
Supplementary methods 
 
 
Exome sequencing and data analysis 

1. Sequencing 

Detailed information about the sequenced samples is described in Supplemental Table 1 
and Supplemental Figure 1. Genomic DNA from patients' bone marrow, peripheral blood, 
and skin tissue-derived fibroblast were submitted to NIH Intramural Sequencing Center 
(NISC) for exome sequencing. In general, gDNA was fragmented with Covaris Focused-
ultrasonicator into small fragments around 300 bp size. Swift Biosciences Accel-NGS 2S 
Plus DNA Library Kit was used to perform end repair, A-tailing, adapter ligation, and a 
limited cycle of amplification, following the standard protocol. 500 ng of each of the eight 
libraries were pooled together, following exome capture procedurals with IDT xGen 
Exome Research Panel. NimbleGen SeqCap EZ Hybridization and Wash Kit (Roche) 
were used for a few archived samples. Prepared libraries were sequenced on Illumina 
Novaseq 6000 platform with a paired-end strategy aiming to achieve 200X average depth. 
In addition, several archive data (EMKFPD samples) were captured with Roche 
NimbleGen SeqCap EZ Hybridization and Wash Kit and sequenced for about 80X 
average depth. 

2. Alignment and recalibration 

Sequencing data were transferred to NIH high-performance computing system "Biowulf", 
and analyzed with an in-house pipeline. First of all, we used fastp1 to do quality control of 
fastq files with default parameters. Low-quality reads and sequencing adaptor sequences 
were removed. Clean sequencing reads were mapped to hg38 reference with a streamed 
pipe of bwa2 (v.0.7.17) alignment, sambamba3 (v.0.8.0) sort bam files, and picard 
MarkDuplicates mark duplicates (v.2.17.11). Since most libraries were sequenced in 
multiple lanes, bam files of different lane's data were merged with sambamba. BQSR 
recalibration was further performed with GATK best practice4 (v.4.2.0.0) to generate the 
analysis-ready bam file. 

3. Genotype analysis 

First of all, we used GATK (v.4.2.0.0) to do joint genotyping. In brief, per sample genotype 
were identified by HaplogypeCaller module with parameters "--emit-ref-confidence GVCF 
--max-alternate-alleles 3 --read-filter OverclippedReadFilter", and validated by 
ValidateVariants module with parameters "-gvcf --validation-type-to-exclude ALLELES". 



All gvcf results of individual samples were used as input of GenomicsDBImport module, 
and followed by steps of joint genotyping. Including GenotypeGVCFs with parameters "-
G StandardAnnotation -G AS_StandardAnnotation  --allow-old-rms-mapping-quality-
annotation-data  --merge-input-intervals"; and VariantFiltration module with parameters "-
-filter-expression "ExcessHet>54.69" --filter-name ExcessHet". We further performed 
variant recalibration for SNPs and InDels.  

For InDels, recalibrate model were generated by VariantRecalibrator model with 
parameters "--trust-all-polymorphic -tranche 100.0 -tranche 99.95 -tranche 99.9 -tranche 
99.5 -tranche 99.0 -tranche 97.0 -tranche 96.0 -tranche 95.0 -tranche 94.0 -tranche 93.5 
-tranche 93.0 -tranche 92.0 -tranche 91.0 -tranche 90.0 -an FS -an ReadPosRankSum -
an MQRankSum -an QD -an SOR -an DP --use-allele-specific-annotations -mode INDEL 
--max-gaussians 4 --resource:mills,known=false,training=true,truth=true,prior=12 --
resource:axiomPoly,known=false,training=true,truth=false,prior=10 --
resource:dbsnp,known=true,training=false,truth=false,prior=2", and the model was 
applied to InDels by ApplyVQSR module with parameters "--use-allele-specific-
annotations --truth-sensitivity-filter-level 95.0 --create-output-variant-index true -mode 
INDEL". 

For SNPs, we first generated model by VariantRecalibrator module with parameters "--
trust-all-polymorphic -tranche 100.0 -tranche 99.95 -tranche 99.9 -tranche 99.8 -tranche 
99.6 -tranche 99.5 -tranche 99.4 -tranche 99.3 -tranche 99.0 -tranche 98.0 -tranche 97.0 
-tranche 90.0 -an QD -an MQRankSum -an ReadPosRankSum -an FS -an MQ -an SOR 

-an DP --use-allele-specific-annotations -mode SNP --output-model module.file.path --
sample-every-Nth-variant 10 --max-gaussians 6 -

resource:hapmap,known=false,training=true,truth=true,prior=15 -
resource:omni,known=false,training=true,truth=true,prior=12 -

resource:1000G,known=false,training=true,truth=false,prior=10 -
resource:dbsnp,known=true,training=false,truth=false,prior=7". This model were feed as 

input for the second round  VariantRecalibrator to generate VQSR model with 
parameters "--trust-all-polymorphic -tranche 100.0 -tranche 99.95 -tranche 99.9 -tranche 
99.8 -tranche 99.6 -tranche 99.5 -tranche 99.4 -tranche 99.3 -tranche 99.0 -tranche 98.0 

