0,1]. While both Young’s modulus and toughness went through linear mappings, there are two circumstances for
Young’s modulus specifically. As shown in Fig. S14, the Young’s modulus of the toughest sample Êtop is mapped to zero by
default. However, the resulting image will not fit into [−1,1] if Êtop exceeds the midpoint of the Young’s modulus range, hence
the midpoint is mapped to zero in that case. Within the normalized performance space, the radial bins are outlined by M+1
rays shooting from the origin, dubbed as r1,r2, · · · ,rM+1. rL+1 and rM+1 always align with the coordinate axes regardless of L.
If L > 0, r1 passes through the sample in S that has the largest orientation angle from the positive horizontal axis, ϕmax. The i-th
radial bin Bi refers to the area between ri and ri+1, and we let Si denote the subset of S classified into Bi. B1,B2, · · · ,BL are
equally sized and located in the second quadrant, while the other bins are equally sized and located in the first quadrant. The
value of L is determined by ϕmax using the rules below

L =


0 ϕmax <

π

2
+ϕth⌈(

1− π

2ϕmax

)
M
⌉

ϕmax ≥
π

2
+ϕth

, (15)

where ϕth = π/36 (i.e., 5◦). Practically, when ϕmax is at least 95◦, L is a minimum number such that the bins in the second
quadrant are no larger than those in the first quadrant.

The following combinatorial optimization problem was subsequently solved to search for a group of microstructure patterns
that maximally differentiate from physically measured ones. Let R denote the set of microstructures that have been discovered
by the computational pipeline, and Ω = (x1,x2, · · · ,xM) (where xi ∈ Si for i = 1,2, · · · ,M) denote a possible selection. The
objective is to maximize the average L1 distance of each xi to the rest of the samples in R∪Ω.

Ω
∗ = argmax

Ω

1
M

M

∑
i=1

min
u∈R∪Ω\{xi}

∥xi −u∥1 . (16)

As the problem is likely intractable by enumeration when S contains over 100 samples, we used a beam search algorithm to find
an approximate solution. The beam size was set to 100 to preserve the quality of the solution at an acceptable computational
cost.

3.5 The Outer Loop
The outer loop was held between the mechanical tester and the simulator as follows. In Round 0, the mechanical tester
conducted physical measurements on the base materials (the rigid, soft, plus the interface material). Our system then matched
simulation and experiment using a system identification. Each material was involved in a separate system identification process
that only optimized simulation parameters pertaining to that material, including Young’s modulus, Poisson’s ratio, energy
density threshold, and damping coefficient. This yielded three optimized values of the damping coefficient where the median
was chosen. Using the calibrated simulator, our system ran the inner loop to find microstructures with the optimal trade-offs
between Young’s modulus and toughness in simulation. As previously noted, we used the modified NSGA-II algorithm to
compute the simulation Pareto front and left the NMO algorithm to a separate comparison with other optimization algorithms.
The NSGA-II was run in five different random seeds under a simulation budget of 2×104 samples. The resulting gamuts were
merged into one gamut with approximately 105 samples, after which 8 validation microstructures were selected near the Pareto
front and transferred back to the mechanical tester for validation.

Starting from Round 1, our system maintained a dataset of physically measured microstructures, starting from 18 initial
designs. Besides the proposed designs from Round 0, the dataset also had 10 random microstructures drawn from stratified
sampling according to φ (Table S5). Microstructure patterns in each interval of φ were generated by randomly specifying a
φ value and filling a zero matrix with a corresponding number of 1’s. These random microstructures help regularize system



φ interval Patterns

0.5 ≤ φ < 0.6

0.6 ≤ φ < 0.7

0.7 ≤ φ < 0.8

0.8 ≤ φ ≤ 0.85

Table S5. Random microstructure designs in the system identification dataset categorized by φ .

Source Microstructure patterns

Random
sampling

Round 0

Round 1

Round 2

Round 3

Round 4

Sample No.

1 - 10

11 - 18

19 - 26

27 - 34

35 - 42

43 - 50

Fig. S15. Microstructures discovered by the computational pipeline. The first row comprises 10 random patterns in the
system identification dataset. The following rows are patterns proposed in outer loop rounds.

identification, especially in early rounds of the outer loop when the dataset is small. As shown in Fig. 3b, the mechanical
tester provided the simulator with physical measurements of all microstructures in the dataset to improve its accuracy through
system identification. Different from Round 0, system identification was conducted using experiment data from microstructures
exclusively. After that, the simulator computed its gamut and proposed 8 Pareto-optimal designs back to the mechanical tester
for validation. The proposed designs were then added to the microstructure dataset. Thus, the system identification dataset had
8n+18 microstructures at the end of Round n (n ≥ 0). The outer loop stopped at n = 4.

Microstructured composites discovered during the outer loop (Fig. S15) were compared against homogeneous composites.
Among the microstructures that showed better performance trade-offs than homogeneous counterparts, we picked five best
samples near the Pareto front and with more than 1.5× improvement in toughness from the benchmark line (Table S6). Sample 2
has the maximum improvement in both Young’s modulus and toughness at 1.61× and 2.76×, respectively. Samples 1 and 3 also
show more than 2× improvement in toughness. These results sufficiently prove that computationally designed microstructured
composites present much better trade-offs between Young’s modulus and toughness than homogeneous composites. We also



Sample φ
Properties Improvement Improv.

(homogeneous) (base)
E (GPa) T (MPa) E (×) T (×) T (×)

1 0.79 1.402 0.491 1.35 2.00 7.01
2 0.85 1.810 0.473 1.61 2.76 6.75
3 0.85 1.764 0.458 1.54 2.48 6.53
4 0.84 1.790 0.355 1.27 1.76 5.07
5 0.85 1.807 0.304 1.28 1.59 4.33

Table S6. Performance of five best microstructures discovered by our approach. Their improvements are calculated
relative to homogeneous composites and base materials. For homogeneous composites, the improvement in one property is
calculated assuming that the other property is identical. The largest improvement factors are marked in bold.

calculated the improvement of the best samples over base materials in toughness (VW+ has a higher toughness of 0.070 MPa
than TB+), whereas Sample 1 has 7.01× higher toughness than VW+.

