iA Multiplex Metabolomic Approach for Quality Control of Spirulina Supplement and its Allied Microalgae (Amphora & Chlorella) Assisted by Chemometrics and Molecular Networking

Nesrine Hegazi^a, Amira R. Khattab^b, Hamada H. Saad^a, Bishoy Abib^d, Mohamed A. Farag ^{e*}

^aDepartment of Phytochemistry and Plant Systematics, National Research Centre, Dokki, Cairo 12622, Egypt
^bPharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
^cChemistry department, American University in Cairo, Cairo, Egypt
^dPharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt

*Corresponding author: <u>Nm.hegazi@nrc.sci.eg</u> (N. Hegazi), <u>Mohamed.farag@pharma.cu.edu</u> (M.A. Farag).

Supplementary Data

Supplementary Table S1: Metabolites identified in micro-algal samples (*Spirulina* (S1-S4), *Amphora* (AM.), and *Chlorella* (Chl.)) *via* UPLC-HRMS/MS analysis. -: absent, tr: traces, +: present, ++: abundant, +++: major.

	Compound name	RT	M-H (error in ppm)	MS^2	M+H (error in ppm)	MS ²	Formula	S1	S2	S3	S 4	Am.	Chl.	Reference
	Fatty acids													
1.	Hydroxyoctanedioic acid	11.04	189.0770 (-0.7)	143, 127			C8H14O5	-	-	tr	tr	++	tr	
2.	Hydroxydecanedioic acid isomer I	13.55	217.1082 (-0.3)	157			C10H18O5	tr	tr	tr	tr	+++	tr	
3.	Hydroxydecanedioic acid isomer II	14.53	217.1084 (-1.3)	199, 171, 155			C10H18O5	tr	tr	tr	tr	+++	tr	
4.	Tetrahydroxy- octadecadienoic acid	15.29	343.2127 (-0.4)	325, 307, 299, 289, 271, 229, 211, 183, 171			C18H32O6	-	-	-	tr	+++	+	
5.	Trihydroxyhexadecenoi c acid	17.32	301.2018 (0.8)	283, 265., 201, 183, 143			C16H30O5	-	-	-	tr	+++	tr	
6.	Hydroxydodecandioic acid	17.62	245.1392 (1.0)	217, 199, 171, 155, 125			C12H22O5	-	-	-	-	++	-	
7.	Trihydroxyoctadecenoic acid	19.54	329.2336 (-0.7)	229, 211, 171			C18H34O5	tr	tr	-	tr	+++	tr	
8.	Oxo-octadecadienoic Acid isomer I	19.63			295.2264 (1.2)	277, 259, 249, 241, 179,165,	C18H30O3	tr	+	-	+	+++	+	GNPS

	Compound name	RT	M-H (error in ppm)	MS ²	M+H (error in ppm)	MS ²	Formula	S1	S2	S3	S4	Am.	Chl.	Reference
						151, 133, 125, 107, 95								
9.	Dodecandioic acid	21.37	229.1444 (0.4)	211, 167, 130			C12H22O4	tr	tr	tr	tr	+++	+	
10.	Oxo-octadecatrienoic acid	21.53			293.2109 (0.9)	275, 245, 163, 151, 133, 119, 105, 95, 81, 67	C18H28O3	+	+	+	++	+++	+	GNPS
11.	Hydroxy-oxo- octadecadienoic acid	21.54			311.2213 (1.3)	293, 275, 245, 223, 198, 181, 163, 151, 133, 119, 107, 93, 81, 67	C18H30O4	tr	+	tr	+	+++	+	
12.	Trihydroxyoctadecadie noic acid	21.55	327.2173 (1.1)	309, 291, 209, 197, 185, 171, 155			C18H32O5	tr	tr	tr	tr	+++	tr	
13.	Hexadecatetraenoic acid	21.79			249.1849 (0.2)	232, 214, 189, 161, 147, 133, 119, 105, 93, 79, 67	C16H24O2	-	-	tr	tr	+++	-	
14.	Undecanedioic acid	19.72	215.1291 (-0.8)	197, 153			C11H20O4	tr	tr	tr	tr	+++	+	GNPS
15.	Octadecatrienoic acid,	23.46			279.2317 (0.6)	263, 235, 189, 165, 149, 135, 121, 107, 95, 81, 67	C18H30O2	-	tr	-	++	+++	-	
16.	Octadecatetraenoic acid	24.00			277.2161 (0.4)	260, 243, 171, 163, 147, 135,	C18H28O2	tr	-	-	-	+++	-	[1]

	Compound name	RT	M-H (error in ppm)	MS ²	M+H (error in ppm)	MS ²	Formula	S1	S2	S3	S 4	Am.	Chl.	Reference
						121, 107, 93, 81, 67								
17.	Oxo-octadecadienoic Acid isomer II	24.06			295.2266 (0.6)	277, 259, 249, 241, 179, 165, 151, 133, 125, 107, 95	C18H30O3	tr	+	+	+	+++	-	GNPS
18.	Hydroxy- (hydroxymethyl) - trimethyl- tetradecadiene dioic acid	24.10	341.1971 (-0.5)	309, 291, 269, 195, 177, 165, 151, 135, 125, 109, 93, 83, 69			C18H30O6	-	tr	-	-	-	-	
19.	Trihydroxyoctadecatrie noic acid	24.27	327.2178 (-0.4)	291, 273, 247, 221, 207, 197, 181, 163, 153, 137, 125			C18H32O5	-	tr	-	tr	-	tr	[2]
20.	Oxohexadecenoic acid	24.40			291.1951 (1.1)	275, 257, 245, 229, 205, 191, 179, 161, 151, 133, 119, 105, 93, 81, 71	C18H26O3	-	+	+	tr	+	tr	
21.	Oxo-octadecatrienoic acid	24.88			293.2109 (0.7)	275, 247, 223, 205, 177, 163, 151, 137, 119, 107, 95, 81, 67	C18H28O3	+	+	+	+	++	+	
22.	Tetrahydroxy- octadecadienoic acid	25.02	343.2129 (-0.7)	309, 291, 273, 247, 209, 197, 183, 151, 137, 125, 109, 95, 83, 69			C18H32O6	-	tr	tr	tr	+	tr	[3]

