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Supplementary Figures 
 

 
 
Supplementary Figure 1. GAUDI performance compared to PRSice and pPRS in small-

scale simulation studies under different settings, with maximum LD R2 between causal 

variants to be 0.2. (a)-(c). 𝑝shared (proportion of variants with shared effects across ancestry 

groups) = 1: no ancestry-differential effects for all causal variants. (d)-(e). 𝑝shared = 0.5: half of 

the causal variants have ancestry-differential effects. (a)(d). Causal variants are common only in 

AFR ancestry, specifically EUR-MAF < 5% and AFR-MAF >= 5%. (b)(e). Causal variants are 

common only in EUR ancestry, i.e., EUR-MAF >= 5% and AFR-MAF < 5%. (c)(f). Causal 

variants are common in both ancestries, i.e., EUR-MAF and AFR-MAF both >= 5%. Each 

experiment was repeated 10 times shown in the box plots. The minima, maxima and center 

represent the minimum, maximum and median test R2 across the 10 repeats. The bounds of the 

boxes represent upper and lower quartiles, with whiskers represent 1.5 times of interquartile 

range. The maximum LD R2 between causal variants were set to be 0.2 for all settings. The 

dashed red line denotes heritability. 𝑝causal: proportion of causal variants out of all variants. 

 
 
 



 
 
Supplementary Figure 2. GAUDI performance compared to PRSice and pPRS in small-

scale simulation studies under different settings, with maximum LD R2 between causal 

variants to be 0.5. (a)-(c). 𝑝shared (proportion of variants with shared effects across ancestry 

groups) = 1: no ancestry-specific effects for all causal variants. (d)-(e). 𝑝shared = 0.5: half of the 

causal variants have ancestry-specific effects. (a)(d). Causal variants are common only in AFR 

ancestry, specifically EUR-MAF < 5% and AFR-MAF >= 5%. (b)(e). Causal variants are 

common only in EUR ancestry, i.e., EUR-MAF >= 5% and AFR-MAF < 5%. (c)(f). Causal 

variants are common in both ancestries, i.e., EUR-MAF and AFR-MAF both >= 5%. Each 

experiment was repeated 10 times shown in the box plots. The minima, maxima and center 

represent the minimum, maximum and median test R2 across the 10 repeats. The bounds of the 

boxes represent upper and lower quartiles, with whiskers represent 1.5 times of interquartile 

range. The maximum LD R2 between causal variants were set to be 0.5 for all the settings. The 

dashed red line denotes heritability. 𝑝causal: proportion of causal variants out of all variants. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
Supplementary Figure 3. GAUDI performance compared to PRSice and pPRS in small-

scale simulation studies under different settings, with the proportion of ancestry-specific 

causal variants being 20%. (a)-(c). The maximum LD R2 between causal variants were set to 

be 0.2. (d)-(e). The maximum LD R2 between causal variants were set to be 0.5. (a)(d). Causal 

variants are common only in AFR ancestry, specifically EUR-MAF < 5% and AFR-MAF >= 

5%. (b)(e). Causal variants are common only in EUR ancestry, i.e., EUR-MAF >= 5% and AFR-

MAF < 5%. (c)(f). Causal variants are common in both ancestries, i.e., EUR-MAF and AFR-

MAF both >= 5%. Each experiment was repeated 10 times shown in the box plots. The minima, 

maxima and center represent the minimum, maximum and median test R2 across the 10 repeats. 

The bounds of the boxes represent upper and lower quartiles, with whiskers represent 1.5 times 

of interquartile range. The proportion of ancestry-specific causal variants was set to be 20% for 

all the settings. The dashed red line denotes heritability.  
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Supplementary Figure 4. Histogram of average African ancestry proportion for simulated 

AA individuals (n=3920). We assumed the proportion of AFR components follows N(0.5, 

0.003) distribution ignoring negative values. 
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Supplementary Figure 5. Histogram of average African ancestry proportion for WHI AA 

individuals (n=6734). We inferred the 2-way local ancestry for WHI AA and summarized at 

genome-wide level with 22 chromosomes considered.   
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Supplementary Figure 6. Performance of PRS-CSx under different values of the global 

shrinkage parameter in WHI AA internal evaluations for WBC. We show that the advantage 

of GAUDI over PRS-CSx was not due to not carefully tuning the parameter for PRS-CSx. The 

PRS-CSx-auto, which we used in all the analyses, performed the best across the small grid 

search. For each boxplot, the minima, maxima and center represent the minimum, maximum and 

median test R2 across the 5 repeats. The bounds of the boxes represent upper and lower quartiles, 

with whiskers represent 1.5 times of the interquartile range. 
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Supplementary Figure 7. Comparison of GAUDI EUR weights and AFR weights for CRP. 