Note S4 Analysis on Pareto-Optimal Microstructures
4.1 Discovery of Microstructure Families
Microstructure families were discovered from microstructures with near-optimal trade-offs between Young’s modulus and
toughness after the nested-loop pipeline. Here, we grouped 11 near Pareto-optimal microstructures into 4 families by patterns
and mechanical performance (Fig. 4b). They were referred to as seed microstructures and leveraged to generate pattern
variations in each family. Then, we validated the discovered families by confirming that the generated microstructures had
similar performance to seed microstructures. The procedure is detailed as follows.

Family N
Rel. error: E (%) Rel. error: T (%)

R4 FS R4 FS
Avg. Max. Avg. Max. Avg. Max. Avg. Max.

1 3 10.77 19.98 6.25 12.56 40.17 48.25 4.55 8.28
2 4 2.99 5.45 1.22 3.45 41.61 56.81 11.32 21.29
3 2 7.69 9.64 2.13 4.22 47.42 62.99 2.69 5.35
4 2 3.96 5.76 2.16 4.29 33.03 43.64 0.45 0.73

Table S7. Prediction errors of the simulator after system identification in each microstructure family. The
family-specific simulators (FS) are compared with the simulator in Round 4 (R4) using the performance of seed
microstructures in each family. N denotes the number of samples. Better values are marked in bold. Physical measurements
and corresponding predictions are provided in Table S14 and S15.

To start with, we ran system identification in each family to obtain a family-specific simulator. The system identification
involved all near Pareto-optimal samples but assigned them with different weights. Samples in the family had a constant weight
of 1, while others were weighted by 0.1 for regularization purposes. Such family-specific system identification leads to a
better fitting quality within the family, as illustrated in Table S7. Since only seed microstructures and other Pareto-optimal
microstructures are used, there is a closer match between simulation predictions and physical measurements than the simulator
in Round 4. The contrast in prediction error is particularly obvious in toughness predictions where the family-specific (FS)
simulator has an order of magnitude smaller relative errors in three families.

To generate variations in microstructure patterns, we performed dense evolutionary sampling around the seed microstruc-
tures. Similar to NSGA-II, the sampling algorithm began with the seed microstructures in the family and generated other
microstructures iteratively using our modified mutation operator. However, there was no tournament selection of parents or
competition among the population, and any mutation attempt was simply rejected if it led to a violation of design constraints.
In every iteration, the algorithm kept generating mutated microstructures until 10 non-existing ones were found, after which
they were evaluated using the family-specific simulator. The mutated microstructures were restricted within a maximum of
16-pixel difference in pattern (which is 4% of all pixels) from the closest seed microstructure. The hash table in Section 3.3
was adopted for deduplication. As the hash table entries were rapidly filled, it became increasingly difficult to generate new
microstructures over time. Thus, the algorithm was limited by a maximum number of 3×105 proposed microstructures per
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Fig. S16. Gamut of each microstructure family after dense sampling along with selected samples near the Pareto front
for validation. Each family contains around 7,000 to 9,000 samples. ’Exp.’ is short for physical measurements and ’sim.’ for
simulation predictions. The measurements and predictions of a seed microstructure are connected to indicate error.

iteration and terminated if it failed to complete an iteration within the limit. Our algorithm generated local gamuts for all four
families as shown in Fig. S16.

Finally, we conducted physical measurements on three microstructures in the local gamut with near-Pareto-optimal predicted
performance. The samples were selected using the algorithm in Section 3.4 (Fig. S16). Their experiment results revealed
comparable performance to the seed microstructures (Table S13), hence verifying that the performance similarity among
microstructures in the same family was preserved after dense sampling.

4.2 Dimensionality Reduction in Subfamilies
For more in-depth analysis, each microstructure family was divided into subfamilies according to similarity with seed
microstructures, where a subfamily consists of a seed microstructure and others within a 16-pixel radius as specified in dense
sampling. We ran Isomap to reduce 400D microstructure patterns into 2D embedding spaces (with a neighborhood size of 10)
in each subfamily, shown in Fig. S17. Microstructure properties are color-coded in the figures. A higher intensity of the red
channel indicates better toughness, whereas the blue channel represents Young’s modulus. Our dense sampling algorithm was
able to create a diversity of variants from the seed microstructures. New shape features can be seen in these variants, such as
individual pixels, beams, arcs, and small chunks of soft material.

Regarding the distance metric for Isomap, we used the earth mover’s distance (EMD) rather than the Euclidean distance.
EMD, or the 1st Wasserstein distance (53), is a metric between probability distributions originally defined in optimal transporta-
tion theory (55). It intuitively measures the minimal work (defined as mass times distance) required to redistribute a pile of earth
into another. Compared with the Euclidean distance, EMD better reflects the shape difference between microstructure patterns
by taking into account both pixel values and locations. Since the original definition of EMD is not directly compatible with
microstructure patterns, we converted the patterns into quarter-sized normalized histograms that represent discrete probability
distributions. The conversion rules, illustrated in Fig. S18, treated pixels of the soft material as shape features and assigned
non-zero values to the corresponding cells of the output histogram. Conversely, the other cells associated with the rigid material
were set to zero. Therefore, the EMD between two microstructures xa and xb is calculated using the 1st Wasserstein distance
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Fig. S18. Calculation of the earth mover’s distance (EMD) between two microstructure patterns.

between their normalized histograms ha and hb (ha,hb ∈ [0,1]100).

EMD(xa,xb) =W1(ha,hb)

= min
π∈Π(ha,hb)

π ⊗D, (17)

where Π(ha,hb) is the collection of transportation plans, π , from ha to hb, given by

Π(ha,hb) =
{

π ∈ R100×100 ∣∣π ≥ 0, π1 = ha, and π
T1 = hb

}
. (18)

In the earth-moving analogy, π tabulates the amount of earth to transfer from one cell to another. D is the pairwise Euclidean
distance matrix of histogram cells. A⊗B = ⟨A,B⟩F = tr(ATB) is the Frobenius inner product of two identically shaped matrices.
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Fig. S20. Examples of interpolation between three microstructures in the same subfamily.