	Compound name	RT	M-H (error in ppm)	MS ²	M+H (error in ppm)	MS ²	Formula	S1	S2	S3	S4	Am.	Chl.	Reference
23.	Oxo-octadecadienoic Acid isomer III	26.92			295.2267 (0.4)	277, 259, 249, 241, 179, 165, 151, 133, 125, 107, 95,	C18H30O3	tr	+	-	+	+++	+	GNPS
24.	Dioxo-octadecadienoic acid	27.86	307.1915 (0.1)	289, 245, 209, 185, 165, 153, 113			C18H28O4	-	+	+	+	+	+	[4]
25.	Oxohexadecanoic acid	33.33	269.2123 (-0.2)	225			C16H30O3	tr	+	tr	+	+++	+	
	Organic acid													
26.	Phenylvalerate	16.99			197.1175 (-1.3)	179, 161, 151, 133	C11H14O2	+	+	+	+	+	+	
	Carotenoid													
27.	Oxo-apo- caroten-one	17.74			289.1804 (-1.9)	271, 242, 229, 212, 200, 184	C18H24O3	++	+	+	+++	-	+	[5]
	Phospholipids													
28.	Dioctanoyl phosphocholine	20.32			510.3189 (0.2)	258, 184, 104, 86	C24H49NO8 P	tr	tr	tr	tr	+	+++	
29.	Unknown glycerophosphocholine	20.91			536.3346 (0.2)	518, 500, 258, 184, 104	C ₂₆ H ₅₁ NO ₈ P	+	+	+	+	+	+	
30.	Unknown	21.16	523.2665 (2.4)	295, 277, 267, 227, 195, 152			C24H45O10P	+	+	+	+	+	+	

	Compound name	RT	M-H (error in ppm)	MS ²	M+H (error in ppm)	MS ²	Formula	S1	S2	S 3	S 4	Am.	Chl.	Reference
31.	O-Ricinoleoyl- glycero- phosphocholine	22.33			538.3503 (0.0)	520, 502, 337, 258, 184, 104	C26H53NO8 P ⁺	tr	+	trt	tr	+++	+++	
32.	Unknown glycerophosphocholine	23.42			536.3344 (0.5)	184, 104	C26H51NO8 P+	-	-	tr	tr	++	+++	
33.	O-Linoleoyl-O-stearoyl- sn-glycero-phosphate isomer I	31.67	699.4969 (0.2)	437, 279, 255			C39H73O8P	-	-	-	+	+	+	GNPS, [6]
34.	O-Linoleoyl-O-stearoyl- sn-glycero-phosphate isomer II	31.98	699.497 (0.0)	437, 279, 255			C39H73O8P	-	+	-	-	-	-	GNPS, [6]
35.	O-Linoleoyl-O-stearoyl- sn-glycero-phosphate isomer III	34.35	699.4966 (0.6)	437, 279, 255			C39H73O8P	-	-	-	+	+	-	GNPS, [6]
	Nitrogenous lipid													
36.	Aminohexadecanediol	20.50			274.2741 (-0.1)	256, 230, 212, 133, 119, 106, 81, 70	C16H35NO2	-	tr	+	+	++	+++	GNPS
37.	Aminotetradecanol	20.67			230.2478 (0.3)	212, 147, 135, 119, 105, 85, 81, 71	C14H31NO	-	-	-	tr	++	+++	
38.	Sphingenine, aminooctadec-enediol	20.74			300.2896 (0.3)	282, 272, 247, 191, 177, 163, 149, 135, 121, 105, 95, 81, 69	C18H37NO2	-	-	-	tr	+++	tr	

	Compound name	RT	M-H (error in ppm)	MS^2	M+H (error in ppm)	MS ²	Formula	S1	S2	S3	S4	Am.	Chl.	Reference
39.	Aminoheptadecanediol	21.33			288.2900 (-1.0)	270, 134, 106, 88, 71	C17H37NO2	-	tr	+++	-	-	tr	
40.	Amino-Icosanetetrol	23.26			362.3264 (0.2)	344, 314, 270, 238, 211	C20H43NO4	-	-	-	-	+	+++	[7]
41.	Linoleic acid amide	23.74			296.2587 (-1.1)	278, 256, 209, 187, 161, 147, 135, 121, 109, 95, 81, 67	C18H33NO2	-	tr	-	+	-	+++	[8]
42.	N-Palmitoyl-L-arginine	24.21			413.3489 (-0.7)	396, 354, 239, 175, 158	C22H44N4O3	-	++	tr	-	-	-	
43.	<i>N-</i> (dihydroxypropyl)octad ecanamide	25.91			358.3315 (0.1)	340, 308, 298, 284, 266, 249, 217, 193, 165, 137, 123, 109, 95, 83, 69	C20H41NO2	-	-	-	-	+++	tr	
44.	C20 sphingosine	26.27			328.3208 (0.6)	311, 282, 268, 237, 193, 135, 121, 109, 102, 95, 81, 69	C20H41NO2	tr	-	-	tr	+++	+	
45.	C20 Sphinganine, icosasphinganine, dihydrosphingosine	27.31			330.3367 (-0.0)	312, 294, 282, 268, 217, 209, 193,133, 109, 95, 83, 67	C20H43NO2	tr	-	-	-	+++	-	
46.	Aminoethyloleylamide	28.16			325.3208 (1.6)	307, 282, 268, 125, 109, 95, 81, 71	C20H40N2O		-	-	+	+	+	