-tranche 97.0 -tranche 90.0 -an QD -an MQRankSum -an ReadPosRankSum -an FS -
an MQ -an SOR -an DP --use-allele-specific-annotations -mode SNP --input-model 

module.file.path --max-gaussians 6 -
resource:hapmap,known=false,training=true,truth=true,prior=15 -

resource:omni,known=false,training=true,truth=true,prior=12 -
resource:1000G,known=false,training=true,truth=false,prior=10 -

resource:dbsnp,known=true,training=false,truth=false,prior=7". Finally, the VQSR model 



were used in ApplyVQSR module to generate the final VQSR calibrated SNPs. Variants 
with PASS tag and QUAL>100 were kept. 

To identify possible missing variants, especially low VAF variants, we also used 
freebayes5 (v.1.3.5) and LoFreq6 (v.2.1.5) to do genotyping as supplementary results. In 
Freebayes analysis, default parameters were used, following filtration criteria including 
(QUAL>20, DP>8, QUAL/AO>10, SAF>0, SAR>0, RPR>1, RPL>1). LoFreq analysis was 
also used with default parameters, mutations didn't show in GATK, and freebayes results 
with PASS tag were kept. 

Genotype matrix were combined from three software, then annotated with SNPEff7 and 
SNPSift. Multiple filtration procedurals were used to filter unreliable or polymorphism. 
First, mutations were compared with a region filter. Mutations located in exclude region 
files were removed, including DAC list, DUKE list, LCR list, Homopolymer list, and 
Mappable issue list. In addition, only if variants located in the exome capture region with 
150bp flank on both ends, 1000G mappable region, and GIAB mappable regions, the 
variants were kept. Second, we did VCF normalization for all the variants passed region 
filters, to ensure the parsimony and left alignment of variants. Third, the population 
frequency of 1000G project, ExAC database, and gnomAD3 database were used to 
annotate all variants. Variants with 1000G VAF<1% and ExAC VAF<1%, and gnomAD3 
popmax<1% were kept. In the last, all variants were manually reviewed with IGVtools to 
minimize false positive results. 

For all variants that passed all filters, we re-evaluated depth, VAF, DP4 counts, based on 
high-quality sequencing reads (sequence_length >= 80, not secondary_alignment, and 
mapping_quality>50), and generated the finalized genotype matrix. 

4. Somatic mutation calling 

Somatic mutation identification is important to studying clonal hematopoiesis in FPDMM 
patients, and it's the key to discovering determinate factors of disease development. To 
improve the sensitivity of somatic mutation calling, we applied several software to identify 
somatic mutations independently and merged the mutation calling set together. To 
distinguish somatic mutations in bone marrow or peripheral blood cells, we collected skin 
biopsies from patients and expanded fibroblast, and further sequenced them as somatic 
control. However, since the fibroblast preparation procedure takes additional time, and it 
could fail, we have several patients who don't have skin fibroblast sequencing data ready 
for analysis. So, two somatic mutation analysis strategies were used in our work. For 
patients with fibroblast control data, we define the somatic mutations calling results as 
true somatic. For other patients without fibroblast control data, we have to use a single 



sample somatic mutation calling strategy. Since we cannot confirm the existence in other 
tissues, we define the somatic mutation calling set as likely somatic. 

True somatic mutation calling strategy: Base Recalibrated bam files of bone 
marrow/peripheral blood sample and fibroblast sample were used as input for Mutect24 
(v.4.2.0.0), strelka8 (v.2.9.0), LoFreq6 (v.2.1.5), and MuSE9 (v.1.0).  

For Mutect2, we used 10 family controls without RUNX1 variant to generate panel of 
normal (PoN) for analysis. Mutect2 module took bam files, reference, panel of normal, 
gnomAD germline resource to detect somatic mutations, and generate orientation bias 
model file. The orientation bias model was further processed by 
LearnReadOrientationModel, GetPileupSummaries, and CalculateContamination with 
default parameters. Finally, the processed bias model was used to filter the somatic 
mutation list. Mutations that didn't pass the model were removed from the analysis. 

To analyze somatic mutation with Strelka, paired bam files were firstly used by Manta 
(v.1.5.0) to identify candidate small indels. After that, paired bam files, and candidate 
small indels reported by Manta were used by Strelka to report somatic SNVs and InDels. 
Default parameters were used with both Manta and Strelka.  

We also used LoFreq, and MuSE2 to identify somatic SNVs and InDels with default 
parameters. Finally, we queried the genotype matrix to compare the genotype of BM/PB 
sample to the fibroblast sample, and generated the merged true somatic mutation list. 