The Isomap embedding space of a subfamily can be further refined by samples not covered in dense sampling. To generate
these samples, we built an interpolation model for K neighboring microstructure patterns x1,x2, · · · ,xK in the embedding
space based on Wasserstein barycenters (54), which is widely used in shape interpolation (56). The interpolation algorithm
is illustrated in Fig. S19. Each source pattern was decomposed into a common part containing shared shape features and an
exclusive part containing distinctive features. The exclusive parts were converted into quarter-sized normalized histograms
denoted by h1,h2, · · · ,hK . Our model interpolated among the histograms by computing their Wasserstein barycenter h̄ under
the weight assignment w1,w2, · · · ,wK , defined as

h̄ = argmin
h

K

∑
i=1

wiW2(hi,h). (19)

W2(·, ·) refers to the 2nd Wasserstein distance,

W2(ha,hb) = min
π∈Π(ha,hb)

π ⊗D2, (20)

where D2 = D◦D is the pairwise squared distance matrix (◦ refers to the Hadamard product). The minimization problem was
tackled by solving the following equivalent linear programming problem (54) for the optimal transportation plans π∗

i from each
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Fig. S21. Isomap embedding spaces of three subfamilies before and after refinement using interpolation. Microstructure
properties are encoded in colors.

hi to h̄ (i = 1,2, · · · ,K).

min
{πi}

wi (πi ⊗D2)

s.t. πi ≥ 0, ∀i = 1,2, · · · ,K
πi1 = hi, ∀i = 1,2, · · · ,K
π

T
i 1 = π

T
1 1, ∀i = 2,3, · · · ,K

(21)

After that, h̄ was obtained by h̄ = (π∗
1 )

T 1. To convert the interpolated histogram back to a microstructure pattern, h̄ was
quantized into a binary matrix that indicates the material assignments of the upper-left quarter of the resulting pattern. Let ci be
the unified value of all non-zero cells in hi and c =

(
∑

K
i=1 ci

)
/K. A cell in h̄ translated into the soft material if no less than c,

and the rigid material otherwise. Examples of microstructure pattern interpolation are shown in Fig. S20.
In practice, a Delaunay triangulation was computed in the 2D embedding space to determine neighboring microstructures,

namely K = 3. The neighborhoods whose longest edge was between 4% and 40% of the diameter of the family (i.e., the
distance between the two furthest points in the embedding space) were marked as candidates. New microstructures were then



Family 1 2 3 4
Total

Subfamily 1 2 3 1 2 3 4 1 2 1 2

Before 3,251 2,959 3,313 1,862 1,861 1,917 1,859 1,860 1,862 1,997 1,915 24,656
After 3,328 3,164 3,371 1,939 1,904 2,054 1,903 1,988 1,964 2,112 2,044 25,771

Inc. (%) 2.37 6.97 1.75 4.14 2.31 7.15 2.37 6.88 5.48 5.76 6.74 4.52

Table S8. Increases in the size of subfamilies from interpolation.

generated from uniform grid interpolation in the candidate neighborhoods and added to the subfamily if they were within
a 16-pixel radius from the seed microstructure and did not violate any structural constraint. Finally, the refined embedding
space was recomputed using Isomap. Our interpolation algorithm generated about 5% more samples in each subfamily on
average (Table S8). In Fig. S21, we make a side-by-side comparison between the Isomap embedding spaces before and after
interpolation.

4.3 Toughening Mechanisms
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Fig. S22. Major shape features (A) and toughening mechanisms (B, C) of microstructures in Family 1.
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Fig. S23. Major shape features (A) and toughening mechanisms (B, C) of microstructures in Family 2.

Intrinsic toughening mechanisms of each microstructure family were analyzed from video recordings of validation samples
during mechanical testing and simulation. We summarize the most representative mechanisms of each family and associate
them with shape features in microstructure patterns as follows.

Family 1 maintains a relatively high fraction of soft pixels in the shape of bars or chunks as exemplified in Fig. S22A. This
family is located on the left side of the performance gamut where Young’s modulus is relatively small. To maintain proper



stiffness, the continuous areas of rigid material form horizontal and vertical grids (stiff grids in Fig. S22A). A distinctive feature
appearing in this family is parallel bars of soft material. Their benefits are twofold. When perpendicular to the pulling direction,
they introduce additional stress resistance through elastic deformation. Alternatively, when parallel to the pulling direction,
or directly facing crack propagation, they effectively absorb energy and slow down the propagation. Bridging and deflection
effects are the most prominent toughening mechanisms (Fig. S22B and S22C). A zig-zag crack path is observed during fracture
which results in high toughness. The propagation energy accumulates under the trapping effect of soft material and dissipates
via branched cracks (40).

Different from Family 1, Family 2 concentrates soft pixels in a cross-like band in the center of the unit (Fig. S23A).
Microstructures withstand a larger strain via the elastic deformation of soft material chunks, as indicated by the red square in
Fig. S23B. It is noteworthy that such deformation is accurately reflected in simulation. Stiff grids are also present as a means of
improving Young’s modulus. Bridging, deflection, and branching (Fig. S23B and S23C) are essential anti-cracking mechanisms
in the family.
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Fig. S24. Major shape features (A) and toughening mechanisms (B, C) of microstructures in Family 3.
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Fig. S25. Major shape features (A) and toughening mechanisms (B, C) of microstructures in Family 4.

While soft pixels are more concentrated in the two families above, they are mostly dispersed in Family 3. Discrete soft
pixels form a quarter of a diamond-like structure at corners and another diamond structure in the center (Fig. S24A). Meanwhile,
some soft pixels are located at the edges and ahead of the notch tip. These pixels are typically on the path of crack propagation
and act as an energy dissipation zone that delays crack propagation. Since the interface is stronger than the soft material, the
soft pixels work as defects that guide crack propagation. Such a deflection effect can increase the crack length dramatically and
dissipate much more energy. Additional soft pixels introduced during dense sampling not only enrich the diversity of the family
but also increase the overall stress resistance.

