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S1. Additional Setup Info 

Participants wore head-mounted microphones (t.bone HeadmiKe – D AKG) which were 

connected to a recorder (Zoom H4N Pro), recording at 44,100 Hz. Additionally, participants 

were equipped with Empatica E4 1 wristbands on their non-dominant hand. Analyses based on 

verbal communication and physiological measures are out of the scope of the current study and 

will be presented elsewhere. 

 

S2. Feature extraction 

This section lines out further details on the feature extraction procedures for our different 

machine learning models based on facial expression (S2.1), head movement (S2.2), body 

movement (S2.3), head-body coordination (S2.5), and full body movement and facial 

expressiveness (S2.6). Additionally, the derivation procedure of individual feature vectors from 

the synchrony analyses is explicated in S2.4. A full list of features used for the final 

classification models can be found in Supplementary Table S13. 
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S2.1. Facial Expression Synchrony 

In order to prevent biases by imprecise facial tracking, we only included participants with a 

mean confidence of tracked frames over 75%, as well as a percentage of successfully tracked 

frames over 90%. We were interested in the synchrony of action units rather than emotional 

facial expressions. According to the Facial Action Coding System (FACS 2), emotional facial 

expressions are combinations of certain action units. The correspondence between emotion and 

combination of action units is assumed to be bidirectional, for example, happiness is assumed 

to be associated with the activation of the action units 6 and 12, and the activation of these 

action units is assumed to always convey happiness. This, however, is not appropriate for this 

study: (1) It is possible that an action unit, though present, is not detected by the automated 

algorithm used in this study, e.g., due to partial occlusion of the face. In this case the emotional 

facial expression synchrony would erroneously be coded as non-existent. Assessing all action 

units separately would still capture synchrony of all correctly detected action units. (2) Inferring 

emotional states from facial expressions has shown to be less straightforward than originally 

assumed 3. Moreover, autistic people have been found to demonstrate even less coherence in 

their emotional expressions and their underlying emotional states4.  

For the cross-correlation of all facial AUs, the time series were split into windows of seven 

seconds (in accordance with 5), which were lagged by two seconds respectively. To prevent 

information loss at window boundaries 6, we performed the cross-correlations in steps of 4 

seconds, returning a matrix of 17,908 cross-correlation values per dyad per task. In line with 

previous synchrony studies using MEA (e.g., 7,8), all cross-correlation values were Fisher’s Z-

transformed and converted to absolute numbers. In time windows where no movement was 

present by either interactant, the cross-correlation was labelled as missing. To avoid overfitting, 

in our final machine learning analysis we only included action units for which none of the 
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participants had more than 50% of missing data. For the mealplanning task, these were action 

units 1, 2, 6, 7, 9, 14, 15, 17, 20, 25, 26, and 45. For the hobbies task, we included action units 

1, 2, 6, 7, 9, 15, 17, 20, 23, 25, 26, and 45. A description of the relevant action units can be 

found in Supplementary Table S1. 

 

S2.2. Head Movement Synchrony 

To account for the dynamic nature of the interaction tasks 6, the extracted motion energy time 

series for head movement were synchronized in windows of 30 seconds and 5 second lags. An 

overlap of 15 seconds was chosen in order to capture instances of synchrony between windows, 

resulting in a cross-correlation matrix of 11,438 values per dyad per task. 

As is common practice in the application of MEA, we assessed whether the synchrony scores 

derived from the extracted motion energy values were above chance. To this end, we shuffled 

our datasets to create 500 pseudo-dyads, thus, pairing the time series of two people who had 

never actually interacted with each other. Using windowed cross-lagged correlation, we 

subsequently calculated their interpersonal synchrony in the same manner as the real dyads with 

window sizes of 30 seconds, increments of 15 seconds and lags of 5 seconds. The resulting 

cross-correlations were averaged across all windows and lags, resulting in one global synchrony 

value per pseudo-dyad and compared to the averages derived from the real dyads using 

independent Welch t-tests. Pseudo-synchrony in the head ROI (M = .075, SD = .013) was 

significantly lower that real head synchrony (M = .081, SD = .018), suggesting the head 

synchrony found between our participants to be above chance.  

