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S1 Material Growth and Characterisation

Epitaxial α-Fe2O3 films were pulsed-laser deposited on (0001)-oriented single crystalline α-

Al2O3 substrates (CrysTec GmbH), using a KrF excimer laser at 248 nm. X-ray reflectometry

indicated a film thickness t = 25 nm. A detailed fabrication recipe can be found in our previous

studies (1,2). No capping overlayer was used in this study. Bulk magnetometery was performed

using a Superconducting Quantum Interference Device magnetometer (Quantum Design). The

temperature dependence of the canted moment, shown in Fig. S1, reveals a Morin transition in

the range of 200 − 220 K such that the magneto-crystalline anisotropy changes from in-plane

(T > TM ) to out-of-plane (T < TM ).

Figure S1: Magnetometry characterisation. Temperature dependence characterisation (M-T) with an
in-situ 50 mT in-plane field. Arrows indicate the direction of the temperature sweep.

S2 Setup and Imaging Details

The diamond quantum magnetometry (DQM) setup consists of an electrical readout atomic

force microscope in a closed-cycle cryostat (attoDRY1000, Attocube systems) integrated with

a home-built confocal setup. For magnetic field sensing, CW-ODMR was employed for sen-
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sor characterisation, and switched to pulsed-ODMR for the imaging of α-Fe2O3 to improve

sensitivity. The diamond sensor used in our measurements (Qzabre AG) contains Nitrogen-15

(I = 1/2) thereby giving two hyperfine resonances per electron spin resonance with a 3 MHz

splitting that is easily detectable with pulsed-ODMR. The on-axis field magnitude is determined

from the ODMR frequency splitting via the weak field approximation (3), where the influence

of the off-axis field on the zero-field splitting is neglected. Microwave excitation is delivered

via a copper wire pulled across the sample surface. Imaging is conducted with the diamond

sensor positioned ∼ 50 µm away from the wire antenna. A Tektronix AWG (70002A) was

programmed to provide the pulse sequences necessary for pulsed-ODMR. Typical scans have

a pixel size of ∼ 33.3 nm, with an averaging time per pixel of 50 − 100 ms at both 4 K and

300 K. The total time for a 5 × 5 µm2 image is approximately twelve hours, with the retrace

speed being ≤ 0.1 Hz to avoid physical damage to the sample surface by the diamond pillar.

The fast-scan direction coincides with the x-axis of our images.

S3 Sensor Characterisation

S3.1 NV-axis Orientation

NV-axis orientation with reference to the lab frame is characterised by applying an external

magnetic field ~B(B0, θB, φB) using a three-axis Helmholtz coil. We characterise the NV orien-

tation by obtaining ODMR spectra while holding the B-field at a constant magnitude B0 and

polar θB (azimuthal φB) angle and sweeping φB (θB) (details are found in (4)). The NV-axis

orientation characterisation of the diamond sensor used for imaging in Figs 1-3 in the main text

(fig.S2), shows θNV = 120± 4◦ and a φNV = 96± 4◦.
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Figure S2: NV orientation characterisation. (a) ODMR with 0.5 mT applied along the NV axis
showing the Zeeman-split resonances with additional hyperfine splitting due to the host 15N. ODMR
spectrum as a function of (b) φB with θB fixed at 180◦ and (c) θB with φB = 96◦. The maximum
splitting in (b) determines φNV = 96◦ which is then used in (c) to identify θNV = 120◦.

S3.2 NV-to-Sample Distance

The NV-to-sample distance dNV is determined by measuring the magnetic field emitted across

the edge of an out-of-plane magnetic material with the sensor of interest. Our calibration sample

is a CoFeB magnetic strip (details in (4)) with a magnetisation that remains saturated at rema-

nence. This allows for accurate dNV value extraction following the proposal in (5). An example

ODMR linescan across the edge of the magnetic strip, obtained with the diamond sensor used

for imaging in Figs. 1-3 in the main text, is given in Fig. S3 (a). A distribution of extracted

dNV values from multiple ODMR linescans, such as the one in (a), is given in Figure S3 (b),

resulting in an average dNV value of 70±6 nm which sets the effective spatial resolution of our

imaging. This is sufficient to study the AFM topological textures and piggybacked charges in

the study, whose length scales are larger.
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Figure S3: NV-to-sample distance characterisation. (a) ODMR spectrum across the edge of a CoFeB
magnetic strip plotted on top of the corresponding topography. From the fit one can extract the NV-to-
sample distance. (b) Height distribution extracted from 100 line scans across the edge, giving an average
NV-to-sample distance of 70± 6 nm.

S4 Magnetic Field Analysis

S4.1 Magnetic Field Components Above Sample Surface

Assuming a density of magnetic dipoles ~m(x, y) of thickness t, the magnetic field ~B(x, y)

generated at a distance d above the sample surface (source-free region) can be described in

Fourier space via the dipolar tensor (6–8):


B̃x(kx, ky, d)

B̃y(kx, ky, d)

B̃z(kx, ky, d)

 = −µ0

2
e−kd(1−e−kt)


k2
x/k

2 kxky/k
2 ikx/k

kxky/k
2 k2

y/k
2 iky/k

ikx/k iky/k −1



m̃x(kx, ky)

m̃y(kx, ky)

m̃z(kx, ky)

 . (S1)
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In the absence of a canted mz component in α-Fe2O3, we have:

B̃z(kx, ky, d) = −µ0

2
e−kd(1− e−kt)

(
ikxm̃x + ikym̃y

k

)
, (S2)

Bz = F−1

[(
−µ0e

−kd(1− e−kt)
2k

)
(ikxm̃x + ikym̃y)

]
= αxy(d, t) ∗ ~∇ · ~mxy. (S3)

In equation S3 we use the convolution theorem, and define αxy(d, t) ≡ F−1(−µ0e−kd(1−e−kt)
2k

)

and F and F−1 are the Fourier transform and its inverse. In real space, one can intuitively

interpret equation S3 as the convolution of a point spread function, αxy (9), with the divergence

of the in-plane canted magnetisation, ~∇· ~mxy. In fact, as the distance d above the sample surface

increases, spatial features of ~∇ · ~mxy get increasingly ‘blurred out’, decreasing the effective

spatial resolution of the NV sensor. In this work, features in ~∇ · ~mxy that are smaller than dNV

(70 nm in our study) will not be resolved. For an a-Bloch meron, this would mean that we are

only able to reconstruct ~mxy accurately down to 70 nm. A general discussion involving all

components of the magnetisation can be found in (9).