We identified one variant with significant differential effects between EUR and AFR. This 

variant has extremely low MAF in EUR (MAF = 0.05%) but is common in AFR (MAF = 

19.8%). 

 

 

 

 

chr1:159680395:G:A

−0.050

−0.025

0.000

0.025

0.050

−0.05 0.00 0.05 0.10

GAUDI AFR weights

G
A

U
D

I 
E

U
R

 w
e
ig

h
ts



 

 

 
 

Supplementary Figure 8. Comparison of GAUDI EUR weights and AFR weights for WBC. 

We identified two variants with significant differential effects between EUR and AFR. Of note 

that chr1:159092646:G:A is in moderately high LD (R2 0.6) with the Duffy null variant in 1000G 

Africans.  
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Supplementary Figure 9. Local ancestry effects of the variant outlier in the CRP example. 

The y-axis shows the adjusted CRP values (after adjusting for covariates and performing inverse 

normal transformation). The x-axis classifies individuals according to their inferred local 

ancestry at this locus. For example, AFR+AFR means individuals with both alleles from African 

ancestry at this variant. Color represents different local ancestry information. 
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Supplementary Figure 10. Local ancestry effects of the two variant outliers in the WBC 

example. The y-axis shows the adjusted WBC values (after adjusting for covariates and 

performing inverse normal transformation). The x-axis classifies individuals according to their 

inferred local ancestry at each variant. For example, AFR+AFR means individuals with both 

alleles from African ancestry at this variant. Color represents the two genetic variants. 
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Supplementary Figure 11. Histogram of average African ancestry proportion for UKB 

AFR individuals (n=9354). We inferred the 2-way local ancestry for UKB participants with 

African components and summarized at genome-wide level with 22 chromosomes considered.   
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Supplementary Figure 12. Comparison of GAUDI EUR weights and AFR weights for 

lipoprotein A in UKB serum and urine biomarker screening. We identified several variants 

with significant differential effects between EUR and AFR.  
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Supplementary Figure 13. Comparison of GAUDI EUR weights and AFR weights for 

direct bilirubin in UKB serum and urine biomarker screening. We identified one obvious 

outlier variant, rs1976391, with significant differential effects between EUR and AFR.  
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Supplementary Figure 14. Comparison of GAUDI EUR weights and AFR weights for total 

bilirubin in UKB serum and urine biomarker screening. We identified one obvious outlier 

variant, rs35754645, with significant differential effects between EUR and AFR.  
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Supplementary Figure 15. Assessment of computational time of GAUDI with different 

number of input variants in real data analyses. The computational time depends heavily on 

the number of input variants, with exponential rate increase. We note that the computational 

bottleneck is the largest limitation of GAUDI.  
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Supplementary Note 

 
Small-scale simulation results 

 

We first compared GAUDI with the clumping and thresholding method implemented in PRSice 1 

and the previously proposed partial PRS (pPRS) 2 method, under the scenario of no ancestry-

specific effects (𝑝shared = 1, Methods). While 100% of effects being shared across ancestry is an 

over-simplification, recent work has shown that there is almost always a positive correlation 

between effect sizes across global populations for most variants associated with complex traits 3 . 