	Compound name	RT	M-H (error in ppm)	MS ²	M+H (error in ppm)	MS ²	Formula	S1	S2	S3	S 4	Am.	Chl.	Reference
47.	Palmitoylputrescine	26.96			327.3368 (0.5)	309, 269, 235, 193, 181, 165, 121, 107, 95, 81, 69	C20H42N2O	tr	tr	-		+++	+++	
48.	N-icosanoyl-glycine	29.77			370.3311 (1.3)	324, 102, 74	C22H43NO3	-	-	tr	-	-	+++	
49.	Octadecanoyl-L- carnitine	30.02			428.3730 (1.1)	382, 364, 336, 207, 189, 144, 116, 98, 88	C25H49NO4	-	-	-	+	++	+++	[9]
50.	Unknown fatty acyl amide	33.77			336.3264 (-0.9)	249, 235, 219, 205, 189, 175, 161, 147, 135, 123, 109., 95, 81, 69	C22H41NO	+	+	+	+++	+	+	
	Phytoprostanes													
51.	Phytoprostane A1	20.92			309.2057 (1.1)	291, 273, 263, 245, 227, 173, 145, 133, 119, 105, 93, 81	C18H28O4	+	+	+	+	-	++	[10]
52.	Deoxyphytoprostane	22.13			291.196 (-2.0)	273, 245, 232, 193, 177, 161, 145, 135, 119, 105, 95, 81, 67	C18H26O3	-	+	-	-	-	-	[11]
	Glycolipid													
53.	Hydroxydihydroprotoli chesterinic acid-O- hexoside	22.50			555.3146 [M+Na]+	393.2631, 259.079	C27H48O10	+++	tr	++	++	tr	+	[12]

	Compound name	RT	M-H (error in ppm)	MS ²	M+H (error in ppm)	MS ²	Formula	S1	S2	S3	S4	Am.	Chl.	Reference
					(1.83)									
54.	Hydroxy- [(oxooctadecatrienyl)ox ypropyl <i>O</i> -dihexoside	24.09	675.3582 (2.2)	415, 397, 277, 119			C33H56O14	+	-	+++	+	-	tr	[13]
55.	<i>O</i> - Octadecaenoic- <i>O</i> -di- <i>O</i> -hexosyl-glycerol	25.41			701.3726 (1.73) [M+Na]+	539, 494, 409, 359, 347, 335, 313, 263, 245	C33H58O14	+++	tr	++	++	tr	tr	
56.	Hexadecanoic acid-O- dihexosyl glycerol, isomer I	25.92	653.3748 (0.8)	415, 397, 255, 255, 89	655.3908 (-1.4)	331, 313, 257, 239, 163, 91	C31H58O14	+	+	+	++	+	+	
57.	Hexadecanoic acid O- dihexosyl glycerol, isomer II	26.63	653.3752 (0.3)	415, 397, 255, 235, 161, 119, 89			C31H58O14	+	+	+	+	+	+	
58.	O-linolenoyl-O- hexosyl-glycerol	27.17			537.3038 (1.18) [M+Na] ⁺	417, 375, 313, 299, 281, 259, 203	C27H46O9	+++	tr	++	++	tr	tr	
59.	O-hexadecenoyl- hexosyl-glycerol	27.39			513.3039 (1.74) [M+Na] ⁺	261, 243, 203	C25H46O9	++	-	++	+	tr	tr	
60.	(O-acetyl- hexosyl)oxy]octadecano ic acid	29.89			527.3198 (3.2)	313	C26H48O9	+++	-	++	+	-	-	
61.	<i>O</i> -hexadecanoyl- hexosylglycerol	30.26			515.3197 (2.06)	353., 313, 259, 203, 185	C25H48O9	++	+	++	+	tr	tr	

	Compound name	RT	M-H (error in ppm)	MS ²	M+H (error in ppm)	MS ²	Formula	S1	S2	S3	S4	Am.	Chl.	Reference
					[M+Na] ⁺									
62.	<i>O</i> -palmitoyl- <i>O</i> - hexosylglycerol	30.91			493.3378 (- 1.4)	331, 313, 257, 239, 221, 184, 137, 123, 109, 95, 85, 71	C25H48O9	+	+	+	+	tr	+	[14]
63.	<i>O</i> -linoleoyl- <i>O</i> - palmitoyl- <i>O</i> - hexosyllglycerol	37.60			777.5502 (1.24) [M+Na] ⁺	521, 497, 313.	C43H78O10	-	-	+++	tr	tr	+	
	Glycerolipids													
64.	Monolinolenoyl glycerol	24.06			353.2688 (-0.5)	261, 243, 233, 217, 201, 187, 173, 163, 149, 135, 121, 107, 93, 81, 67	C21H36O4	+	-	+	+	tr	tr	GNPS,
65.	Glyceryl palmitoleate	24.28			329.2694 (-2.3)	311, 299, 281, 257, 237, 219, 205, 163, 149, 135, 121, 109, 95, 83, 69	C19H36O4	+++	tr	++	+	-	tr	GNPS
66.	Palmitoyl glycerol	26.52			331.2849 (-1.9)	313, 257, 239, 221, 151, 123, 109, 95, 85, 71	C19H38O4	+	+	+	+	+	+	
67.	Linoleoyl glycerol	28.71			355.2847 (-1.2)	337, 263, 245, 203, 189, 175, 161, 147, 133, 123, 109, 95, 81, 67	C21H38O4	+++	tr	+++	+++	-	tr	GNPS

