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SUPPLEMENTARY MATERIAL

SUPPLEMENTARY SECTIONS

S1
Network analysis
At the time of writing, spatialHeatmap uses WGCNA for
network analysis (1). This approach includes five major steps.
First, a correlation matrix is computed from the numeric
values of items considered in an analysis (e.g. abundance
or fold changes of genes or other biomolecules). Second,
the obtained matrix is transformed into an adjacency matrix
defining the connections among items. Third, the adjacency
matrix is used to calculate a topological overlap matrix (TOM)
where shared neighborhood information among items is
used to preserve robust connections while removing spurious
connections. Fourth, the distance-transformed TOM is used
for hierarchical clustering. To maximize time performance,
the latter is performed with the flashClust package (2). Fifth,
network modules are identified with the dynamicTreeCut
package (3). The stringency for identifying modules can be
controlled with the ds (deepSplit) argument. The result is
a list containing the adjacency matrix and the final module
assignments stored in a data.frame. Because the interactive
visualization of the network graph performs best on smaller
modules, the Shiny App of spatialHeatmap returns by default
only modules that were obtained with relatively stringent
settings.

S2
Co-clustering of bulk and single-cell data
The co-clustering method of bulk and single-cell data is
illustrated in Figure S1. This method aims to computationally
assign tissue labels to individual cells in cases where
the single-cell data are entirely or partially unlabeled.
Subsequently, the obtained tissue-to-cell labels can be utilized
in co-visualization plots for coloring single cells by the
predicted source tissues. To obtain meaningful results with
this method, the single-cell and bulk expression data should
be from matching or at least comparable tissues. Since
single-cell data usually have lower sensitivity and higher
sparsity than bulk data, the below adjustment steps were
applied to make the single-cell data more comparable to
the bulk data. To maximize the accuracy of the predictions,
the method has been optimized on real data with known
tissue-to-cell assignments. The details of this optimization
are available in spatialHeatmap’s co-visualization vignette.
The following outline of this method uses RNA-Seq data
as an example. Data from other profiling technologies can
be used as well. First, the bulk and single-cell data are
joined into a single matrix m where rows and columns
are biomolecules (e.g. genes) and samples (here cells and
bulk tissues), respectively (Figure S1A). Next, m is pre-
processed by applying normalization and filtering routines (4).
The filtering subsets the rows and columns in m to user-
selectable proportions of biomolecules and cells, respectively,
without removing the columns of the bulk tissue samples.

This filtering reduces the sparsity of the single-cell data,
while making them more comparable with the bulk tissue
data. Second, the column data are embedded with dimension
reduction algorithms (4), such as PCA or UMAP (Figure
S1B). Third, co-clustering is performed on the embedding
data. Specifically, a graph is built on the top joint dimensions
using methods (buildKNNGraph or buildSNNGraph) from
scran where nodes are cells (or tissues) and edges are
connections between nearest neighbors (5), and subsequently
this graph is partitioned with methods (cluster_walktrap,
cluster_fast_greedy, or cluster_leading_eigen) from igraph to
obtain clusters (6), which correspond to groups of cells and
tissues that exhibit highly similar expression patterns. The
choice of the methods and their parameters were optimized
on test data with known cell-to-tissue assignments. In the
example illustrated in Figure S1C, three types of clusters
are shown: (i) multiple cells are co-clustered and assigned
to one bulk tissue sample; (ii) multiple cells are co-clustered
with several bulk tissues, and then assigned to a single bulk
tissue with a nearest-neighbor approach; and (iii) cells that
do not co-cluster with any bulk tissue remain unassigned.
Fourth, after co-clustering, cells are labeled by bulk tissues or
remain un-labeled (Figure S1D). Fifth, the obtained labels are
subsequently used to match cells with tissues in embedding
and SHM plots, respectively (Figure S1E).

S3
This supplement section contains additional supporting
material for examples in the Results section.

Table S1. Cluster containing the query gene Ugp2 in the hierarchical
clustering example.