As for Family 4, the discrete soft pixels around corners roughly form a quarter of a circular outline (Fig. S25A). Similar to
Family 3, some soft pixels are placed on the edges, which retards crack propagation by dampening the cracking velocity and
dissipating energy through elastic deformation. Basic features like stiff grids are preserved to maintain Young’s modulus. The



same anti-cracking mechanisms, such as bridging, deflection, and branching, are observed in this family (Fig. S25B and S25C).
As Family 3 and 4 bear some resemblance in structure, we observed that they show comparable mechanical performance. Due
to the dominance of rigid material at 0.8 ≤ φ ≤ 0.85, microstructures in both families tend to have higher Young’s moduli but
break at relatively smaller strains.

Note S5 Case Study: Stiffness-Porosity Trade-off
With carefully designed geometries, porous structures enable strong materials with light weights. In many engineering
applications, it is desirable to design microstructures that are both stiff (large Young’s modulus) and lightweight (high porosity).
However, porosity and stiffness are often contradictory since materials with higher porosity are generally weaker due to less
material supporting the external force. Due to its crucial impact on engineering, the stiffness-porosity trade-off has been
extensively studied in the field of solid mechanics and topology optimization. In this section, we directly apply our optimization
pipeline to identify the Pareto front between stiffness and porosity for porous microstructure designs. We demonstrate that our
pipeline not only remains effective in Pareto front discovery but also has adequate scalability to efficiently explore even larger
combinatorial design spaces.

5.1 Problem setting
Design space. We consider single-material, periodic porous structures where each unit is characterized by a regular grid of
182×104 elements (Fig. S26A). An element can be either void or filled with solid material. This constitutes a much larger
design space than the 20×20 patterns we considered for the stiffness-toughness trade-off. However, a valid microstructure
design must contain a single-connected solid phase to exhibit non-zero stiffness. Therefore, we adopt the topology generation
algorithm introduced in (73) to create valid random designs. Meanwhile, we focus on a porosity range from 0.1 to 0.75 to
exclude impractical designs with excessive or insufficient material. To further ensure that the generated designs are isotropic,
we require all microstructure patterns to have p6m symmetry.
Fabrication and measurement. Test samples are fabricated on acrylic plates with a thickness of 1.6 mm (McMaster-Carr
8560K172). Microstructure patterns are carved onto the acrylic plate via laser cutting (Universal Laser Systems VLS6.75).
More specifically, the laser is programmed to cut along the interface between material and void to produce the designed porous
structure (Fig. S26B). The dimensions of each unit cell are 15 mm in width and 26 mm in height, resulting in a pixel size
of 0.14 mm. Since the resolution of the laser cutter is below 0.05 mm, this fabrication method is sufficiently accurate. Each
sample consists of 3×5 unit cells, with a total size of 75 mm in width and 78 in height. In addition, two rectangular gripping
areas with a height of 50 mm each are concatenated to the microstructure.

We measure the effective Young’s modulus of a microstructure design on a tensile machine (Instron with 500N load cell,
see Fig. S27A). The test sample is fixed onto the Instron using two pneumatic grippers (the pressure is 100 pounds per square
inch). During the tensile test, the Instron stretches each sample to 0.1 mm at a rate of 1 mm/minute. The effective Young’s
modulus of the sample is then calculated based on the slope of the measured force-displacement curve and sample size. To
prove that the boundary effect is negligible for a sample with 3×5 unit cells, we measured the effective Young’s modulus using
samples of various sizes: 2×4, 2.5×4, and 3×5 units. According to Fig. S27B, Young’s modulus converges at our designated
sample size, indicating that the 3×5 size already suffices to minimize the boundary effect. Moreover, we measured several
Young’s moduli of the same microstructure along multiple directions to verify its isotropy. This is realized by fabricating
samples with tilted microstructures. As shown in Fig. S27C, the microstructure design exhibits almost identical Young’s moduli
in different directions. In all experiments, we measure each test sample 4 times and report the average Young’s modulus and
standard deviation. These measurements are guaranteed to be consistent since the laser cutter has a sufficiently high resolution
and the acrylic plates are relatively thin (3 mm). Nonetheless, we made an extra effort to fabricate three samples for a fixed
microstructure design, and the measured Young’s moduli differ by less than 1%. Therefore, to save time and energy, we only
fabricate one sample per microstructure design in this case study.

Simulation. We developed an FEM simulator to calculate the homogenized Young’s modulus of a porous microstructure
specifically for this study. The FEM grid has identical dimensions to a microstructure unit (i.e., 180×104 elements). Since
stiffness calculation is a linear problem, we use linear elasticity to model the base material. The model is characterized by two
exposed parameters: Young’s modulus Ebase and Poisson’s ratio νbase of the base material. Each finite element is parameterized
by material density using a continuous variable between 0 and 1. A density equal to 1 represents the base material whereas a
zero density corresponds to void. Based on the homogenization theory, we computed the homogenized stiffness tensor of the
microstructure using periodic boundary conditions, from which we derived homogenized Young’s moduli in multiple directions.
The minimal Young’s modulus was chosen as the objective for structural optimization to ensure material isotropy. Moreover,
we implemented gradient calculation and SIMP in the simulator to compare our pipeline against existing topology optimization
algorithms that utilize sensitivity information.
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manufactured porous microstructure. The sample is fabricated by laser-cutting a clear acrylic plate. (C) Workflow of our
pipeline to discover the stiffness-porosity Pareto front.

5.2 Results
In the initial round, the exposed parameters of the simulator, Ebase and νbase, were determined by the Young’s modulus and
Poisson’s ratio of an acrylic plate. Since the vendor only provides a flexural modulus of 2.76 GPa and leaves out the value of its
Poisson’s ratio, we made an initial guess of Ebase = 2.76 GPa and νbase = 0.33.

We ran the inner loop of our pipeline (NMO) to find the Pareto front of the simulator, from which we selected 10 designs for
experimental verification (see the orange dashed line and markers in Fig. S28). As expected, there is a noticeable gap between
the experimental Pareto front (blue) and the simulation Pareto front (orange), since the exact properties of the base material
are unknown. At the beginning of Round 1, our pipeline conducted system identification on discovered designs by adjusting
the values of Ebase and νbase. Next, we ran the inner loop (NMO) again and identified 10 additional designs on the simulation
Pareto front. After physically measuring their Young’s moduli, we noticed that the measurements were almost identical to
simulation predictions (see Round 1 in Fig. S28). In contrast to the stiffness-toughness problem, our pipeline is able to close
the sim-to-real gap after merely one round. The reasons for the fast progress include: 1) stiffness is a linear property; 2) the
fabrication process of test samples is precise; 3) experimental behaviors of the samples are very consistent; 4) the simulator
only has two exposed parameters.