Likely somatic mutation calling strategy: Mutect2 single sample mode was used to predict 
somatic mutation from BM/PB sample itself. Previous described panel of normal (PoN) 
was used in this step to compare with. Similar to sample-control Mutect2 analysis, 
LearnReadOrientationModel, GetPileupSummaries, and CalculateContamination were 
done and filtered the somatic mutations. Since we sequenced multiple affected and 
unaffected individuals from the same family, if the mutation can be found in any other 
family members, we treat it as germline variant. 

5. Somatic mutation filtering process 

Similar to the genotyping process, mutations located in the region from DAC list, DUKE 
list, LCR list, Homopolymer list, and Mappable issue list were removed, we only kept 
mutations found in the exome capture region and flanking 150bp region in both upstream 
and downstream. In addition, to further remove mutations located in the low-complexity 
region, if the surrounding sequence met the criteria like: BBBBB, ABABABAB, 
ABCABCABC, ABCDABCD, mutations will be removed. 



For the mutation evidence, the mutation locus must met "depth >=10, VAF>=0.03, and 
alt-allele-reads>=3" in somatic sample, and "depth >=8, VAF<0.01" in fibroblast control. 
To remove the strand-bias, the alt-allele-reads must include at least one supporting read 
from both chains. Because we would like to detect early events of somatic mutations in 
CHIP-related genes and leukemia driver genes, we called back all somatic mutations in 
these genes that failed the general filters, and reviewed the alignment carefully. If the 
somatic sample met "VAF>0.01 and alt-allele-reads>=3", and the alignment is clean, we 
kept these mutations in downstream analysis. However, to do the comparative analysis 
with the TOPMed study, we only included somatic mutations with VAF>0.05 in the 
provided 74 gene list from the TOPMed study. 

6. In silico prediction of deleterious germline variants 

To predict deleterious status of germline variants in our cohort, the following inclusion 
criteria were used to find out variants that potentially related to functional changes that 
could further impact the patients. Variants with any of these criteria will be included: 

1) Germline variants that have been annotated as “Pathogenic/Likely pathogenic” 
with the CLINVAR database. For the variants related to Fig S9B, if ClinVar's 
preferred disease name (CLNDN) refers to Fanconi anemia, variants with 
uncertain significance or conflicting interpretations of pathogenicity will be 
counted. 

2) Variants that are annotated to the following categories: “stop_gained/ 
frameshift_variant”.  

3) Variants that are annotated to the following categories: “splice_donor_variant/ 
splice_acceptor_variant/splice_region_variant, meanwhile the SpliceAI 
annotation shows any of the DS_AG, DS_AL, DS_DG, or DS_DL values above 
0.5. 

4) Variants for which at least 4 out of 6 in-silico prediction tools support a 
deleterious outcome. These tools include CADD_phred>20; SIFT_pred=’D’; 
FATHMM_pred=’D’; Polyphen2_HDIV_pred=’D’ or ‘P’; MutationTaster_pred=’D’ 
or ‘A’; MetaSVM_pred=’D’. 

We did the analysis on all germline variants to get the subset of variants that "predicted 
deleterious", then we put all the genes from this subset, performed enrichment analysis 
with Metascape10. Functional annotation categories from Gene Ontology, KEGG 
pathways, WikiPathways, and reactome were aggregated into four groups: 

1. Hemostasis (R-HSA-109582, GO:0007599) 



2. Coagulation and clotting (GO:0007596, GO:0050817, WP272, WP272, 
hsa04610, ko04610, GO:0030193, WP558, R-HSA-140877) 

3. Platelet maturation and activation (R-HSA-76002, R-HSA-114608, GO:0030168, 
GO:0070527, GO:0010543, GO:0090330) 

4. Myeloid cell differentiation (GO:0030099, GO:0002573, GO:0045637, 
GO:0045639, GO:0061515, GO:0002761, GO:0002763).  

Genes related to RTK-RAS-PI3K pathway and Fanconi anemia were plotted and listed 
in the supplemental table 5. 

7. Other analysis. 

We used Maftools to do the mutation burden analysis10. And we used 
SigProfilerMatrixGenerator11 to do the somatic mutation signature analysis. T-test was 
used to evaluate the significance in the genotype-phenotype analysis. 

 

RNA sequencing and data analysis 

1. Sequencing 

RNA was extracted from PB or BM samples collected with PAXgene Bone Marrow/Blood 
DNA Kit (Qiagen) or from isolated PB/BM mononuclear cells. We took 0.5-1 ug of total 
bone marrow or peripheral blood RNA as input of RNA-seq. The RNA quality must meet 
the RIN>7. 