Ensembl id Uniprot symbol Entrez id

1 ENSMUSG00000001891 Ugp2 (query) 216558
2 ENSMUSG00000010025 Aldh3a2 11671
3 ENSMUSG00000015714 Cers2 76893
4 ENSMUSG00000015846 Rxra 20181
5 ENSMUSG00000017009 Sdc4 20971
6 ENSMUSG00000018677 Slc25a39 68066
7 ENSMUSG00000020091 Eif4ebp2 13688
8 ENSMUSG00000020741 Cluh 74148
9 ENSMUSG00000021000 Mia2 338320
10 ENSMUSG00000021236 Entpd5 12499
11 ENSMUSG00000022214 Dcaf11 28199
12 ENSMUSG00000022982 Sod1 20655
13 ENSMUSG00000024507 Hsd17b4 15488
14 ENSMUSG00000024953 Prdx5 54683
15 ENSMUSG00000025950 Idh1 15926
16 ENSMUSG00000026385 Dbi 13167
17 ENSMUSG00000028127 Abcd3 19299
18 ENSMUSG00000028405 Aco1 11428
19 ENSMUSG00000031770 Herpud1 64209
20 ENSMUSG00000032047 Acat1 110446
21 ENSMUSG00000047866 Lonp2 66887
22 ENSMUSG00000049422 Chchd10 103172
23 ENSMUSG00000058135 Gstm1 14862
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Figure S1. Co-clustering illustration. (A) The single-cell and bulk tissue data are jointly pre-processed. (B) Single-cell and bulk data are embedded with
dimension reduction methods. (C) The embedding results are used for co-clustering single-cells and bulk tissue data. Cells are assigned to tissues based on
the clustering results as follows: (1) If a cluster contains a single tissue, then the cells of this cluster are assigned to the corresponding tissue. (2) If a cluster
contains multiple tissues and cells, a nearest-neighbor approach resolves this ambiguous situation by assigning cells to the closest tissue sample. (3) Cells in
clusters without tissue samples remain unassigned. (D) The cell-tissue assignments and the similarity scores of the predictions are stored in a table. (E) The
predictions can be used to color the cells by predicted source tissues in co-visualization plots.
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Table S2. Network module containing the query gene Serpina1b in the
network analysis example.

Ensembl id Uniprot symbol Entrez id

1 ENSMUSG00000017344 Vtn 22370
2 ENSMUSG00000025271 Pfkfb1 18639
3 ENSMUSG00000038539 Atf5 107503
4 ENSMUSG00000041798 Gck 103988
5 ENSMUSG00000045094 Arhgef37 328967
6 ENSMUSG00000048856 Slc25a47 104910
7 ENSMUSG00000071178 Serpina1b 20701
8 ENSMUSG00000092021 634650
9 ENSMUSG00000109764 Klkb1 16621

Table S3. Cluster containing the query gene Grik3 in the use case example.

Ensembl id Uniprot symbol Entrez id

1 ENSMUSG00000001985 Grik3 (query) 14807
2 ENSMUSG00000003273 Ca11 12348
3 ENSMUSG00000003279 Dlgap1 224997
4 ENSMUSG00000005338 Cadm3 94332
5 ENSMUSG00000008153 Clstn3 232370
6 ENSMUSG00000019831 Wasf1 83767
7 ENSMUSG00000020333 Acsl6 216739
8 ENSMUSG00000020684 Rasl10b 276952
9 ENSMUSG00000022523 Fgf12 14167
10 ENSMUSG00000023033 Scn8a 20273
11 ENSMUSG00000024109 Nrxn1 18189
12 ENSMUSG00000024524 Gnal 14680
13 ENSMUSG00000024873 Cnih2 12794
14 ENSMUSG00000025272 Tro 56191
15 ENSMUSG00000025427 Rnf165 225743
16 ENSMUSG00000025576 Rbfox3 52897
17 ENSMUSG00000025876 Unc5a 107448
18 ENSMUSG00000026442 Nfasc 269116
19 ENSMUSG00000030683 Sez6l2 233878
20 ENSMUSG00000030806 Stx1b 56216
21 ENSMUSG00000032773 Chrm1 12669
22 ENSMUSG00000032890 Rims3 242662
23 ENSMUSG00000033597 Caskin1 268932
24 ENSMUSG00000036634 Mag 17136
25 ENSMUSG00000038555 Reep2 225362
26 ENSMUSG00000043419 Rnf227
27 ENSMUSG00000048388 241520
28 ENSMUSG00000048895 Cdk5r1 12569
29 ENSMUSG00000050587 Lrrc4c 241568
30 ENSMUSG00000053693 Mast1 56527
31 ENSMUSG00000053825 Ppfia2 327814
32 ENSMUSG00000059974 Ntm 235106
33 ENSMUSG00000069806 Cacng7 81904
34 ENSMUSG00000071862 Lrrtm2 107065
35 ENSMUSG00000072769
36 ENSMUSG00000097451
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