S4.2 Downward (Upward) Continuation and Charge Retrieval

Given the constrains set out in section S4.1 and following equation S1, one can write the relation

(10, 11):

~̃B(d+ ∆d) = e−k∆d ~̃B(d), (S4)

where ~̃B = F ( ~B). A positive or negative ∆d in equation S4 corresponds to an upward or

downward continuation of the B-field distribution captured at d. Notice that when ∆d is posi-

tive, the exponential term e−k∆d acts to smooth out high frequency components and physically

translates to losing spatial resolution. In the negative case, the exponential term tends to amplify
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high frequency noise present in the measurements. For this reason, we apply a Hanning win-

dow with a cut-off frequency at 2π/dNV , which is a common method to suppress the undesired

amplification of high-frequency noise (10, 12, 13).

By applying the downward continuation method down to the sample surface, it is therefore

possible to retrieve the σm = −t ~∇ · ~mxy given by:

σm = −t F−1
(
B̃z/α̃xy(t, d = dNV)

)
, (S5)

where α̃xy = F (αxy). This is a deconvolution process with the function αxy.

S5 Magnetic Models

The presence of ~D along the c-axis in α-Fe2O3 (bulk DMI) produces a small in-plane canting

of angle ∆ in the basal ab-plane, generating a net magnetisation which can be obtained from

the local Néel vector using ~m = ~D × ~l = ∆η̂ × ~l in the small angle approximation. In

α-Fe2O3, the unit vector η̂ = (0, 0,+1) (14) is parallel to the c-axis. Since in our case the

c-axis is along the z-axis of the lab frame, the expression is simplified to ~m = ∆ẑ × ~l. Note

that this condition is strictly enforced in the trigonal symmetry of the paramagnetic phase but

is relaxed at lower temperatures due to magneto-elastic interactions, resulting in a small out-

of-plane moment, which has hence been ignored here (15). With this, we will now describe

the spatial distributions of the canted moment in various AFM quasiparticles considering their

respective linear ansatz.

Herein, we assume a canted moment m∆ ∼ 2 × 103 A/m, and a canting angle ∆ ∼

1.1 mrad. This is consistent with values reported for bulk α-Fe2O3 (Table 4.2 of (16)) and

comparable to the magnetic response of our samples, as discussed in our previous studies
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(1, 2). In the small angle approximation, the average magnitude of the sublattice magnetisa-

tion Ms = m∆/(2∆) ∼ 9.1× 106 A/m.

S5.1 Magnetic Field and Charge of AFM Antiphase Domain Walls

Assuming a linear ansatz for the antiphase domain wall profile centered at x = 0 along the

x-axis, with phase ξa and width w, we have:

~l = 2Ms

(
cos θ cos ξa , cos θ sin ξa , sin θ

)
, (S6)

~m = 2∆Ms

(
− cos θ sin ξa , cos θ cos ξa , 0

)
, (S7)

where, θ =


−π

2
, x < −w

2

πx
w

, |x| ≤ w
2

+π
2

, x > w
2

.

Hence,

~∇ · ~m =


2∆Ms

(
π
w

)
sin θ sin ξa , |x| ≤ w

2

0 , |x| > w
2

. (S8)

S5.2 Magnetic Field and Charge of AFM In-plane Domain Walls

Uniform IP AFM domains do not generate any stray fields since their magnetisation would

be non-divergent (see main text Eqn. 1). However, in-plane domain walls above the Morin

transition, which are expected in α-Fe2O3to span 60◦ and 120◦, can generate stray fields. Their

stray field signature depends on the domain wall width w, winding direction l0, internal phase
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of the domain wall – given by the angular span η0, and phase offset φ0:

~l = 2Ms

(
cos
(
Ψ + φ0

)
, sin

(
Ψ + φ0

)
, 0
)
, (S9)

~m = 2∆Ms

(
− sin

(
Ψ + φ0

)
, cos

(
Ψ + φ0

)
, 0
)
, (S10)

where, Ψ =


− l0η0

2
, x < −w

2

l0η0x
w

, |x| ≤ w
2

+ l0η0
2

, x > w
2

.

Hence,

~∇ · ~m =


−2∆Ms

(
l0η0
w

)
cos (Ψ + φ0) , |x| ≤ w

2

0 , |x| > w
2

. (S11)

IP domain walls generate different stray fields depending on their internal phase as illus-

trated in Fig. S5.

S5.3 Magnetic Field and Charge of AFM Merons and Antimerons

Assuming a linear ansatz for an (anti)meron centered at the origin, with phase ξa, topological

winding number N , and radial size RM , we have:

~l = 2Ms

(
sin θ cos (Nφ+ ξa) , sin θ sin (Nφ+ ξa) , cos θ

)
, (S12)

~m = 2∆Ms

(
− sin θ sin (Nφ+ ξa) , sin θ cos (Nφ+ ξa) , 0

)
, (S13)
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where, θ =


πr

2RM
, r ≤ RM

π
2

, r > RM

.

Hence,

~∇ · ~m =


2∆Ms sin ((1−N )φ− ξa)

(
N
r

sin θ + π
2RM

cos θ
)

, r ≤ RM

2∆Ms sin ((1−N )φ− ξa)
(
N
r

)
, r > RM

. (S14)

The last term is referred to as a radial function f(r) in the main text.

S5.4 Magnetic Field Models of Various AFM Entities

We have calculated the magnetic fields generated d = 70 nm above ~m grids containing an-

tiphase domain walls in Fig. S4, 60◦ and 120◦ in-plane domain walls in Fig. S5, and merons

and antimerons in Fig. S6.

Figure S4: Magnetic field simulation of one-dimensional topological textures. calculated Bz exhib-
ited by ADW models with varying ξa. Black arrows illustrate ~mxy.
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Figure S5: Magnetic field simulation of trivial in-plane domain walls. Calculated Bz exhibited by
60◦ and 120◦ in-plane domain wall models with various phase offset. Black arrows illustrate ~mxy.

Figure S6: Magnetic field simulation of two-dimensional topological textures. Calculated Bz exhib-
ited by merons (N = +1) and antimerons (N = −1) models with varying ξa. Black arrows illustrate
~mxy.
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S5.5 Distinguishing Topological and non-topological AFM textures

Above the Morin transition, topological textures are always intertwined with IP domain walls

– in fact, each topological texture is a ‘pinch-point’ of IP domain walls (1, 17). It is therefore

crucial to be able distinguish them apart. Whilst IP domain walls can generate stray fields (fig.