	Compound name	RT	M-H (error in ppm)	MS ²	M+H (error in ppm)	MS ²	Formula	S1	S2	S3	S4	Am.	Chl.	Reference
68.	Linoleoyl Glycerol	29.24			355.2846 (-0.9)	337, 263, 245, 203, 189, 175, 161, 147, 133, 123, 109, 95, 81, 67	C21H38O4	+++	tr	+++	+++	+++	tr	GNPS
	Porphyrin													
69.	Unknown	24.48			643.2771 (-1.3)	625, 593, 565, 335	C35H38N4O8	+	tr	+	+++	tr	+	
70.	Unknown	25.64			643.2770 (-1.2)	625, 593, 565, 335	C35H38N4O8	+	tr	+	+++	tr	+	
71.	Unknown	28.78			657.2925 (-0.9)	639, 607, 579, 487, 349, 333, 313	C36H40N4O 8	++	tr	++	++	tr	+	
72.	Unknown	29.92			627.2454 (-0.8)	609, 595, 577, 549	C34H34N4O8	+	tr	+	+++	tr	tr	
73.	Unknown	30.30			625.2664 (-1.1)	607, 575, 547, 531, 501	C35H36N4O7	+	+	+	+++	tr	+	[15]
74.	Bacteriopheophorbide a	31.14			611.2869 (-0.8)	567, 538, 494, 465, 317	C35H38N4O 6	+	-	+	+++	-	+	[16]
75.	Unknown	31.19			583.2555 (-0.7)	565, 539, 521, 503, 495, 477, 466	<u>C33H34N4O6</u>	+	+	+	+++	+	+	
76.	Unknown	33.88			569.2766 (-1.3)	551, 536., 519, 482, 464, 449, 325, 291	C33H36N4O5	+	-	+	+++	-	+	

	Compound name	RT	M-H (error in ppm)	MS ²	M+H (error in ppm)	MS ²	Formula	S1	S2	S3	S 4	Am.	Chl.	Reference
77.	Mesoporphyrin IX	34.09			567.2974 (-1.5)	535, 507, 494, 479, 421, 291	C34H38N4O4	-	-	-	+++	-	tr	
78.	Unknown	34.26			597.2715 (-1.3)	579, 565, 553, 537, 521, 503, 477	C34H36N4O6	+	+	+	+++	+	++	
79.	Unkown	36.19			625.3026 (-0.9)	565., 552, 479, 313	C36H40N4O6	+	tr	+	+++	-	tr	
80.	Harderoporphyrin Ethenyl-3,8,13,17- tetramethyl-21 <i>H</i> ,23 <i>H</i> - porphine-2,7,18- tripropanoic acid	36.92			609.2720 (-2.0)	591, 577, 559, 549, 531, 503, 485	C35H36N4O6	+++	tr	++	++	tr	tr	[17]
81.	Methyl 8-ethyl-12- methylbacteriopheopho rbide c	37.24			581.3132 (-1.7)	508, 421, 300	<u>C35H40N4O4</u>	-	-		+++	-	-	
82.	Tetramethyl-3- (methoxycarbonyl)-5- (1,2-dioxo-2- methoxyethyl)-13-vinyl- 18-ethyl-7,8-dihydro- 21H,23H-porphyrin-7- propionic acid	37.97			639.2823 (-1.5)	607, 579, 552, 537, 493, 479	<u>C36H38N4O7</u>	+++	+	+	++	tr	+	[18]
83.	Hydroxy pheophorbide a	39.35			609.2707 (0.1)	550, 309, 101	C35H36N4O6	+	+	+	+++	tr	tr	[19]

	Compound name	RT	M-H (error in ppm)	MS^2	M+H (error in ppm)	MS ²	Formula	S1	S2	S3	S4	Am.	Chl.	Reference
84.	Pheophorbide a	39.69			593.2753 (1.0)	533, 459	C35H36N4O5	-	+	-	+	-	-	[20]
	Hydrocarbons													
85.	Octadecatetraenal	27.17			261.2215 (-0.7)	243, 233, 217, 201, 187, 177, 161, 145, 131, 121, 107, 93, 81, 67	C18H28O	+++	-	+++	++	tr	+	
	Sulpholipids													
86.	<i>O</i> -palmitoyl- <i>O</i> -(sulfo- galactosyl) glycerol isomer I	31.82	555.2848 (-0.5)	225			C25H48O11S	-	+++	+	-	-	-	[21]
87.	<i>O</i> -palmitoyl- <i>O</i> -(sulfo- hexosyl) glycerol isomer II	32.23	555.2848 (-0.6)	299, 255, 225			C25H48O11S	+++	-	-	+	-	-	[21]
	Carboximidic acid													
88.	<i>N-</i> (hydroxyethyl)- hexadecenamide	32.42			298.2736 (1.6)	279, 251, 233, 219, 183, 153, 135, 121, 107, 95, 83, 69	C18H35NO2	+	+	+++	-	-	++	
89.	N-(hydroxyethyl) octadecadienamide	33.43			324.2900 (-0.9)	306, 284, 147, 121, 95, 81,62	C20H37NO2	+	+	+++	+++	++	++	GNPS