RNA-seq libraries were prepared by NIH Intramural Sequencing Center (NISC) with 
Illumina TruSeq Stranded Total RNA with Ribo-Zero Globin strategy, following by PE151 
sequencing on Novaseq 6000 platform. In addition, libraries were sequenced on the 
Illumina Novaseq platform with PE151 chemistry. 

2. Analysis 

Sequencing data were analyzed with an in-house pipeline under the snakemake pipeline 
framework. First of all, low-quality reads and sequencing adaptor sequences were 
removed by fastp with default parameters. STAR12 (v.2.7.6a) was used to align all clean 
sequencing reads to human reference genome hg38, with two pass alignment strategy. 
Specific parameters were used in pass 1 (--outFilterMultimapScoreRange 1 --
outFilterMultimapNmax 20 --outFilterMismatchNmax 10 --alignIntronMax 500000 --
alignMatesGapMax 1000000 --sjdbScore 2 --alignSJDBoverhangMin 1 --



outFilterMatchNminOverLread 0.33 --outFilterScoreMinOverLread 0.33), and pass 2 (--
outFilterMultimapScoreRange 1 --outFilterMultimapNmax 20 --outFilterMismatchNmax 
10 --alignIntronMax 500000 --alignMatesGapMax 1000000 --sjdbScore 2 --
alignSJDBoverhangMin 1). Aligned bam files were then sorted and indexed with 
sambamba3 (v.0.8.0). Splicing junction forms and counts were collected from the output 
of STAR. 

We applied STARfusion12 (v1.8.0) and Arriba13 (v1.2.0) in the fusion gene analysis to 
maximize the detection of fusion events, followed the standard protocols. 

 

SNP array tests and data analysis 

For each sample, 300 ng high-quality genomic DNA was processed and loaded with 
OmniExpressExome-8 v1.6 bead chip. The data was processed with GenomeStudio, and 
CNV analysis was performed with two analysis plug-ins: cnvPartition and PennCNV14. 
We also illustrated the copy number Log R ratio (LRR) and B allele frequency (BAF) with 
an in-house script. All predicted CNV events were manually reviewed to eliminate false 
positive calls.  

Other 

We developed standardized exome genotyping, somatic mutation calling, and RNA-seq 
analysis pipelines with the snakemake framework15. All customized figures in this 
manuscript were generated with matplotlib. 
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Figure S1



Figure S1. Summary of exome sequencing data (A) Distribution of 
effective sequenced bases, quantile-adjusted average depth, coverage 
of targeted region that covered at lease 50X, and coverage of targeted 
region that covered at least 100X. Each dot indicates a sequenced 
sample. (B) Distribution of exome coverage at specified minimum 
depth. (C) Sequencing saturation at 50X and 100X minimum depth.



Figure S2. Workflow of germline genotyping and somatic mutation calling



Supplemental Figure 3. Junction plots showing RUNX1 
splice junctions in two normal controls and 7 patients (in 
additional to those shown in Fig. 2A-G)



Figure S4



Figure S4 (cont.)

Supplemental Figure 4. Somatic mutation comut plots related to Figure 3A 
(A) Breakdown comut plot of patients with samples from multiple timepoints. 
Star signs indicate the mutation VAF<3%. Comut plot as shown in Fig 3A, being 
sorted by age (B), RUNX1 mutation types (C), platelet count (D), mean platelet 
volume (MPV) (E) , and gender (F).



Figure S5



Supplemental Figure 5. Characterizations of somatic mutations in the NIH FPDMM cohort. 
(A) Somatic mutation burdens of non-malignant, and malignant FPDMM patients, compared to 
the somatic mutation burdens of other cancer types from TCGA project. TMB: tumor mutational 
burden. Somatic mutation signatures of non-malignant FPDMM patients who carry somatic 
mutations in CHIP genes and AML driver genes (B) and of those who do not (C).



Supplemental Figure 6. Somatic mutation comut plots of variants detected in 74 
CHIP gene list and with allele frequency (VAF) >5%.



Figure S7



Supplemental Figure 7. Somatic mutation VAF changes across samples collected in 
different timepoints from 13 non-malignant FPDMM patients. Colored dots and lines 
show mutations in CL and leukemia genes. Grey dots and lines show somatic mutations in 
other genes.



Figure S8



Supplemental Figure 8. Somatic mutations detected at more than one timepoints. 
(A) Venn plots of somatic mutations identified at different timepoints. Numbers indicate 
mutations detected at one or more timepoints. (B) Numbers of somatic mutations 
correlating with patient age, malignancy status, platelet count, and gender. Each dot 
represent one patient’s sample.



Figure S9

Supplemental Figure 9. Germline variants in genes 
related to (A) Myeloid cell differentiation; Platelet 
maturation and activation; Hemostasis; Coagulation 
and clotting, (B) Fanconi anemia, and (C) RTK-RAS-
PI3K pathway. The design and color codes for this figure 
are similar to those in Fig 3A, S5, and S6.
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