S5), their strength, distribution, and evolution are markedly different from counterparts gener-

ated by merons and antimerons (Fig. S6). In the following we outline the salient differences

and how one can distinguish them:

• Locally, topological merons and antimerons are two-dimensional entities which produce

confined stray fields, characteristic of monopolar and quadrupolar distributions. Alter-

natively, IP domain walls are deconfined quasi-one-dimensional trivial textures. This is

illustrated in Fig. S7 using the linear meron ansatz.

Figure S7: Linear charge profile merons and IP domain walls. The linear charge profile λM is the
integrated charge along the y-axis given as a function of the x-axis of the meron in Fig. S6 and the IP
domain walls (IPDW) in Fig. S5. The λM of the meron and IPDWs reveal their respective confined and
deconfined nature.

• The maximum stray field magnitude generated by merons and domain walls is (i) in-

versely proportional to their characteristic length scale (e.g., meron core radius; IP do-

main wall width, W ) and (ii) directly proportional to the total angle they span in spin
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space ( π for meron; η0 for IP domain wall angle) and is given by:

Bmax
z,meron ∝ |~∇ · ~mxy|max

meron = 2∆Ms

(
π

RM

)
(S15)

Bmax
z,IPwall ∝ |~∇ · ~mxy|max

IPwall = 2∆Ms

( η0

W

)
(S16)

Since merons trap out-of-plane cores, the anisotropy energy penalty causes these cores to

be small (1). On the other hand, IP domain walls are much wider as they do not have out-

of-plane regions and are only limited by the very weak basal anisotropy in α-Fe2O3 (18).

This causes RM < W , at temperatures well above the Morin transition, which is the case

at 300 K. Moreover, since IP domain walls are expected to have η0 ≤ π. Consequently,

the magnitude of the stray field generated by a-Bloch merons at their core is significantly

more intense, by a factor of ∼ 2 compared to trivial textures. This allows unambiguous

identification of topological meron cores.

• Although both topological and trivial textures are present above the Morin transition, ap-

plication of in-plane magnetic fields results in the large-scale annihilation of merons and

antimerons only. This triggers the selective elimination of strong and confined monopolar

stray fields, leaving behind trivial textures, as illustrated in SI section S8 and our previ-

ous work (1, 17). This experimentally evinces the different evolution of topological and

non-topological entities.

• As for antimerons, the quadrupolar stray field distribution with a zero-field cross pattern

(Fig. S6) while distinct from IP domain walls (Fig. S5), can be challenging to disam-

biguate in isolation. For this reason, we restrict antimeron identification and fitting to

regions in the immediate proximity of strong monopolar field distributions generated by

merons. This is justified, given that merons and antimerons occur with equal probabil-
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ity after executing a Kibble-Zurek transition (1, 17) and that, based on our X-ray work,

meron-antimeron pairs are extremely common.

S5.6 Invisibility of Divergence-free Textures

For a divergence-free texture (i.e. ikxm̃x+ ikym̃y = 0), the z-component of the field in Eqn. S2

vanishes, rendering it invisible to magnetic field detection. This is further illustrated in Figs. S8

and S9, where ADWs and merons turn invisible when ξa = 0, π. In reality, textures are never

perfectly isolated, and the distortion produced by the proximity of other textures will make

even a-Néel meron visible through the resulting magnetic field. This is illustrated in figure

S10, which display the magnetic field of an a-Néel meron undergoing progressive geometrical

distortion, and will be further discussed in Fig. S15 in the context of a-Néel bimerons.

Figure S8: Field magnitude of ADWs with different phase ξa. Field magnitude | ~B| obtained from the
magnetic field calculations of ADW models with different ξa. Black arrows illustrate ~mxy.
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Figure S9: Magnetic field magnitude of merons with different phase ξa. Field magnitude | ~B| ob-
tained from the magnetic field calculations of meron models with different ξa. Black arrows illustrate
~mxy.

Figure S10: Distortion of a divergence-free texture. Field magnitude | ~B| exhibited by an a-Néel
meron with increasing distortion to the surrounding ~mxy distribution from (a) to (d). Black arrows
illustrate ~mxy.

S5.7 Magnetic Field and Charge of AFM Bimerons

An AFM bimeron in a uniform ~mxy background can be described analytically as a skyrmion

model rotated by 90◦ around an in-plane axis. Assuming a phase ξa and radial size RB, we

have:

~l = 2 Ms[ cos θ, sin θ sin(φ+ ξa), − sin θ cos(φ+ ξa)] , (S17)

~m = 2∆Ms [− sin θ sin(φ+ ξa), cos θ, 0 ] , (S18)
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where, θ =


πr
RB

, r ≤ RB

π , r > RB

.

Hence,

~∇ · ~mxy =


2∆Ms

[
− π

RB

(
cos θ cosφ sin (φ+ ξa) + sin θ sinφ

)
+ 1

r
sin θ sinφ cos (φ+ ξa)

]
, r ≤ RB

0 , r > RB

. (S19)

Equation S19 allows us to model the σm distribution of bimerons, see Fig. S11. Here, we

observe that individual monopolar and quadrupolar σm distributions contributed by the meron

and antimeron components, albeit significantly distorted in comparison to their isolated coun-

terparts, can be discerned in the σm distribution of an isolated AFM bimeron. This is slightly

more evident in the case of a-Bloch bimerons (ξa = π/2, 3π/2). For a-Néel bimerons the σm

distribution only reflects a strongly distorted quadrupolar character as the meron component is

relatively divergence-free.

More importantly, we observe a non-zero σm distribution, irrespective of the ξa value, im-

plying that bimerons of all characters generate distinct and detectable Bz signatures, see Fig.

S12. This enables DQM to play a versatile role in the future discovery and study of isolated

AFM bimerons in engineered AFM systems with a defined in-plane anisotropy and inhomoge-

neous DMI. Interestingly, while the integrated charge Qm over a sufficiently large area centred

at the core of the bimeron vanishes for all ξa, the asymmetric σm distribution suggests that it

may be possible to spatially manipulate AFM bimerons via external magnetic fields.
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Figure S11: Magnetic charge density σm of an AFM bimeron with varying phase ξa. Black arrows
illustrate ~mxy.
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Figure S12: Magnetic field distribution of an AFM bimeron with varying phase ξa. Black arrows
illustrate ~mxy.
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S5.8 Magnetic Field and Charge of AFM Skyrmions

We can adapt the treatment from the previous section to construct the magnetic distribution in

AFM skyrmions. Assuming a phase ξa and radial size RS , we have:

~l = 2 Ms[ sin θ cos(φ+ ξa), sin θ sin(φ+ ξa), cos θ] , (S20)

~m = 2∆Ms[ − sin θ sin(φ+ ξa), sin θ cos(φ+ ξa), 0] , (S21)

where, θ =


πr
RS

, r ≤ RS

π , r > RS

.