Compound number	Average Rt(min)	Average RI	Metabolite name	Chemical Class	S1	S 3	S4	Am.	Chl.		
	Acohols										
1.	6.413	1141.34	2,3-Butanediol, 2TMS	Alcohol	0.28 ± 0.07	0.09 ± 0.01	0.07 ± 0.001	0.56 ±0.12	0.36 ± 0.07		
2.	6.943	1174.21	Glycerol, 2TMS	Alcohol	1.11 ±0.14	0.72 ±0.09	0.46 ±0.02	0.20 ±0.04	0.99 ± 0.47		
3.	8.321	1269.18	Glycerol, 3TMS	Alcohol	0.14 ± 0.01	0.49 ± 0.18	0.10 ± 0.01	5.28 ±0.76	3.54 ± 0.68		
			Total Alcohols		1.57	1.31	0.64	6.04	4.89		
	Amino ac	ids									
4.	5.805	1103.54	Alanine, 2TMS	Amino acid	0.88 ±0.06	1.96 ±0.72	0.65 ±0.09	12.33 ±1.89	3.26 ±0.58		
5.	7.18	1189.07	Valine, 2TMS	Amino acid	1.42 ±0.10	1.52 ± 0.30	0.87 ±0.02	0.24 ±0.09	1.14 ± 0.35		
6.	7.51	1210.96	Leucine, 2TMS	Amino acid	0.22 ±0.01	0.42 ±0.13	0.15 ± 0.01	7.30 ±1.05	4.84 ±0.79		
7.	7.76	1228.92	Isoleucine, 2TMS	Amino acid	0.69 ±0.23	0.27 ±0.05	0.18 ±0.04	1.03 ±0.19	2.72 ±0.51		
8.	8.633	1291.56	Allo-isoleucine, 2TMS	Amino acid	0.13 ±0.01	0.22 ±0.06	0.08 ±0.001	3.31 ±0.46	2.24 ±0.39		
9.	9.965	1387.15	Serine, 3TMS	Amino acid	1.03 ±0.10	0.19 ± 0.09	0.12 ±0.02	0.48 ± 0.05	0.68 ± 0.30		
10.	11.057	1473.52	Aspartic acid, 3TMS	Amino acid	0.08 ± 0.01	0.16 ± 0.02	0.10 ± 0.02	0.82 ±0.10	0.55 ± 0.12		
11.	11.635	1520.16	L-5-Oxoproline, 2TMS	Amino acid	0.68 ±0.18	1.13 ±0.45	0.12 ±0.01	1.09 ±0.16	0.16 ±0.07		
12.	12.882	1622.94	Glutamic acid, 3TMS	Amino acid	1.23 ±0.64	0.30 ±0.13	0.09 ±0.03	1.09 ±0.65	1.65 ±0.32		
13.	12.893	1624	Phenylalanine, 2TMS	Amino acid	0.01 ± 0.001	0.09 ± 0.04	0.01 ±0.001	0.73 ±0.07	0.35 ± 0.09		
14.	16.252	1939	Tyrosine, 3TMS	Nitrogenous compound	0.04 ±0.01	0.09 ±0.02	0.02 ±0.001	0.30 ±0.02	0.62 ± 0.14		
			Total Amino Acids		6.41	6.36	2.39	28.71	18.12		
	Fatty acid	s/ esters									
15.	14.936	1808.39	Myristic acid, TMS	Fatty acid/ester	0.33 ±0.09	0.13 ±0.02	0.33 ±0.19	0.30 ±0.02	0.96 ±0.39		
16.	15.939	1908.4	Palmitic acid, methyl ester	Fatty acid/ester	0.72 ±0.11	0.26 ±0.03	0.24 ±0.03	0.56 ±0.06	1.28 ±0.39		
17.	17.116	2027.1	Palmitic Acid, TMS	Fatty acid/ester	20.22 ±0.58	15.23 ±3.73	9.24 ±0.16	10.18 ±1.51	8.31 ±2.08		
18.	18.483	2175.67	Linolenic acid, TMS	Fatty acid/ester	0.63 ±0.08	0.76 ±0.09	0.56 ±0.03	0.35 ±0.10	0.20 ±0.09		
19.	18.638	2192.52	Linoleic acid isomer, TMS	Fatty acid/ester	1.76 ±0.03	2.40 ±0.27	1.74 ±0.07	1.85 ±0.17	1.38 ±0.57		

Supplementary Table S2: The relative percentage of silylated metabolites in *Spirulina (S1, S2 & S3), Amphora* (Am.) and *Chlorella* (Chl.) samples analyzed via GC-MS, n= 3

20.	18.682	2197.28	Oleic Acid, TMS	Fatty acid/ester	0.19 ± 0.02	0.34 ± 0.03	0.20 ±0.03	0.22 ±0.03	0.16 ± 0.06
21.	18.895	2222.22	Stearic acid, TMS	Fatty acid/ester	6.86 ±0.46	6.04 ±2.64	0.16 ±0.02	0.73 ±0.15	0.86 ±0.12
22.	21.482	2538.3	Arachidic acid, TMS	Fatty acid/ester	0.31 ± 0.05	0.21 ±0.001	0.23 ±0.08	0.41 ±0.03	1.05 ± 0.24
23.	21.499	2540.5	2-Palmitoylglycerol, 2TMS	Fatty acid/ester	0.09 ± 0.03	0.05 ± 0.01	0.02 ±0.01	0.07 ±0.06	0.14 ± 0.08
24.	21.757	2573.46	1-Monopalmitin, 2TMS	Fatty acid/ester	3.36 ±1.43	2.05 ± 0.84	0.53 ±0.29	7.58 ±3.65	8.94 ±6.26
25.	23.164	2764.98	Glycerol monostearate, 2TMS	Fatty acid/ester	3.44 ±1.59	2.15 ± 1.06	0.48 ±0.34	9.35 ±4.83	9.65 ±7.66
	Total Fatt	ty Acid/ Este	ers		37.93	29.63	13.72	31.60	32.93
	Glycosid	es							
26.	19.365	2277.58	Glyceryl-glycoside TMS ether	Glycoside	22.68 ±3.14	27.38 ±12.28	40.11 ±0.17	Traces	0.36 ±0.16
27.	19.769	2325.14	2-O-Glycerol- galactopyranoside, 6TMS	Glycoside	1.03 ±0.03	1.75 ±0.07	0.36 ±0.15	0.15 ±0.07	2.74 ±0.94
28.	20.374	2396.6	2-O-Glycerol- galactopyranoside, 6-TMS Glycoside		0.51 ±0.11	0.35 ±0.03	0.38 ±0.11	0.57 ±0.09	0.82 ±0.29
	Total Gly	cosides		24.22	29.48	40.85	0.72	3.92	
	Hydrocar	bons							
29.	13.563	1684.17	Pentadecane, 2,6,10-trimethyl-	Hydrocarbon	1.23 ±0.11	0.51 ± 0.14	0.17 ±0.01	0.03 ±0.01	0.07 ± 0.02
	Total Hy	drocarbons		1.23	0.51	0.17	0.03	0.07	
	Inorganic	c compound	s						
30.	14.57	1774.68	Phosphoric acid, 2,3-(2- TMS)propyl (2-TMS) ester	Inorganic Compound	0.13 ±0.03	0.04 ± 0.01	0.03 ±0.01	1.09 ±0.20	0.46 ±0.14
31.	18.718	2201.34	Phosphoric acid, 2[2,3-(2- TMS)oxy]propyl] TMS, ester	Inorganic Compound	0.05 ±0.001	0.04 ± 0.01	0.02 ±0.001	0.07 ±0.02	0.26 ±0.03
	Total Ino	rganic Comj	pounds		0.18	0.08	0.05	1.16	0.72
	Nitrogen	ous compou	nds						
32.	6.921	1172.94	2-Aminobutanoic acid	Nitrogenous compound	0.50 ±0.14	0.16 ±0.03	0.13 ±0.03	0.36 ±0.05	0.42 ±0.09
33.	8.379	1273.49	Niacin, TMS	Nitrogenous compound	2.62 ±0.09	3.66 ±1.09	5.99 ±0.04	11.98 ±1.46	9.27 ±2.03
34.	9.031	1320.13	Unknown nitrogenous compound	Nitrogenous compound	0.23 ±0.06	0.12 ±0.001	0.09 ±0.001	0.21 ±0.05	0.08 ±0.04
35.	9.584	1359.79	Uracil, 2TMS	Nitrogenous compound	0.17 ±0.04	0.22 ±0.06	0.03 ±0.01	0.09 ±0.01	0.04 ±0.01