Hashin-Shtrikman upper bound. Once our pipeline finished, we verified that the discovered designs on the experimental
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Fig. S27. Experimental measurement of Young’s modulus. (A) The sample is gripped by the Instron on both ends outside
the microstructure area. The Instron then stretches the sample by 0.1 mm at a rate of 1 mm/minute. The effective Young’s
modulus is derived from the slope of the measured force-displacement curve. (B) Measured effective Young’s moduli for
samples comprising different numbers of units. The Young’s modulus barely varies as we increase the sample size, indicating
that the boundary effect of a 3×5 sample is sufficiently small. (C) Measured effective Young’s moduli along different
directions, obtained from samples with rotated microstructures. Since the microstructure pattern obeys p6m symmetry, we only
need to rotate the microstructures by up to 30◦. The results prove that the elastic response of the measured design is isotropic.

Pareto front are theoretically optimal solutions. In 1963, Hashin and Shtrikman derived the theoretical upper bound of the
Young’s modulus of an isotropic material under different porosities as (41,42,73),

EHS = Ebase(1−φ)/(1+2φ), (22)

where Ebase is the Young’s modulus of the base material, φ is porosity, and Ebase gives the Hashin-Shrikman (HS) upper bound.
Therefore, for any porous material with porosity φ , its isotropic Young’s modulus E ≤ EHS(φ). Equation (22) defines the
theoretical upper bound for the Pareto front of Young’s modulus and porosity, providing a benchmark for structural optimization
algorithms. In Fig. S28, we compare experimental and simulation results of Pareto-optimal designs discovered by our pipeline
with the HS upper bound (black line). We find that our results closely align with the theoretical upper bound. This proves that
our pipeline is able to find theoretically optimal solutions to the stiffness-porosity problem.

5.3 Sample efficiency
In this section, we compare NMO with modified NSGA-II and TO in sample efficiency when discovering the simulation
Pareto front. Here, the modified NSGA-II algorithm uses a carefully designed mutation operator. The mutation operator
probabilistically adds/removes a group of randomly selected boundary pixels, adds/removes ellipses with random shapes
and orientations, or adds a line with random thickness and orientation. Each random number controlling the magnitude of a
mutation is drawn from an exponential distribution governed by its rate parameter λ . The TO algorithm implements SIMP
and runs continuous gradient-based optimization using the method of moving asymptotes (MMA). Echoing the valid porosity
range of the design space, we set the volume fraction constraint (Vmax = 1− φ ) between 0.25 and 0.9 and maximize the
homogenized Young’s modulus to discover porous microstructures near the HS upper bound. Considering that TO only yields
one design at a time, we conduct a series of optimization tasks under evenly sampled Vmax and arrange their order using a
greedy strategy to expedite hypervolume growth. More specifically, we choose each subsequent task to maximize the expected
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Pareto hypervolume improvement from discovered designs assuming that the HS upper bound will be reached. The resulting
design is discarded if it violates the volume fraction constraint after quantization.

Fig. S29 illustrates how Pareto hypervolume grows with the number of simulation evaluations for NMO, NSGA-II, and
TO-SIMP (with an MMA solver). Considering that TO only yields one optimal design at a time, we conduct a series of
optimizations using different weighted combinations of properties and active constraints. Their order is arranged in a greedy
strategy that maximizes theoretical hypervolume improvement according to the HS upper bound. Again, NMO shows the
highest sample efficiency especially in the early stage of the optimization when fewer than 1,000 samples are evaluated
(Fig. S29A). It takes NMO only 400 simulations to reach 90% hypervolume of the theoretical HS upper bound, 900 simulations
for NSGA-II, and almost 4,000 simulations for TO (Fig. S29C). This is because the neural network inside NMO quickly
explores the entire design space and proposes valuable designs to the simulator after the optimization starts. Since stiffness
measurement is a linear problem, CNNs can learn to predict Young’s modulus reasonably well with a small amount of training
data. This allows NMO to rapidly expand its Pareto hypervolume. In comparison, TO has to follow a sequence of optimization
trajectories to reach the entire HS upper bound, consuming a large number of intermediate evaluations despite the usage of
MMA.
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Fig. S29. Comparison between NMO and other multi-objective optimization algorithms in Pareto hypervolume growth.
The comparison is made within a budget of (A) 1,000 simulation evaluations and (B) 5,000 simulation evaluations. (C) Number
of evaluations required for NMO and other baseline algorithms to reach 90% of the theoretical maximal hypervolume.

We note that NMO is surpassed by NSGA-II as the Pareto hypervolume approaches the HS upper bound (Fig. S29B). This
is mainly due to the shrinking room for Pareto hypervolume growth at a later stage of the optimization. Although the neural
network initially accelerates the exploration of the design space, giving accurate predictions for remaining designs near the HS
upper bound eventually comes in higher priority. Therefore, the hypervolume growth of NMO slows down as the network
tries to improve predictions for those top-performing designs. The stiffness-toughness trade-off introduced in the manuscript,
however, has an extremely non-smooth landscape and an unknown theoretical upper bound. In that case, it is always preferable
to explore the design space using NMO to expedite hypervolume growth within a tight simulation budget.



A Tables

Young’s modulus Toughness
Name Min. Max. Name Min. Max.

ETB 8.08e5 1.21e6 ETB 1e5 2e6
EVW 2.13e9 3.19e9 EVW 1e7 1e9
EIF 4.51e8 6.77e8 EIF 1e7 1e9
νTB 0.4 0.5 νTB 0.4 0.5
νVW 0.2 0.4 νVW 0.2 0.4
νIF 0.3 0.4 νIF 0.3 0.4
- - - WTB 5e4 1e6
- - - WVW 5e4 1e7
- - - WIF 1e6 1e8
γ 2e4 2e6 γ 2e4 4e6

Table S9. Value ranges of simulation parameters used in system identification when fitting to physical measurements of
base materials.