Hence,

~∇ · ~mxy =


2∆Ms sin ξa

(− sin θ
r
− π cos θ

RS

)
, r ≤ RS

0 , r > RS

. (S22)

AFM Néel skyrmions (ξa = 0, π) have vanishing σm, as they host divergence-free ~mxy. Other

skyrmions with ξa 6= 0, π have a non-zero σm distribution, see Fig. S13. As expected, Bz

mirrors the σm trend, Fig. S14. While AFM Néel skyrmions are invisible, DQM can still

play a crucial role in imaging AFM skyrmions with mixed or a-Bloch characters, with the

added advantage of reading out the projected vorticity via the strength of Bz. In actuality, Néel

skyrmions undergo deformation/distortion (19), which could result in detectable magnetic field

signatures, akin to what is expected for distorted a-Néel merons, as illustrated in Fig. S10.
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Figure S13: Magnetic charge density σm distribution of an AFM skyrmion with varying phase ξa.
Black arrows illustrate ~mxy.
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Figure S14: Magnetic field distribution of an AFM skyrmion with varying phase ξa. Black arrows
illustrate ~mxy.
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S5.9 Integrated Magnetic Charge of AFM Merons and Antimerons

The integrated charge Qm of an isolated (anti)meron with phase ξa and winding numberN as a

function of radial distance r from the core can be analytically written as:

Qm(r) =


4πMs ∆ sin (ξa) sin

(
πr

2RM

)
r t , r ≤ RM , N = +1

4πMs ∆ sin (ξa) r t , r > RM , N = +1

0 ,N = −1

. (S23)

For isolated symmetric textures, Qm is either zero for antimerons (N = −1) and a-Néel merons

(N = +1, ξa = 0, π), or accumulates radially (N = +1, ξa 6= 0, π), as illustrated in Fig.

S15(d).

Moreover, the integrated charge Qm of an isolated bimeron with phase ξa can be written as:

Qm(r) =


2πMs ∆ sin (ξa) sin

(
πr
RB

)
r t , r ≤ RB

0 , r > RB

. (S24)

While isolated bimerons with ξa 6= 0, π accumulate some charge at short distances near their

cores, see Fig. S15(d), the total integrated charge, outside RB, for all isolated bimerons embed-

ded in a uniformly aligned magnetic background is identically zero.

20



(a)
a-Bloch Meron

1 m

(b)
Antimeron

1 m
780

780

m
 (A

/m
)

(c)
Bimeron

1 m

0.0 0.5 1.0 1.5 2.0
r (um)

0

1

2

3

4

5

6

|Q
m

| (
Am

)

1e 10

(d)
Charge Accumulation

a-Bloch Meron (Numerical)
Antimeron (Numerical)
Bimeron (Numerical)
a-Bloch Meron (Analytical)
Antimeron (Analytical)
Bimeron (Analytical)

Figure S15: Charge accumulation of isolated textures. Numerical simulation of charge density σm
distribution of (a) an a-Bloch meron, (b) an antimeron and (c) a bimeron. Arrows represent ~mxy. (d) The
total charge |Qm| accumulated in a circular area S of increasing radius r, for each numerical simulation
in (a-c), is given by the solid dots. Qm from analytical equations S23 and S24 are represented by solid
curves. The analytical Qm for a a-Bloch meron and an antimeron ansatz agree well with the numerically
obtained Qm.

S5.10 Charge Variability of AFM Bimerons

The total charge Qm of a bimeron in a fixed area S can be varied with different ~mxy boundary

conditions. Figs. S16(a-e) illustrate bimerons with various boundary conditions, alongside

their ~mxy and σm distributions. Figure S15(f) shows the variability of |Qm| corresponding to

panels (a-e), where each |Qm| is obtained from the integration of their respective σm distribution

over the whole region shown. Notably, in panel (e), the bimeron is embedded in a uniform

magnetisation, similar to the analytical a-Bloch bimeron charge distribution in Fig. S11, with a
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boundary condition that satisfies:

Qm =

∫
S

σm ds ∝
∮
C

~mxy · ê dc = 0, (S25)

where C is the boundary of the area of integration S and ê is the unit normal to C. Figure

S16(e) qualitatively recovers the analytical charge distribution of an a-Bloch bimeron in Fig.

S11 including producing zero total charge Qm, with a non-zero charge distribution embedded

in a uniform and divergence-free magnetisation. Nonetheless, both charge distributions appear

contrasting mainly due to differences in the distance between meron and antimeron, and the

shape of the bimeron as outlined by the ~mxy neighborhood which is circular for the analytical

case (Fig. S11) and rectangle for the numerical case (Fig. S16).
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Figure S16: Charge variability of a bimeron. (a-e) Numerical calculations of charge density σm distri-
bution of bimerons with various ~mxy boundary conditions. Arrows represent ~mxy. (f) Total charge |Qm|
accumulated in a fixed area S of various bimeron simulation with different ~mxy boundary conditions in
(a-e). For convenience, S is defined as the square area covering the entirety of each panel, and is centered
at the midpoint between the core of the meron and the antimeron.

S5.11 Topological Numbers

Three-dimensional AFM textures can be characterised by two topological numbers (20):

i The topological charge, Q, is defined as an area integral:

Q =
1

4π

∫
l̂ ·

(
∂l̂

∂x
× ∂l̂

∂y

)
dA,

where A is the area and l̂ =
~l

|~l|
. Q is ±1/2 for AFM (anti)meron, and ±1 for bimerons

and skyrmions.
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ii The topological winding number, N , is defined as a close line integral of the azimuthal,

φ, change of the Néel vector, ~l, around the topological core:

N =
1

2π

∮
dφ.

N is +1 for AFM merons and skyrmions, and−1 for AFM antimerons and antiskyrmions.

S6 Meron Core Size Analysis

The experimental ~mxy reconstruction of merons and antimerons (see S7) requires an estimation

of the meron core size. Here, the average meron radial profile shown in Fig. S17 is obtained

from the merons found in main text Fig. 1(h), by averaging their azimuthally–averaged radial

Bz profiles. In general, there is good qualitative agreement with the calculated Bz profiles

obtained from the structures in section S5. Any quantitative deviations are expected to result

from the limitations of the linear meron ansatz and of a comparison between experimental

data obtained from a composite textural fabric and an isolated meron model. We estimate

RM ∼ 150 ± 40 nm based on the maximum value of Bz, which corresponds reasonably well

with our previous work (1). Addressing the deviations in and around the meron core requires

theoretical refinement of the meron model alongside shallow NV imaging.
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Figure S17: Average meron core size. The average experimental Bz profile of six merons as a function
of radial distance r from the center of the meron core (solid black dots, shaded area is the standard
deviation). The experimental profile is compared with the calculated Bz profiles of meron models with
various core sizes RM (coloured lines).