36.	15.176	1832.51	Adenine, 2TMS	Nitrogenous compound	0.59 ±0.09	0.25 ± 0.04	0.16 ±0.03	0.96 ±0.11	2.04 ±0.26
37.	22.265	2641.37	Adenosine, 4TMS	Nitrogenous compound	0.27 ±0.10	0.24 ±0.03	0.18 ±0.07	0.95 ±0.29	0.44 ±0.16
	Total Nit	rogenous Co	ompounds	4.38	4.65	6.59	14.56	12.31	
	Organic a	cids							
38.	8.857	1307.63	Succinic acid, 2-TMS	Oragnic acid	1.64 ± 0.07	1.30 ± 0.17	1.32 ±0.05	2.18 ±0.27	0.48 ±0.12
39.	5.094	1059.37	Lactic Acid, 2TMS	Organic acid	0.26 ± 0.07	0.07 ± 0.001	0.07 ±0.01	1.24 ±0.30	0.5 ± 0.09
40.	5.175	1064.38	Caproic acid, TMS	Organic acid	5.80 ±0.70	5.39 ±0.66	3.65 ±0.22	7.95 ±1.16	5.77 ±1.16
41.	5.385	1077.44	Glycolic acid, 2TMS	Organic acid	0.58 ±0.08	0.39 ±0.09	0.19 ±0.01	0.32 ±0.03	0.48 ±0.15
42.	5.566	1088.72	Pyruvic acid, 2-TMS	Organic acid	0.45 ±0.08	0.12 ±0.01	0.07 ±0.01	0.53 ±0.06	1.76 ±0.86
43.	6.215	1129.06	Methylmalonic acid, 2TMS	Organic acid	0.60 ±0.17	0.18 ±0.02	0.14 ±0.02	0.68 ±0.10	1.14 ±0.25
44.	6.662	1156.79	3-Hydroxybutyric acid, 2TMS derivative	Organic acid	1.70 ±0.16	3.01 ±0.70	1.59 ±0.02	0.64 ±0.10	0.56 ±0.17
45.	9.18	1330.8	Glyceric acid, 3TMS	Organic acid	0.26 ±0.03	0.38 ±0.06	0.25 ±0.01	0.20 ±0.03	0.29 ±0.05
46.	10.523	1430.54	3,4-dihydroxybutyric acid, 3- TMS	Organic acid	0.31 ±0.06	0.21 ±0.05	0.10 ±0.01	0.34 ±0.10	0.31 ±0.08
	Total Organic Acids				11.60	11.06	7.38	14.08	11.28
	Phenolics	6							
47.	12.808	1616.29	1,2,4-Benzenetriol, 3-TMS ether	Phenolic	2.79 ±0.23	0.90 ± 0.04	0.70 ±0.03	0.20 ±0.02	Traces
	Total Phe	nolics			2.79	0.90	0.70	0.20	Traces
	Sugars								
48.	15.594	1873.69	Rhamnose, 4TMS	Sugar	0.15 ± 0.02	0.10 ± 0.01	0.05 ±0.01	0.32 ±0.09	0.50 ± 0.07
49.	15.924	1906.45	Glucose, 5TMS derivative	Sugar	0.09 ± 0.03	0.08 ±0.03	0.03 ±0.01	0.09 ±0.02	0.78 ±0.52
50.	16.481	1961.72	Glucose isomer, 5TMS derivative	Sugar	0.20 ±0.05	0.13 ±0.02	0.31 ±0.14	0.27 ±0.05	0.90 ±0.50
51.	19.844	2334.16	3-Mannobiose, 8-TMS ether isomer	Sugar	7.42 ±0.83	13.37 ±0.77	24.76 ±0.10	0.18 ±0.04	2.74 ±0.94
52.	20.195	2375.54	Maltose, 8TMS derivative	Sugar	0.16 ±0.01	0.24 ±0.02	0.58 ±0.02	0.03 ±0.03	Traces
53.	22.524	2677	Sucrose, 8TMS	Sugar	0.63 ±0.19	0.67 ±0.42	0.23 ±0.09	0.90 ±0.20	8.56 ±4.68
54.	26.331	3072.06	Melibiose isomer, 8TMS	Sugar	0.42 ±0.03	0.91 ±0.33	1.04 ±0.02	0.46 ±0.11	1.01 ±0.37
	Total Sug	ars		9.07	15.49	27.00	2.25	14.48	

55.	17.86	2107.63	Myo-Inositol, 6TMS	Sugar alcohol	0.06 ± 0.01	0.06 ± 0.01	0.03 ±0.001	0.15 ± 0.01	0.10 ± 0.06
	Total Sug	ar Alcohols			0.06	0.06	0.03	0.15	0.10
	Terpene alcohols								
56.	18.326	2158.52	Phytol, TMS	Terpene alcohol	0.57 ± 0.10	0.48 ± 0.06	0.48 ± 0.01	0.51 ± 0.05	1.08 ±0.34
	Total Terpene Alcohols					0.48	0.48	0.51	1.08