Young’s modulus Toughness
Name Min. Max. Name Min. Max.

ETB 8e5 1.2e6 ETB 5e5 5e8
EVW 2.08e9 3.12e9 EVW 5e7 1e9
EIF 4.48e8 6.72e8 EIF 1e7 5e8
νTB 0.4 0.5 νTB 0.4 0.5
νVW 0.2 0.4 νVW 0.2 0.4
νIF 0.3 0.4 νIF 0.3 0.4
- - - WTB 5e4 1e6
- - - WVW 5e5 1e7
- - - WIF 1e6 1e8
γ 2e4 2e6 γ 2e4 4e6

Table S10. Value ranges of simulation parameters used in system identification when fitting to physical measurements
of microstructures.



Round No. φ Exp. Sim. Rel. Sim. Rel. Sim. Rel. Sim. Rel. Sim. Rel.
(R0) err. (R1) err. (R2) err. (R3) err. (R4) err.

0

1 0.61 0.640 0.402 0.372 0.653 0.020 0.633 0.011 0.632 0.013 0.637 0.004
2 0.76 1.400 0.980 0.300 1.281 0.085 1.216 0.131 1.185 0.153 1.185 0.154
3 0.67 0.948 0.663 0.301 0.931 0.018 0.889 0.062 0.878 0.074 0.881 0.070
4 0.83 1.541 1.333 0.135 1.646 0.068 1.559 0.012 1.510 0.020 1.505 0.023
5 0.84 1.747 1.509 0.136 1.826 0.045 1.718 0.017 1.654 0.053 1.647 0.058
6 0.51 0.347 0.118 0.659 0.346 0.002 0.340 0.020 0.349 0.005 0.357 0.029
7 0.51 0.301 0.133 0.560 0.370 0.229 0.363 0.204 0.370 0.228 0.378 0.254
8 0.54 0.330 0.023 0.932 0.347 0.053 0.342 0.037 0.356 0.080 0.368 0.115
9 0.60 0.533 0.261 0.511 0.526 0.013 0.511 0.041 0.515 0.034 0.523 0.020

10 0.75 1.178 0.986 0.163 1.231 0.045 1.180 0.002 1.155 0.020 1.153 0.021
11 0.66 0.954 0.603 0.368 0.801 0.160 0.784 0.178 0.778 0.185 0.780 0.182
12 0.74 1.308 0.980 0.251 1.232 0.059 1.171 0.105 1.142 0.127 1.140 0.128
13 0.76 1.375 1.075 0.218 1.330 0.033 1.264 0.080 1.231 0.104 1.228 0.107
14 0.82 1.659 1.255 0.243 1.539 0.072 1.470 0.114 1.424 0.141 1.420 0.144
15 0.84 1.790 1.479 0.174 1.775 0.008 1.681 0.061 1.625 0.092 1.617 0.096
16 0.85 1.767 1.523 0.138 1.827 0.034 1.729 0.021 1.674 0.053 1.666 0.057
17 0.85 1.771 1.604 0.094 1.915 0.081 1.807 0.020 1.742 0.016 1.733 0.022
18 0.85 1.807 1.729 0.043 2.080 0.151 1.934 0.070 1.844 0.020 1.833 0.014

1

19 0.64 0.819 0.605 0.261 0.854 0.042 0.810 0.012 0.793 0.032 0.796 0.028
20 0.58 0.860 0.736 0.144 0.919 0.068 0.876 0.018 0.854 0.007 0.853 0.008
21 0.67 0.980 0.874 0.108 1.115 0.139 1.054 0.076 1.021 0.042 1.019 0.041
22 0.77 1.324 1.162 0.123 1.474 0.113 1.378 0.041 1.328 0.003 1.325 0.001
23 0.79 1.572 1.356 0.138 1.678 0.067 1.566 0.004 1.502 0.045 1.496 0.049
24 0.79 1.402 1.479 0.054 1.792 0.278 1.661 0.185 1.583 0.129 1.574 0.123
25 0.85 1.764 1.613 0.086 1.963 0.113 1.838 0.042 1.760 0.002 1.751 0.007
26 0.85 1.810 1.738 0.040 2.089 0.154 1.945 0.074 1.856 0.025 1.845 0.019

2

27 0.68 0.987 0.774 0.215 0.961 0.026 0.944 0.044 0.944 0.043
28 0.74 1.227 1.056 0.140 1.273 0.038 1.232 0.004 1.230 0.002
29 0.75 1.277 1.166 0.087 1.361 0.066 1.313 0.028 1.309 0.025
30 0.79 1.308 1.281 0.021 1.480 0.132 1.432 0.095 1.427 0.091
31 0.80 1.450 1.355 0.065 1.577 0.088 1.516 0.046 1.510 0.042
32 0.85 1.630 1.541 0.055 1.782 0.093 1.709 0.048 1.702 0.044
33 0.85 1.690 1.723 0.019 1.923 0.138 1.833 0.085 1.822 0.078
34 0.85 1.679 1.724 0.027 1.930 0.150 1.841 0.097 1.831 0.091

3

35 0.68 0.847 0.724 0.145 0.890 0.051 0.891 0.052
36 0.66 0.861 0.904 0.050 1.035 0.203 1.033 0.200
37 0.74 1.317 1.033 0.216 1.206 0.084 1.204 0.086
38 0.76 1.302 1.207 0.073 1.362 0.047 1.358 0.043
39 0.79 1.528 1.305 0.146 1.459 0.045 1.454 0.048
40 0.82 1.629 1.443 0.114 1.594 0.021 1.587 0.025
41 0.85 1.741 1.673 0.039 1.805 0.037 1.796 0.032
42 0.85 1.751 1.749 0.001 1.858 0.061 1.847 0.054

4

43 0.70 1.093 0.968 0.115 1.112 0.017
44 0.74 1.164 1.015 0.128 1.167 0.003
45 0.77 1.297 1.151 0.112 1.299 0.002
46 0.79 1.372 1.248 0.090 1.396 0.017
47 0.84 1.683 1.505 0.105 1.639 0.026
48 0.85 1.683 1.538 0.086 1.672 0.006
49 0.85 1.649 1.561 0.053 1.701 0.032
50 0.85 1.593 1.680 0.055 1.801 0.130

Table S11. Experimental Young’s moduli, simulation predictions, and relative errors of all microstructures discovered
by our approach. Ri = Round i. Text in blue indicates predictions for the next round. The unit of Young’s modulus is GPa.