S7 Retrieving ~mxy

The inverse magnetostatic problem of retrieving ~m from ~B is in general ill posed. However,

in our case, we can take advantage of existing constrains to approximate a solution. We first

simplify the problem, as discussed in section S7.1, by utilizing the fact that the magnetic field

components are linearly dependent, and that the out-of-plane magnetisation component van-

ishes in α-Fe2O3. Next in section S7.2, we adopt appropriate regularisation strategies to obtain

~mxy from Bz. Finally, some examples are discussed in sections S7.3 and S7.4. Note that the

antiferromagnetic vorticity and magnetic charge presented in this work are independent of our

magnetisation retrieval protocols. Both aspects are based on the measured Bz as detailed in

equation 1 and 2 in the main text.
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S7.1 Simplification of Retrieval Problem

Retrieving ~m from ~B at distance d above the sample surface (i.e., inversion of Eqn. S1 ) is an

ill-posed problem and is therefore not uniquely solvable. The problem can be simplified to one

field component, since the other two are linearly dependent on the first one. We chose to work

with Bz since it intuitively reveals a low-pass filtered ~∇ · ~mxy (eqn. S3). The inverse of the

map f such that Bz = f (~m), is not still not unique, even within the restricted class of prob-

lems represented by the dipolar tensor (eqn. S1). However, a choice of appropriate constraints

reduces the degrees of freedom, thereby allowing us to estimate ~m from a DQM scan. In the

present case, we set the out-of-plane magnetisation component mz = 0. The inversion problem

is thus reduced from three to two dimensions, but the reduced dimensionality is still not suf-

ficient to estimate the in-plane magnetisation vector. This is clear when considering equation

S2, where we show that any divergence-free ~mxy , including trivial ordering, produces the same

field distribution (|B| = 0, section S5.6).

S7.2 Regularisation

We adopt several regularisation strategies developed by the Lorentz transmission electron mi-

croscopy community to approximate a solution. Closely following the strategy in (21), we

replace the ill-posed inversion problem with the following minimisation problem:

min
(
‖Fm−Bz‖2 + ‖Γm‖2

)
, (S26)

where, F, Bz and m are the matrix representation of the map f , the observed Bz and the recon-

struction of ~m, respectively. The spatial discretisation, implicit to the minimisation equation

and also to a DQM scan, reduces the problem to finite dimensions and limits the maximum

resolvable signal frequency to the inverse of the spatial resolution (i.e. < 1
33

GHz in our im-
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ages). The first term in equation S26 is the squared error needed for the base minimisation. The

second term, known as the Tikhonov regularisation, is used to impose a smoothness constraint

to the solution m. This is achieved via Γm where Γ = λ∇ is the matrix representation of the

gradient ∇ weighted by the constant λ. We constrain the problem further by fixing the mag-

nitude of the canted magnetisation |~mxy|. Note that |~mxy| in real space varies across a domain

wall, or a (anti)meron core following a linear model (section S5). Given that ~mxy can be written

as |~mxy|(cosφm, sinφm), one only needs to reconstruct the angle φm. However, the reduction

of the problem to one dimension alone does not guarantee a unique solution as we still have

a non-trivial null space. Finally, to quicken the minimisation and to avoid local minima, we

initialise the problem with a m guess based on a priori information of our system (1). φm is

initialised based on the expected topological texture associated with the characteristic Bz dis-

tribution shown analytically and via modeling in Fig. 2 in the main text, whereas |~mxy| is fixed

based on the linear meron ansatz (section S5) with an average core size of 150 nm (section S6),

and the linear ADW ansatz with a similar domain wall width (section S10). In this respect,

we only attempt to reconstruct ~mxy for AFM textures and their immediate neighbourhood with

characteristic Bz signatures. Additionally, we minimise the problem with Bz at z = dNV rather

than z = 0 to avoid using low pass filters for the propagation, and with Neumann boundary

condition to reduce edge effects.

S7.3 Fitting of Antiphase Domain Walls

We assume |~mxy| = 0 outside the ADW. Inside the ADW, |~mxy| varies according to the linear

ADW model (section S10). It is easy to separate these areas since out-of-plane AFM domains

have negligible divergence while the ADWs have a distinct Bz signature. We show an example

of the reconstruction process from the Bz image of a model multi-chiral ADW ~mxy distribution

in Fig. S18(a). The |~mxy| mask is obtained by estimating the binary mask from the calculated
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Bz, and then modulating it as per the linear ansatz, see Fig. S18(b). Here we initialise the

problem with a trivial φm(x, y) = 0 and the corresponding ~mxy guess is given in Fig. S18(c).

The minimised ~mxy solution given in Fig. S18(d) faithfully reproduces the modelled ~mxy dis-

tribution, with errors localised at the edges as indicated by the fit residues in Figs. S18(e) and

(f). Next, we apply the same protocol to the experimentally obtained Bz, with its respective

w ∼ 2Rm and minimised ~mxy solution given in Figs. S19.
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Figure S18: Model ADW fit. (a) modelled ~mxy of an AFM ADW and the resultantBz at dNV = 70 nm.
(b-c) (b) Fixed |~mxy| mask and (c) guess ~mxy distribution used to initialise the minimisation problem.
(d-f) (d) Minimised ~mxy solution and respective (e) Bz and (f) ~mxy residues. Black arrows illustrate
~mxy. (g-i) (g) Magnetisation norm, (h) ratio of mx to |~mxy|, and (i) ratio of my to |~mxy|.
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Figure S19: Experimental ADW fit. (a) Measured Bz of an AFM ADW at dNV = 70 nm. (b-c) (b)
Fixed |~mxy| mask and (c) guess ~mxy distribution used to initialise the minimisation problem. (d-e) (d)
Minimised ~mxy solution and respective (e) Bz residue. The image is taken at T ∼ 5 K. Black arrows
illustrate ~mxy. (f-h) (f) Magnetisation norm, (g) ratio of mx to |~mxy|, and (h) ratio of my to |~mxy|.

S7.4 Fitting of (Anti)Merons and Bimerons

Similar to the procedure in section S7.3, |~mxy| = 1 is assumed everywhere except in the

(anti)meron core, which is modelled with a linear ansatz with RM = 150 nm (section S6).