Supplementary Table S3: Sample codes

Sample code	Sample	Source
S1	Spirulina	spring valley, USA
S2	Spirulina tablets	GNC superfoods, USA
S3	Spirulina tablets	Gse vertrieb Gmbh, Germany
S4	Spirulina powder	Imtenan, Egypt
Am.	Amphora powder	NRC
Chl.	Chlorella powder	NRC

Supplementary Table S4: Parameters used for the construction of the feature-based molecular networks

Precursor ion mass tolerance	0.05
Fragment ion mass tolerance	0.05
Cosine score	0.7
Minimum matching fragments	6

Supp. Fig. S1: Base Peak Chromatogram (BPC) of the studied algal species in the negative ionization mode.

Supp. Fig. S2: Feature-based Molecular Network (FBMN) of acquired UPLC-HRMS/MS data (negative ionization mode) of Spirulina samples versus Amphora and Chlorella. Clusters a-g: fatty acids, h: phospholipids, i: glycolipids, and j: sulpholipids.

Supp. Fig. S3: MS² spectrum of compound 4, tetrahydroxy octadecadienoic acid in the negative ionization mode

Supp. Fig. S4: MS² spectrum of compound 8, oxo-octadecadienoic acid in the positive ionization mode

Supp. Fig. S6: MS² spectrum of compound 33, of hexadecanoyl-2-(eicosadienoyl)-glycerophosphate in the positive ionization mode

Supp. Fig. S7: MS² spectrum of compound 38, of aminooctadecenediol in the positive ionization mode

Supp. Fig. S8: MS² spectrum of compound 41, of linoleic acid amide in the positive ionization mode

Supp. Fig. S9: MS² spectrum of compound 42, of *N*-palmitoyl-L-arginine in the positive ionization mode

Supp. Fig. S10: MS² spectrum of compound 52, of Hexadecanoic acid-O-dihexosyl glycerol in the positive ionization mode

Supp. Fig. S11: MS² spectrum of compound 58, of *O-palmitoyl-O- hexosylglycerol* in the positive ionization mode

Supp. Fig. S12: MS² spectrumof compound 62, of *O-palmitoylglycerol* in the positive ionization mode

Supp. Fig. S13: MS² spectrum of compound 87, of *O-palmitoyl-O-(sulfo- hexosyl) glycerol* in the negative ionization mode

Supp. Fig. S14: UV and MS² spectra of compound 69, of 10-Ethenyl-5-ethyl-1,15,16,18-tetrahydro-18-hydroxy-18-(methoxycarbonyl)-6,11,15,22-tetramethyl-20oxo-20H-9,12-imino-2,21-metheno-7,4:14,17-dinitrilopyrano[4,3-b]azacyclononadecine-16-propanoic acid in the positive ionization mode

Supp. Fig. S15: UV and MS² spectra of compound MS² spectra of compound 76, of harderoporphyrin isomer I in the positive ionization mode

Fig. S16 OPLS score plot derived from GC/MS dataset modelling of Spirulina (S1, S3 & S4), Amphora (Am.), Chlorella (Chl.) samples against one another (A). The S-plot (B) shows the covariance p[1] against the correlation p(cor)[1] of the variables of the discriminating component of the OPLS-DA model. Cut-off values of P<0.05 were used; selected variables are highlighted in the S-plot with identifications are discussed in text.

Fig. S17 OPLS-DA model optimization and validation parameters for modeling Spirulina (S3 & S4) samples against Amphora (Am.) samples based on GC/MS derived dataset. **A.** The diagnostic metrics R2Y and Q2 as function of number of principal components. **B.** Root mean square error of cross validation results using 7-fold cross validation method as function of number of principal components. **C.** Permutation test, n = 200 that showed negative Q2 intercept value. **D.** The receiver operating characteristic (ROC) curve to assess the classification ability of the developed OPLS-DA showing AUC = 1. **E.** CV-ANOVA to assess for model statistical significanc.

R2

E

M1(Untitled)	SS	DF	MS	F	р	SD
Total corr.	8	8	1			1
Regression	6.80449	6	1.13408	1.89723	0.384659	1.06493
Residual	1.19551	2	0.597757			0.773147

Fig. S18 OPLS-DA model optimization and validation parameters for modeling Spirulina (S3 & S4) samples against Chlorella (Chl.) samples based on GC/MS derived dataset. **A.** The diagnostic metrics R2Y and Q2 as function of number of principal components. **B.** Root mean square error of cross validation results using 7-fold cross validation method as function of number of principal components. **C.** Permutation test, n = 200 that showed negative Q2 intercept value. **D.** The receiver operating characteristic (ROC) curve to assess the classification ability of the developed OPLS-DA showing AUC = 1. **E.** CV-ANOVA to assess for model statistical significanc.

M2(Untitled)	SS	DF	MS	F	р	SD
Total corr.	8	8	1			1
Regression	7.3694	7	1.05277	1.66948	0.535705	1.02605
Residual	0.630599	1	0.630599			0.794103

Fig. S19 UV-Vis spectra of Spirulina, Amphora and Chlorella samples under study

Fig. S20 Principal component analysis and hierarchical clustering of UV-Vis dataset of Spirulina (S1, S3 & S4), Amphora (Am.) and Chlorella (Chl.). (A) Score plot of PC1 vs. PC2 scores. (B) Loading plot for PC1 & PC2 contributing metabolites and their assignments. The metabolome clusters are located at the distinct positions in two-dimensional space described by two vectors of principal component 1 (PC1) = 98% and PC2 = 1.7%. (C) HCA plot.