 

S2.3. Body Movement Synchrony 

Body motion energy time series were processed and synchronized in the same manner as head 

motion energy. For the comparison to pseudosynchrony, we found a group difference 

suggesting above chance body synchrony in our interactional dyads (pseudo: M = .087, SD = 
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.016 vs. real: M = .089, SD = .018). However, contrary to our hypothesis this result was not 

significant.  

 

S2.4. Derivation of individual feature vectors and peak-picking – from shared 

interpersonal synchrony to individual adaptation 

One way to establish interpersonal synchrony is through the adaptation of one person to another. 

All resulting interpersonal synchrony cross-correlation matrices (facial expression, head 

motion, and body motion) were split according to the direction of the lag (Supplementary Figure 

S1). This allowed for quantification of the degree of adaptation of every participant within their 

dyad9. Subsequently, a peak-picking algorithm10,11 was used to extract the maximum adaptation 

per time window in every task. Summary statistics (mean, median, standard deviation, 

minimum, maximum, skewness, and kurtosis) of these peak values per task constituted the final 

feature set. 
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Supplementary Figure S1. Derivation of individual feature vectors from time lagged windowed 
cross-correlation. 

 

Note. Example data of cross-correlation between head motion of two participants throughout a 10 

minute social interaction. (A) Heatmap of cross-correlation values of head movement time series of 

two participants interacting with each other. (B) The maximum values (peaks) of positive and negative 

lags are extracted. Negative lags represent Person 2 moving before Person 1, positive lags represent 

Person 1 moving before Person 1. ccf = cross-correlation function, w = cross-correlation window. 
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S2.5. Head-body coordination 

For the purpose of quantifying head and body integration, a three-dimensional head motion 

vector was derived from the three movement axes (pitch, yaw and roll) using the following 

formula: 

ℎ𝑒𝑎𝑑	𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 	,∆!"# +	∆!$# +	∆!%#		 

∆!": frame-to-frame difference vector in head movement on the x-axis with respect to the 

camera  

∆!$: frame-to-frame difference vector in head movement on the y-axis with respect to the 

camera  

∆!%: frame-to-frame difference vector in head movement towards to and away from the camera  

 

The resulting head movement vector was subsequently cross correlated with the body motion 

time series derived from MEA. A window size of 30 seconds with lags of 5 seconds and a step 

size of 15 seconds was chosen in conformity with the calculation of interpersonal movement 

synchrony. Peak synchrony instances of every time window were extracted, with their summary 

statistics (mean, median, minimum, maximum, skewness, and kurtosis) per task constituting 

the final feature set for intrapersonal movement coordination. 

 

S2.6. Total Movement and Facial Expressiveness 

We aimed to quantify both relative amount of head and body movement and overall facial 

expressiveness of the individual participants during our testing sessions. Movement quantity of 

head and body ROI was derived from the respective MEA time series of the two tasks. 

Following procedures from previous MEA publications 12,13, movement quantity was defined 

as the number of frames with changes in motion energy divided by the total number of frames, 

resulting in four values per participant. Facial expressiveness was operationalized as mean 
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intensity of all action units derived from OpenFace 2.014 included in our facial expression 

classifier (AU time series with <50% missing values) per task, resulting in two features per 

participant.  

 

 

S3. Machine learning specifications 

S3.1. Machine Learning Preprocessing Pipeline for base models 

In a first step, all base models underwent pruning of uninformative features (features with 0 

variance). Subsequently, all features were scaled from 0 to 1 to remove potential effects of scale 

differences. Due to the relatively large amounts of features, further pre-processing was 

conducted on the base models of facial expression synchrony and head movement synchrony. 