We show the ~mxy reconstruction of a model a-Bloch AFM meron and an AFM antimeron in

Figs. S20 and S21, respectively. In both cases, we start off with ξa that deviates from the model

texture, and the corresponding ~mxy guess is given in panel (c). The resultant minimised solution

given in panel (d) closely reproduces the model ~mxy distribution in panel (a). The respective
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residues are given in panels (e-f).
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Figure S20: Model a-Bloch meron fit. modelled ~mxy of an AFM a-Bloch meron and the resultant
Bz at dNV = 70 nm. (b-c) (b) Fixed |~mxy| mask and (c) guess ~mxy distribution used to initialise the
minimisation problem. (d-f) (d) Minimised ~mxy solution and respective (e) Bz and (f) ~mxy residues.
Black arrows illustrate ~mxy. (g-i) (g) Magnetisation norm, (h) ratio of mx to |~mxy|, and (i) ratio of my

to |~mxy|.
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Figure S21: Model antimeron fit. modelled ~mxy of an AFM antimeron and the resultant Bz at dNV =
70 nm. (b-c) (b) Fixed |~mxy| mask and (c) guess ~mxy distribution used to initialise the minimisation
problem. (d-f) (d) Minimised ~mxy solution and respective (e) Bz and (f) ~mxy residues. Black arrows
illustrate ~mxy. (g-i) (g) Magnetisation norm, (h) ratio of mx to |~mxy|, and (i) ratio of my to |~mxy|.

Finally, we apply the same reconstruction protocol to experimental images, from which we

obtain the ~mxy fits of an anti-clockwise a-Bloch meron (Fig. S22), an antimeron (Figure S23)

and a composite structure consisting of one meron and two antimerons (Fig. S24).
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Figure S22: Experimental a-Bloch meron fit. Measured Bz of an AFM anti-clockwise a-Bloch meron
at dNV = 70 nm. (b-c) (b) Fixed |~mxy| mask and (c) guess ~mxy distribution used to initialise the
minimisation problem. (d-e) (d) Minimised ~mxy solution and respective (e) Bz residue. Black arrows
illustrate ~mxy. (f-h) (f) Magnetisation norm, (g) ratio of mx to |~mxy|, and (h) ratio of my to |~mxy|.
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Figure S23: Experimental antimeron fit. Measured Bz of an AFM antimeron at dNV = 70 nm.
(b-c) (b) Fixed |~mxy| mask and (c) guess ~mxy distribution used to initialise the minimisation problem.
(d-e) (d) Minimised ~mxy solution and respective (e) Bz residue. Black arrows illustrate ~mxy. (f-h) (f)
Magnetisation norm, (g) ratio of mx to |~mxy|, and (h) ratio of my to |~mxy|

33



(a)
Measured Bz

200nm
0.35

0.35

B z
 (m

T)

(b)
|mxy| mask

200nm
0

1

Ar
b.

(c)
Guess mxy, Bz

200nm
0.35

0.35

B z
 (m

T)

(d)
Fitted mxy, Bz

200nm
0.35

0.35
B z

 (m
T)

(e)
Bz residue (||Bfit

z Bsim
z ||2)

200nm
0.000

0.017

B z
 re

sid
ue

 (m
T2 )

(f)
Magnetisation Norm

0

2000

|m
xy

| (
A/

m
)

(g)
Fitted mx Ratio

1

1
m

x

|m
xy

|
(h)

Fitted my Ratio

1

1

m
y

|m
xy

|

Figure S24: Experimental fit for composite texture. (a) MeasuredBz of a composite texture consisting
of two antimerons and an a-Bloch meron at dNV = 70 nm. (b-c) (b) Fixed |~mxy| mask and (c) guess
~mxy distribution used to initialise the minimisation problem. (d-e) (d) Minimised ~mxy solution and
respective (e) Bz residue. Black arrows illustrate ~mxy. (f-h) (f) Magnetisation norm, (g) ratio of mx to
|~mxy|, and (h) ratio of my to |~mxy| .

S7.5 Fitting Multiple Merons and Antimerons

Weighted Model. For the fitting of multiple meron/antimeron in a single window, we adopt

a weighted model to combine the linear ansatz ~m(n) of each individual texture n to generate

a guess solution that includes a number p of structures. Note that we start with a coreless

meron/antimeron first (i.e. RM = 0) but will account for the core size after mixing. The

magnetisation ~m of a meron and an antimeron is given by equation S13, and should account for
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the core position ~r0
(n) =

(
x

(n)
0 , y

(n)
0

)
such that ~m(n)(~r) = ~m(~r−~r0

(n)) and ~r = (x, y) represents

the cartesian coordinates. The guess solution is generated by a weighted model given by:

~mmulti(~r) =

∑p
n=1 ~m

(n)(~r) ·W (n)(~r)∑p
n=1W

(n)(~r)
, (S27)

where W (n)(~r) is the weight associated to each meron/antimeron given by:

W (n)(~r) =
1

|~r − ~r0
(n)|+ c

. (S28)

A small constant c is added to avoid a zero denominator. Here, c is simply the image resolution

of ∼ 33 nm. Finally, we normalise the weighted magnetisation, insert the meron/antimeron

cores and multiply it by the canted magnetisation:

~mguess
multi(~r) = 2∆Ms ·

~mmulti(~r)

|~mmulti(~r)|
·

p∏
n=1

sin θ(n), (S29)

where sin θ(n) reduces the net magnetisation magnitude at the core of each meron/antimeron as

per the linear ansatz (eqn. S13):

θ(n) =


π |~r−~r0(n)|

2RM
, |~r| < RM

π
2

, |~r| > RM

.

Step-by-step Fitting Guide. A step-by-step fit of Fig. S24 is given here. We first identify

the merons and antimerons via their characteristic Bz signature manually given by crosses as

illustrated in Fig. S25. This can be done systematically since a meron and an antimeron exhibit

distinct monopolar and quadrupolar distributions respectively (details in S5.5).
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Figure S25: Identifying merons and antimerons. The positions of merons and antimerons are marked
with crosses. Black arrows illustrate ~mxy.
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Figure S26: Step-by-step protocol to attaining a guess solution with multiple merons and an-
timerons. Magnetisation, weight and core suppression of individual meron and antimeron identified
in Fig. S25. Black arrows illustrate ~mxy.
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Next,we show the individual magnetisation ~m(n)(~r), weight W (n)(~r) and core suppression

sin θ(n) in Fig. S26. The guess solution ~mguess
multi(~r) following equations S27-S29 is given in Fig.

S27 with the fit solution given in Fig. S24.