Round No. φ Exp. Sim. Rel. Sim. Rel. Sim. Rel. Sim. Rel. Sim. Rel.
(R0) err. (R1) err. (R2) err. (R3) err. (R4) err.

0

1 0.61 0.323 0.528 0.633 0.361 0.116 0.254 0.214 0.239 0.261 0.309 0.045
2 0.76 0.201 0.329 0.637 0.227 0.131 0.236 0.173 0.143 0.290 0.221 0.102
3 0.67 0.271 0.398 0.470 0.395 0.458 0.327 0.207 0.286 0.056 0.273 0.009
4 0.83 0.276 0.307 0.114 0.274 0.007 0.246 0.109 0.190 0.310 0.203 0.264
5 0.84 0.375 0.277 0.261 0.310 0.171 0.282 0.247 0.214 0.429 0.211 0.436
6 0.51 0.309 0.487 0.574 0.255 0.177 0.275 0.110 0.190 0.387 0.275 0.110
7 0.51 0.245 0.231 0.057 0.270 0.099 0.132 0.461 0.141 0.425 0.221 0.098
8 0.54 0.117 0.022 0.809 0.102 0.126 0.078 0.329 0.102 0.124 0.143 0.226
9 0.60 0.252 0.222 0.119 0.344 0.365 0.194 0.227 0.204 0.188 0.244 0.029

10 0.75 0.211 0.482 1.283 0.343 0.622 0.263 0.248 0.227 0.073 0.343 0.624
11 0.66 0.371 1.304 2.515 0.410 0.105 0.359 0.031 0.310 0.165 0.386 0.039
12 0.74 0.261 1.112 3.268 0.407 0.564 0.413 0.586 0.218 0.162 0.394 0.514
13 0.76 0.391 1.091 1.791 0.398 0.018 0.294 0.247 0.303 0.225 0.420 0.074
14 0.82 0.109 0.945 7.674 0.159 0.457 0.120 0.104 0.110 0.012 0.099 0.095
15 0.84 0.355 0.865 1.436 0.236 0.335 0.278 0.218 0.179 0.495 0.131 0.630
16 0.85 0.326 0.786 1.407 0.342 0.048 0.315 0.035 0.276 0.154 0.222 0.319
17 0.85 0.313 0.603 0.927 0.291 0.069 0.222 0.292 0.223 0.289 0.243 0.224
18 0.85 0.304 0.424 0.395 0.378 0.244 0.324 0.067 0.305 0.005 0.271 0.108

1

19 0.64 0.424 0.295 0.304 0.700 0.650 0.295 0.304 0.540 0.275 0.448 0.056
20 0.58 0.426 0.553 0.300 0.892 1.095 0.355 0.166 0.345 0.189 0.458 0.075
21 0.67 0.227 0.669 1.950 0.970 3.277 0.455 1.005 0.418 0.843 0.428 0.889
22 0.77 0.513 0.554 0.079 0.982 0.913 0.449 0.125 0.526 0.024 0.346 0.326
23 0.79 0.426 0.452 0.062 0.865 1.033 0.452 0.063 0.494 0.161 0.343 0.193
24 0.79 0.491 0.315 0.359 0.680 0.383 0.371 0.245 0.447 0.089 0.254 0.482
25 0.85 0.458 0.280 0.389 0.584 0.276 0.431 0.058 0.374 0.182 0.266 0.418
26 0.85 0.473 0.314 0.336 0.391 0.172 0.309 0.346 0.315 0.333 0.206 0.564

2

27 0.68 0.315 0.612 0.943 0.598 0.897 0.338 0.074 0.467 0.483
28 0.74 0.331 0.395 0.195 0.611 0.847 0.340 0.029 0.304 0.081
29 0.75 0.493 0.423 0.141 0.589 0.196 0.530 0.075 0.390 0.209
30 0.79 0.381 0.364 0.045 0.541 0.417 0.269 0.295 0.394 0.034
31 0.80 0.106 0.304 1.865 0.505 3.761 0.175 0.648 0.172 0.620
32 0.85 0.369 0.349 0.053 0.466 0.263 0.330 0.105 0.289 0.216
33 0.85 0.303 0.266 0.122 0.369 0.218 0.151 0.501 0.260 0.143
34 0.85 0.360 0.310 0.139 0.327 0.092 0.172 0.521 0.218 0.394

3

35 0.68 0.339 0.504 0.485 0.641 0.888 0.291 0.142
36 0.66 0.508 0.363 0.286 0.684 0.347 0.306 0.397
37 0.74 0.276 0.389 0.412 0.716 1.598 0.360 0.307
38 0.76 0.278 0.386 0.388 0.667 1.401 0.308 0.108
39 0.79 0.351 0.434 0.235 0.633 0.802 0.312 0.111
40 0.82 0.329 0.479 0.453 0.544 0.650 0.265 0.196
41 0.85 0.412 0.294 0.287 0.424 0.030 0.237 0.424
42 0.85 0.400 0.239 0.403 0.261 0.346 0.173 0.568

4

43 0.70 0.357 0.713 0.997 0.590 0.653
44 0.74 0.247 0.640 1.593 0.564 1.287
45 0.77 0.326 0.544 0.669 0.546 0.672
46 0.79 0.425 0.516 0.213 0.510 0.200
47 0.84 0.263 0.361 0.374 0.450 0.712
48 0.85 0.348 0.398 0.144 0.398 0.144
49 0.85 0.348 0.419 0.203 0.369 0.060
50 0.85 0.394 0.302 0.233 0.256 0.350

Table S12. Experimental toughness, simulation predictions, and relative errors of all microstructures discovered by
our approach. Ri = Round i. Text in blue indicates predictions for the next round. The unit of toughness is MPa.