The base models of facial expression synchrony and head movement synchrony underwent the 

following additional processing: 

(1) To reduce the dimensionality, features were pre-processed using principal component 

analysis (PCA), retaining the principal components that explained 80% of the variance 

in each CV1 fold 15.  

(2) Subsequently, features were scaled again between 0 and 1.  

For all models, the slack parameter was optimized in the inner CV cycle using 11 parameters 

within the following range: 0.0156, 0.0312, 0.0625, 0.1250, 0.2500, 0.5000, 1, 2, 4, 8, and 16. 

These represent the default parameter settings in Neurominer 15. An ensemble of the top 50% 

performing models was created for each base learner that was subsequently applied to the outer 

CV2 data to produce a single average robust prediction.  

 

S3.2. Machine Learning Preprocessing Pipeline for Stacking Models 

We trained two different stacking models to investigate if a combination of modalities in the 

head region, as well as a combination of all base classifiers could improve prediction accuracy 
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even further. The stacking models combined decision scores of the respective base classifiers 

(FACEsync + HEADsync; FACEsync + HEADsync + BODYsync + INTRAsync + MoveEx) 

within each CV1 partition, standardizing the resulting matrices and subsequently using them as 

new sets of predictive features, which replaced the original features in each CV1 partition. 

Subsequently, the CV2 validation predictions of the previously trained base classifiers’ SVM 

ensembles were combined and standardized using the median and winsorized within 3 standard 

deviations to their closest percentile. Then, each SVM ensemble was applied to this 

standardized CV2 decision score matrix. Majority voting was used to achieve class prediction.  

 

S3.3. Permutation testing description 

We employed permutation testing to assess whether our base prediction models were 

statistically significant16. To this end, we performed 1000 random permutations of the outcome 

labels (ASD-TD and TD-TD). All linear SVM models were retrained for each permutation in 

the same stratified repeated nested double CV using the respective feature subsets obtained 

from the observed-label analyses. Subsequently, we accumulated the predictions of the random 

models for each permutation into a permuted ensemble prediction for each outer cycle subject. 

Thus, we built a null distribution of out-of-training classification performance (BAC) for every 

base classifier. We then calculated the significance of the observed out-of-training accuracy as 

the number of events where the permuted out-of-training accuracy was higher or equal to the 

observed BAC divided by the number of permutations performed. The significance of each 

model was determined at α=0.05, FDR corrected. We performed two separate permutation 

analyses for each model, the latter of which is reported in the main manuscript: (a) with all 

labels of all participants randomly permuted, and (b), taking into account the dyadic structure 

of the data, with labels randomly permuted while ensuring both participants of each dyad were 

always permuted together. For two models (namely BODYsync and INTRAsync) this resulted 
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in slight changes in the models’ exact p values (BODYsync (a) p = .011, (b) p = .009; and 

INTRAsync (a) p = .999, (b) p = .994).  

 

S3.4. Feature visualization of facial expression features 

To determine the influence of the different features on the predictive BAC on the individual 

level, features were visualized for the best-performing model (FACEsync). Namely, this 

included the calculation of the weights of the individual features, the cross-validation ratio, and 

the sign-based consistency. The feature weights (Supplementary Figure S2) calculated by 

Neurominer were defined as the median weights of the selected CV1 models for each CV2 fold 

divided by the number of CV2 folds 15. Cross-validation ratio, a measure of stability, was 

defined as the sum across CV2 folds of the CV1 median weights divided by their respective 

CV1 standard error, all of which was subsequently divided by the number of CV2 folds 17. The 

sign-based consistency 18 was defined as the number of times that the sign of each feature 

(positive or negative) was consistent within an ensemble multiplied by the number of times that 

the feature was non-zero and calculated according to the following procedure 15: The measure 

is between 0 to 1, with 1 representing perfect consistency within the ensemble and 0 if the 

weights are equally positive and negative or when the feature is omitted with a zero weight. A 

p-value was then calculated by defining a hypothesis test for the importance score with a null 

hypothesis of 0. A z-score was calculated as the importance divided by the square root of the 

variance of the importance scores. A standard p-value was then calculated using a normal 

cumulative distribution function to choose the right-tailed significance. P-values were corrected 

using the false-discovery rate. 