We ran PRSice, pPRS, GAUDI with and without LD clumping for comparison (Methods). We 

used COSI 4 to simulate 102,572 genetic variants for 3,500 AA individuals assuming 80% 

African (AFR) and 20% European (EUR) admixture, and another independent samples of 2,500 

EUR and 2,500 AFR individuals serving as references. We considered three different genetic 

settings of the causal variants in terms of their minor allele frequency (MAF) across ancestries: 

variants with EUR-MAF and AFR-MAF both >= 5% (causal variants common in both 

ancestries), variants with EUR-MAF >= 5% and AFR-MAF < 5% (casual variants common only 

in EUR), and variants with EUR-MAF < 5% and AFR-MAF >= 5% (causal variants common 

only in AFR). For each of three MAF settings, we varied the proportion of causal variants to be 

1, 0.5, 0.05 to represent different polygenicity situations, and the proportion of variation 

explained by genetic variations (i.e., heritability) to be 0.2 or 0.6. In addition, we also varied the 

maximum LD R2 among causal variants to be 0.2 or 0.5.  

 

Comparing across different polygenicity and heritability scenarios, GAUDI achieved best 

performance across the entire spectrum assessed, demonstrating most pronounced performance 

gains in settings with higher heritability and denser genetic architecture. In addition, the R2 

attained by GAUDI in the testing dataset is nearly equal to heritability in almost all simulated 

phenotypes, demonstrating the power of GAUDI by borrowing information from haplotype 

segments in one ancestry to better estimate the effects in another ancestry. 

 

We then simulated phenotypes where 50% of causal variants have ancestry-specific effects and 

the remaining 50% have effect sizes shared across the two ancestral populations (Methods). 

Similarly, we considered multiple genetic architectures by varying causal variants’ cross-

ancestry MAFs, heritability, polygenicity and maximum LD R2. Our results were largely 

consistent with those from the above simulations (Supplementary Fig. 1-2 d-f, Supplementary 

Table 2). The improvement of GAUDI over competing methods is even more pronounced in 

some scenarios with the introduction of ancestry-specific effects (Supplementary Fig. 1). We 

also note the variability of GAUDI is slightly reduced compared to the previous setting where no 

ancestry-specific effects were allowed. These results further underscore the advantage of GAUDI 

by allowing and jointly modeling ancestry-specific effects. We also simulated phenotypes where 

the proportion of ancestry-specific causal variants is 20%, and the results are highly consistent 

(Supplementary Figure 3), suggesting GAUDI is robust to a variety of genetic architectures. 

Furthermore, GAUDI with LD clumping performs almost identically well as GAUDI without 

LD clumping, indicating GAUDI is also robust to the inclusion of correlated variants in the PRS 

construction process. 

 

Outliers in the WBC experiments 

https://sciwheel.com/work/citation?ids=7214818&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8578403&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7702021&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5572194&pre=&suf=&sa=0&dbf=0


 

We found two outliers in the WBC experiments, chr1:159092646:G:A (rs2518564) and 

chr1:159553696:C:A (rs2084257). Both variants demonstrate higher EUR weights than AFR 

weights in GAUDI (Supplementary Fig. 8). We note that the weights plotted are from GAUDI 

rather than GWAS. Our GAUDI weights are re-estimated in a joint manner, jointly for ancestry-

specific weights across all variants, which are different from GWAS effect sizes that are 

estimated in a marginal manner one variant at a time. 

 

Going back to the two outliers, we first note that their GWAS effect sizes and p-values are not 

particularly large or highly significant, with effect sizes 6.3e-3 and 0.014, p-values 0.018 and 

4.9e-5 for chr1:159092646:G:A and chr1:159553696:C:A, respectively, in the 500k EUR WBC 

GWAS 5. Future studies with finer imputation reference panel including the Duffy null variant in 

larger sample sizes of African continental or African Americans are warranted for a more 

comprehensive understanding. More interestingly, the local ancestry at the two variants seems to 

be associated with the phenotype (Supplementary Fig. 9). Specifically, individuals with at least 

one copy of European local ancestry alleles (middle and right violins in the plots) tend to have 

higher values of white blood cell counts than those with both alleles of African local ancestry 

(leftmost violins). In this sense, the weights from GAUDI shall be interpreted differently from 

how we typically interpret variant effect sizes, because the weights here change the predicted 

values of white blood cell counts on top of the linear combinations of other variant and local 

ancestry combinations. The seemingly smaller AFR effect sizes are consistent with the observed 

(representing working truth) lower values of white blood cell counts among individuals carrying 

two copies of African alleles. 
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