Guess with Multiple Textures

200nm

Figure S27: Weighted model guess solution. Final magnetisation guess based on the weighted model
of individual meron and antimeron in Fig. S26. Black arrows illustrate ~mxy.

S7.6 Field Imaging and Magnetisation Reconstruction of α-Fe2O3

Unique magnetisation reconstruction is a general problem in the stray-field imaging. Nonethe-

less, the rigorous identification procedure (see S5.5), together with the implementation of sys-

tematic regularisation protocols, has helped constrain the magnetic solution space and provided

meaningful canted moment reconstructions. While these reconstructions may not always be

unique, they are in practice entirely consistent with AFM textures reported via X-ray imag-

ing (1). A detailed discussion on the advantages of field imaging and the limitations of our

reconstruction are given below.

Advantages of DQM imaging. On the one hand, whilst linear X-rays can locally resolve the

staggered magnetisation or the AFM order (~l), there is a 180◦ ambiguity in the identification of

its direction (1, 17) rendering it impossible to distinguish between clockwise and anticlockwise
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a-Bloch merons. This issue does not affect DQM because the weak magnetic field is related to

the staggered vorticity, ~V , of topological textures via the main text Equation 2. On the other

hand, X-ray circular dichroism while sensitive to the canted magnetisation, ~mxy, were unsuc-

cessful in our previous attempts to image topological AFM textures directly (1). The main

reason is because in α-Fe2O3, the sublattice magnetisation has a canting angle of 1.1 mrad

resulting in a |~mxy| ∼ 103A/m and in practice is too weak to produce circular dichroic X-

ray contrast (1) (see S5). This issue does not hamper DQM because the NV center is extremely

sensitive to weak magnetic fields emanating from the weak canted moment distributions. There-

fore, the advantage of the NV over x-ray is its high sensitivity to weak magnetic fields and by

extension to weak canted magnetisation in canted AFMs. It is due to this that field imaging via

DQM provides an invaluable view of the rich magnetic charge phenomenology in α-Fe2O3.

Limitations of reconstruction. Provided ~mxy or or its first derivative are known at the bound-

aries of the region of interest and that the magnitude |~mxy| is known everywhere, from the

knowledge of ~∇ · ~mxy it is in principle possible to retrieve ~mxy by solving Poisson’s equation.

However, for a sufficiently large area of interest, solutions exist in extremely narrow patches of

phase space, which may be disjoint under certain conditions. Therefore, as a general strategy

we have chosen to extract ~mxyby least-square minimisation starting from an initial guess, us-

ing Neumann’s boundary conditions and a suitable ansatz for the spatial dependence of |~mxy|.

It must be understood that in many cases there will be residual ambiguity in the sign of the

solenoidal part of ~mxy (i.e., ~∇ · ~mxy = 0).

For a mostly a-Bloch domain wall or meron, the solution will consistently give an a-Bloch

solution with a small component of right or left a-Neel. An example of this is illustrated when

fitting a domain wall with different initial conditions (Fig. S29), with each solution generally

giving consistent a-Bloch component and an a-Neel component taking on two different and

opposing directions (Fig. S30). Note that the a-Bloch component (~mxy parallel to the domain
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wall) primarily contributes to the divergence while a-Neel (~mxy orthogonal to the domain wall)

is responsible for the curl.

Domain Wall Vector

Figure S28: Domain wall vector. Arrows illustrate the domain wall vector retrieved from the experi-
mental antiphase domain wall image in Fig. S19(a).
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Figure S29: Fitting of domain wall with different initial conditions. Top row shows the different
initial conditions. Bottom row shows the respective ~mxy solution.
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Fit 1: Parallel Component Fit 2: Parallel Component Fit 3: Parallel Component Fit 4: Parallel Component
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Figure S30: Degeneracy in ~mxy solution. Decomposition of magnetisation fits from Fig.S29 into
components parallel to and orthogonal to the domain wall. Arrows represent the magnetisation vector
parallel to and orthogonal to the domain wall. Colors represent the polarity and magnitude of the parallel
and orthogonal components. The components are retrieved by projecting the magnetisation vector of the
solutions in Fig. S29 onto the domain wall vector given in Fig.S28(b).
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S7.7 Additional Experimental Reconstruction Data
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Figure S31: Additional information about the ~mxy reconstruction of main text Fig 2. (a-e) Mag-
netisation norm and (f-j) ratio of mx to |~mxy|, and (k-o) ratio of my to |~mxy|. Columns along (a-e) cor-
respond to the ~mxy reconstruction of an antiphase domain wall, anti-clockwise and clockwise a-Bloch
meron, antimeron and a bimeron, respectively
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S8 Reversal Field Imaging

Figure S32: Reversal field imaging at remanence. Remanent state of α-Fe2O3 at room temperature
after applying an in-situ in-plane magnetic field with magnitude varying from (a) 150mT, (b) 200mT and
(c) 250mT.

Figure S33: Annihilation of topological spin entities. Remanent state of α-Fe2O3 at room temperature
after applying an ex-situ in-plane magnetic field of ∼ 400 mT.

Upon application of strong in-plane magnetic fields, it is possible to drive AFM domain re-

alignment which results in meron-antimeron annihilation (1). To confirm this, two permanent
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magnet poles were aligned parallel to the sample surface and the scan x-axis resulting in a ho-

mogeneous field across the sample, variable via micrometer stages. Prior to the application

of the external field, the sample was cooled down and warmed through the Morin transition,

to reset and reinitialise the (anti-)meron distribution. The fields are then applied sequentially

from low to high magnitude at room temperature. Since imaging under high off-NV-axis field

is not possible, the external field was applied for a few minutes followed by NV imaging in

zero field, see Fig. S32. Although the scans are approximately in the same area, open-loop

scanning requires post processing, wherein the images have been registered using distinct field

features in the scans. Several merons and antimerons are initially present. As the magnitude

of the external field increases, annihilation processes occur, accompanied by an alteration of

the surrounding trivial AFM textures. Due to the limited field magnitude that can be applied

in-situ, large-scale annihilation of textures was driven by an ex-situ 400 mT field (1), see Fig.