Family 1 2 3 4

No. E (GPa) No. E (GPa) No. E (GPa) No. E (GPa)

Seed
microstructures

22 1.324 18 1.807 15 1.790 5 1.747
24 1.402 26 1.810 16 1.767 17 1.771
36 0.861 41 1.741

42 1.751

Validation
microstructures

1-1 1.253 2-1 1.541 3-1 1.470 4-1 1.447
1-2 1.329 2-2 1.779 3-2 1.703 4-2 1.679
1-3 1.485 2-3 1.703 3-3 1.689 4-3 1.621

Family 1 2 3 4

No. T (MPa) No. T (MPa) No. T (MPa) No. T (MPa)

Seed
microstructures

22 0.513 18 0.304 15 0.355 5 0.375
24 0.491 26 0.473 16 0.326 17 0.313
36 0.508 41 0.412

42 0.400

Validation
microstructures

1-1 0.369 2-1 0.343 3-1 0.330 4-1 0.381
1-2 0.447 2-2 0.388 3-2 0.269 4-2 0.347
1-3 0.420 2-3 0.458 3-3 0.350 4-3 0.433

Table S13. Comparison between the physical measurements of seed microstructures and validation microstructures in
each family. Microstructures in the same family show comparable Young’s moduli and toughnesses.



Seed microstructures

Family No φ Exp. Sim. Rel. Sim. Rel.
(R4) err. (FS) err.

1
22 0.77 1.324 1.325 0.001 1.158 0.126
24 0.79 1.402 1.574 0.123 1.403 0.001
36 0.66 0.861 1.033 0.200 0.913 0.061

2

18 0.85 1.807 1.833 0.014 1.799 0.004
26 0.85 1.810 1.845 0.019 1.809 0.001
41 0.85 1.741 1.796 0.032 1.756 0.009
42 0.85 1.751 1.847 0.054 1.812 0.034

3 15 0.84 1.790 1.617 0.096 1.714 0.042
16 0.85 1.767 1.666 0.057 1.767 0.000

4 5 0.84 1.747 1.647 0.058 1.672 0.043
17 0.85 1.771 1.733 0.022 1.771 0.000

Validation microstructures

Family No φ Exp. Sim. Rel. Sim. Rel.
(R4) err. (FS) err.

1
F1-1 0.73 1.253 1.222 0.024 1.066 0.149
F1-2 0.75 1.329 1.359 0.022 1.204 0.094
F1-3 0.79 1.485 1.451 0.022 1.284 0.135

2
F2-1 0.81 1.541 1.654 0.073 1.621 0.052
F2-2 0.85 1.779 1.825 0.026 1.794 0.009
F2-3 0.85 1.703 1.827 0.073 1.795 0.054

3
F3-1 0.83 1.470 1.510 0.027 1.582 0.076
F3-2 0.85 1.703 1.725 0.013 1.840 0.081
F3-3 0.85 1.689 1.724 0.021 1.841 0.090

4
F4-1 0.80 1.447 1.426 0.015 1.430 0.012
F4-2 0.84 1.679 1.699 0.012 1.728 0.030
F4-3 0.85 1.621 1.736 0.071 1.774 0.094

Table S14. Experimental Young’s modulus, simulation predictions, and relative errors of seed microstructures and
validation microstructures in each family. ’R4’ refers to the virtual testers in Round 4. ’FS’ means family-specific virtual
testers. The unit of Young’s modulus is GPa.



Seed microstructures

Family No φ Exp. Sim. Rel. Sim. Rel.
(R4) err. (FS) err.

1
22 0.77 0.513 0.346 0.326 0.510 0.006
24 0.79 0.491 0.254 0.482 0.468 0.048
36 0.66 0.508 0.306 0.397 0.466 0.083

2

18 0.85 0.304 0.271 0.108 0.328 0.080
26 0.85 0.473 0.206 0.564 0.416 0.121
41 0.85 0.412 0.237 0.424 0.428 0.039
42 0.85 0.400 0.173 0.568 0.315 0.213

3 15 0.84 0.355 0.131 0.630 0.336 0.054
16 0.85 0.326 0.222 0.319 0.326 0.000

4 5 0.84 0.375 0.211 0.436 0.375 0.002
17 0.85 0.313 0.243 0.224 0.315 0.007

Validation microstructures

Family No φ Exp. Sim. Rel. Sim. Rel.
(R4) err. (FS) err.

1
F1-1 0.73 0.369 0.375 0.017 0.748 1.028
F1-2 0.75 0.447 0.386 0.136 0.626 0.399
F1-3 0.79 0.420 0.305 0.275 0.535 0.272

2
F2-1 0.81 0.343 0.273 0.204 0.546 0.593
F2-2 0.85 0.388 0.115 0.703 0.561 0.446
F2-3 0.85 0.458 0.209 0.544 0.420 0.083

3
F3-1 0.83 0.330 0.281 0.147 0.535 0.623
F3-2 0.85 0.269 0.197 0.271 0.445 0.653
F3-3 0.85 0.350 0.169 0.516 0.312 0.106

4
F4-1 0.80 0.381 0.258 0.321 0.554 0.455
F4-2 0.84 0.347 0.252 0.274 0.459 0.322
F4-3 0.85 0.433 0.241 0.444 0.313 0.277

Table S15. Experimental toughness, simulation predictions, and relative errors of seed microstructures and validation
microstructures in each family. ’R4’ refers to the virtual testers in Round 4. ’FS’ means family-specific virtual testers. The
unit of toughness is MPa.
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Fig. S30. Isomap embedding spaces of subfamilies not displayed in Fig. S17. Each embedding space contains around
2,000 to 3,000 samples and a few of them are visualized. Microstructure properties are encoded in colors (E: the blue channel;
T : the red channel). Seed patterns are marked in orange boxes.
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Fig. S31. Isomap embedding spaces of more subfamilies before and after refinement using interpolation (Part 1).
Microstructure properties are encoded in colors.
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Fig. S32. Isomap embedding spaces of more subfamilies before and after refinement using interpolation (Part 2).
Microstructure properties are encoded in colors.



φ = 0.65 φ = 0.8 φ = 0.9 φ = 1

Fig. S33. Clean cleavage is observed after crack propagation in homogeneous composites with various fractions of
rigid material.
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