Fig. S21 OPLS-DA model optimization and validation parameters for modeling Spirulina (S3 & S4) samples against Amphora (Am.) samples based on UV-Vis derived dataset . A. The diagnostic metrics R2Y and Q2 as function of number of principal components. B. Root mean square error of cross validation results using 7fold cross validation method as function of number of principal components. C. Permutation test, n = 200 that showed negative Q2 intercept value. D. The receiver operating characteristic (ROC) curve to assess the classification ability of the developed OPLS-DA showing AUC = 1. E. CV-ANOVA to assess for model statistical significanc.

0.833952

1.39095

2

Fig. S22 OPLS-DA model optimization and validation parameters for modeling Spirulina (S3 & S4) samples against Chlorella (Chl.) samples based on UV-Vis derived dataset. **A.** The diagnostic metrics R2Y and Q2 as function of number of principal components. **B.** Root mean square error of cross validation results using 7-fold cross validation method as function of number of principal components. **C.** Permutation test, n = 200 that showed negative Q2 intercept value. **D.** The receiver operating characteristic (ROC) curve to assess the classification ability of the developed OPLS-DA showing AUC = 1. **E.** CV-ANOVA to assess for model statistical significanc.

E

M2(Untitled)	SS	DF	MS	F	р	SD
Total corr.	8	8	1			1
Regression	5.03481	5	1.00696	1.01878	0.528425	1.00347
Residual	2.96519	3	0.988398			0.994182

References

- 1. Van Anh, N., et al., *Thladiantha seed oils-New source of conjugated fatty acids: characterization of triacylglycerols and fatty acids.* Journal of Oleo Science, 2020. **69**(9): p. 993-1000.
- 2. Liu, X.-T., et al., *Cholestane glycosides and trihydroxy fatty acids from the rhizomes of Dioscorea septemloba*. 2010. **76**(03): p. 291-294.
- 3. Kim, C.S., et al., *Five new oxylipins from Chaenomeles sinensis*. 2014. **49**(11): p. 1151-1159.
- 4. Hamburger, M., et al., *Plant anticancer agents, XLIII.(E, E)-7, 12-dioxo-octadeca-8, 10-dien-1-oic acid (ostopanic acid), a cytotoxic fatty acid from Ostodes paniculata.* 1987. **50**(2): p. 281-283.
- 5. DellaGreca, M., et al., *Isolation and Phytotoxicity of Apocarotenoids from Chenopodium a Ibum.* 2004. **67**(9): p. 1492-1495.
- 6. Hegazi, N.M., et al., *Molecular networking leveraging the secondary metabolomes space of Halophila stipulaceae (Forsk.) Aschers. and Thalassia hemprichii (Ehrenb. ex Solms) Asch. in tandem with their chemosystematics and antidiabetic potentials.* 2021. **19**(5): p. 279.
- 7. Jin, Y., et al., *Comprehensive characterization of the chemical composition of Lurong dabu decoction and its absorbed prototypes and metabolites in rat plasma using UHPLC–Q Exactive Orbitrap–HRMS.* Food Research International, 2022. **161**: p. 111852.
- 8. Bertin, M.J., et al., *Identification of toxic fatty acid amides isolated from the harmful alga Prymnesium parvum carter.* Harmful algae, 2012. **20**: p. 111-116.
- 9. Ballesteros-Torres, J.M., et al., *Amino acids and acylcarnitine production by Chlorella vulgaris and Chlorella sorokiniana microalgae from wastewater culture.* PeerJ, 2019. **7**: p. e7977.
- 10. Vigor, C., et al., *Isoprostanoids quantitative profiling of marine red and brown macroalgae*. Food chemistry, 2018. **268**: p. 452-462.
- 11. Heiss, E.H., et al., *Identification of chromomoric acid CI as an Nrf2 activator in Chromolaena odorata*. Journal of natural products, 2014. **77**(3): p. 503-508.
- 12. Řezanka, T. and I.A. Guschina, *Glycoside esters from lichens of central Asia*. Phytochemistry, 2001. **58**(3): p. 509-516.
- 13. Luo, G., et al., UHPLC-Q-Orbitrap-MS-Based Metabolomics Reveals Chemical Variations of Two Types of Rhizomes of Polygonatum sibiricum. 2022. **27**(15): p. 4685.
- 14. Rho, M.-C., et al., *A novel monogalactosylacylglycerol with inhibitory effect on platelet aggregation from the cyanophyceae Oscillatoria rosea.* Journal of natural products, 1996. **59**(3): p. 308-309.
- 15. Qiu, S., et al., *Chemometrics-assisted identification of anti-inflammatory compounds from the green alga Klebsormidium flaccidum var. Zivo.* Molecules, 2020. **25**(5): p. 1048.
- 16. Le Bris, S., M.-R. Plante-Cuny, and E. Vacelet, *Characterisation of bacterial and algal pigments and breakdown products by HPLC in mixed freshwater planktonic populations*. Archiv für Hydrobiologie, 1998: p. 409-434.
- 17. Tang, Y., et al., *Comparative metabolomics analysis of Elodea nuttallii and Cladophora sp. in aquaculture systems.* Aquaculture, 2023. **563**: p. 738950.
- 18. Cheng, H.-H., et al., *Cytotoxic pheophorbide-related compounds from Clerodendrum c alamitosum and C. cyrtophyllum.* Journal of natural products, 2001. **64**(7): p. 915-919.
- 19. Sommella, E., et al., *Fast profiling of natural pigments in different spirulina (arthrospira platensis) dietary supplements by DI-FT-ICR and evaluation of their antioxidant potential by pre-column DPPH-UHPLC assay.* Molecules, 2018. **23**(5): p. 1152.
- 20. Li, J., et al., *Lipid metabolic characteristics and marker compounds of ripened Pu-erh tea during pile fermentation revealed by LC-MS-based lipidomics.* Food Chemistry, 2023. **404**: p. 134665.
- 21. Hirao, S., et al., *Algicidal activity of glycerolipids from brown alga Ishige sinicola toward red tide microalgae.* 2012: p. 1201312780-1201312780.