S33. This was achieved by two permanent magnet in close proximity producing a homoge-

neous field across the sample surface, whose direction (parallel to the x-axis) and magnitude

were determined using a calibrated Hall sensor. Due to the probabilistic nature of the gener-

ation of topological textures via the Kibble-Zurek mechanism, the occurrence of merons with

different projected vorticities (red vs blue cores) can vary across the sample (17). It is noted

that while Fig. S33 shows predominately anti-clockwise a-Bloch merons (red cores), additional

large area scans (see S9) confirm approximately similar distributions of merons with different

projected vorticities (red vs blue cores) are obtained due to the absence of chiral interactions in

α-Fe2O3 (1).
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S9 Additional Data

The Bz maps in Fig. S34 show large range scans taken on different areas of the sample at room

temperature. A small bias field is applied to infer the direction of the sample stray fields. Prior

to imaging, the sample was thermally cycled through the Morin transition to reestablish the

presence of merons and antimerons. Both maps show a distribution of clockwise and anti-

clockwise a-Bloch merons without a clear bias towards either.

Figure S34: Large Area RT Images Taken After Thermal Cycling. Field imaging over a large area
showing presence of both right and left a-Bloch merons indicated by blue and red arrows respectively.
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S10 Dipolar Tensor

Figure S35: Illustration of a planar distribution of ~m in free space with two distinct volumes, V1 and V2,
representing the source-free region and the magnetic material respectively.

The magnetic field analysis presented in section S4 including equation 1 of the main text, and

the magnetisation reconstruction (S7), is built upon the dipolar tensor (eqn. S1) which maps a

planar magnetisation ~m to a magnetic field distribution ~B at a given height d above it. Here, we

show the derivation of the dipolar tensor.

In Figure S35, consider a planar magnetisation distribution of magnetisation ~m, which is

constant throughout z ( ∂
∂z
mz = 0).

• In the source-free region, V1, above the magnetisation distribution, Gauss’s and Ampere’s

law hold for the magnetic field such that:

~∇ · ~B1 = µ0
~∇ · ~H1 = 0 .

Since ~∇× ~H1 = 0, a scalar potential, φ1, can be defined as ~H1 = −~∇ φ1 and therefore:

µ0
~∇2 φ1 = 0 .

Using F{ ∂
∂x
φ1} = ikxφ̃1, where φ̃1 = F{φ1} and F is the two-dimensional Fourier
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transform along x and y,

F
{(

∂2

∂2
x

+
∂2

∂2
y

+
∂2

∂2
z

)
φ1(x, y, z)

}
=

(
−k2

x − k2
y +

∂2

∂2
z

)
φ̃1(kx, ky, z) = 0 . (S30)

• In the magnetic material, V2, ~∇· ~B2 = µ0
~∇·
(
~H2 + ~m

)
= 0. Similarly, a scalar potential,

φ2, can be defined as ~H2 = −~∇ φ2 such that:

−~∇2 · φ2 + ~∇ · ~m = 0 .

In Fourier space:

(
−k2

x − k2
y +

∂2

∂2
z

)
φ̃2(kx, ky, z) = ikxmx + ikymy +

∂

∂z
mz︸ ︷︷ ︸

=0

. (S31)

The boundary conditions governing the perpendicular and horizontal components are (following

from Gauss’s and Ampere’s law):

(
~B1 − ~B2

)
· n̂ = 0 , (S32)(

~H1 − ~H2

)
× n̂ = 0 , (S33)

where n̂ is the surface normal. Equation S30 has a solution of the form φ1 = c1ekz + c2e−kz,

where k =
√
k2
x + k2

y . Since limz→∞ φ1 = 0:

φ1 = c2e−kz . (S34)

Similarly, equation S31 has a solution of the form φ2 = c3ekz + c4e−kz − ρ
k2

, where ρ =
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ikxmx + ikymy. Since limz→−∞ φ2 = 0:

φ2 = c4ekz − ρ

k2
. (S35)

Using the boundary condition in equation S33 and a = c2, b = c4,

φ1(kx, ky, z = 0) = φ2(kx, ky, z) =⇒ a = b− ρ

k2
.

Using the boundary condition in equation S32,

∂

∂z
φ1

∣∣∣∣∣
z=0

=
∂

∂z
φ2

∣∣∣∣∣
z=0

+mz ,

∂

∂z
φ1 = −kae−kz ⇒ ∂

∂z
φ1(z = 0) = −ka ,

∂

∂z
φ2 = kbe−kz ⇒ ∂

∂z
φ2(z = 0) = kb .

Then:

−ka = kb+mz ,

a = −b− mz

k
. (S36)

Substituting equation 7 in 8 and solving for a and b gives:

b =
mz

2k
+

ρ

2k2
, (S37)

a =
mz

2k
− ρ

2k2
. (S38)
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From equation S34, S37 and S38:

φ1(kx, ky, z) =

(
−ikxmx

2k2
− ikymy

2k2
+
mz

2k

)
e−kz . (S39)

Finally, using equation S39, the dipolar tensor is given as:

~H1 = −~∇ φ1

= −


k2xmx

2k2
kxkymy

2k2
ikxmz

2k

kxkymx

2k2
k2ymy

2k2
ikymz

2k

ikxmx

2k

ikymy

2k
−mz

2

 e−kz

= −e−kz

2k


k2x
k

kxky
k

ikx

kxky
k

k2y
k

iky

ikx iky −k



mx

my

mz

 .

References

1. Jani, H. et al. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature

590, 74–79 (2021).

2. Jani, H. et al. Reversible hydrogen control of antiferromagnetic anisotropy in α-fe2o3.

Nature communications 12, 1–10 (2021).

3. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Reports on

progress in physics 77, 056503 (2014).

4. Stefan, L. et al. Multiangle Reconstruction of Domain Morphology with All-Optical Dia-

mond Magnetometry. Physical Review Applied 16, 014054 (2021).

48



5. Hingant, T. et al. Measuring the Magnetic Moment Density in Patterned Ultrathin Ferro-

magnets with Submicrometer Resolution. Physical Review Applied 4, 014003 (2015).

6. Harte, K. J. Theory of Magnetization Ripple in Ferromagnetic Films. Journal of Applied

Physics 39, 1503–1524 (1968).

7. van der Sar, T., Casola, F., Walsworth, R. & Yacoby, A. Nanometre-scale probing of spin

waves using single electron spins. Nature Communications 6, 7886 (2015).

8. Lima, E. A. & Weiss, B. P. Obtaining vector magnetic field maps from single-component

measurements of geological samples. Journal of Geophysical Research: Solid Earth 114

(2009).

9. Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by

nitrogen-vacancy center spin texture reconstruction. Nature communications 9, 1–7 (2018).

10. Thiel, L. et al. Probing magnetism in 2d materials at the nanoscale with single-spin mi-

croscopy. Science 6926, 1–7 (2019).

11. Blakely, R. J. Transformations, 311–358 (Cambridge University Press, 1995).

12. Wörnle, M. S. et al. Coexistence of Bloch and Néel walls in a collinear antiferromagnet.
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