 



 10 

 

Supplementary Figure S2. Feature weights for FACEsync model. 

 

 

S4. Supplementary Results 

We conducted a range of exploratory analyses to further characterize our sample with 

standardized clinical self-ratings (S4.1). Moreover, we aimed to explore the impact of our 

experimental setup on naturalistic interactional behavior of our participants (S4.2 and S4.3). 

All participants underwent a facial expression recognition classification task whose group-

based results can be found under S4.4. To further investigate potential underlying factors 

driving misclassification within our base models, we conducted additional correlational 

analyses (S4.5). We additionally explored how our interactional setup performed in a series of 

machine learning classification models based on individual diagnosis (S4.6). Lastly, in an 

exploratory analysis, we additionally conducted a classification using a Random Forest 

algorithm for our five base models and the two stacking models (S4.7). 
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S4.1. Clinical characteristics of correctly vs. incorrectly classified autistic 

participants 

We assessed clinical characteristics of our sample using a range of neuro-psychological self-

rating questionnaires. Results based on a group comparison between patients and control 

participants can be found in Supplementary Table S2.  

Further, we were interested whether there were any notable differences in clinical 

characteristics of the autistic participants within our ASD-TD interactions who were classified 

correctly (true positive, TP) vs. incorrectly (false negative, FN) as belonging to a non-autistic 

control dyad. For this, we ran a series of Welch independent sample two-sided t-tests within 

the autistic subsample for all base classification models. Supplementary Figure S3 depicts the 

group differences for the FACEsync model. While TP autistic participants on average had lower 

alexithymia scores (M = 57.91) than FN autistic participants (M = 86.60), this difference did 

not survive FDR correction (p = .07). We found no significant differences between autistic 

participants for the other models (see Supplementary Tables S7-10). 
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Supplementary Figure S3. Clinical characteristics of TP vs. FN autistic individuals in 
FACEsync model. 

 

Note. ADC = Adult Dyspaxia Checklist, AQ = Autism Quotient, BDI = Beck Depression Inventory, CFT 
= Culture Fair Test 20-R, MWT = Mehrfach-Wortschatz-Test, SMS  = Self -Monitoring Scale, SPF = 
Saarbrücker Persönlichkeitsfragebogen, TAS20 = Toronto Alexithymia Scale. The ADC is composed of 
a section covering movement difficulties in childhood and adulthood. Both scores are depicted in this 
figure. Bars represent inter-quartile ranges 
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S4.2. Camera influence 

Since we aimed to capture naturalistic social interactions, we assessed the degree to which the 

participants felt influenced by the cameras being present. Participants could rate the degree of 

influence on a 4-point-scale ranging from 0 (= not at all), 1 (= a little), 2 (= considerably), to 3 

(= very much). Ratings can be seen found in Supplementary Figure S4. Perceived influence of 

camera on interaction. 

Supplementary Figure S4. Perceived influence of camera on interaction. 
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S4.3. Impact of COVID-19 measures on interaction 

Shortly after the beginning of data collection (the first nine control dyads), the increased 

hygienic safety measures caused by the Covid-19 pandemic required slight changes in setup. 

Amongst these changes were a different testing room, as well as the installing of a transparent, 

plastic screen between the participants to reduce the risk of airborne infections. In an effort to 

reduce any distracting effects of mirror images on the screen, a transparent anti-reflection foil 

was applied to it. To rule out any biases regarding those hygienic measures on the features used 

for classification, we conducted two-sample Welch t-tests between the features of the TD-TD 

dyads before and after the change in setup (Supplementary Table S3). Additionally, after each 

testing we asked participants to rate the perceived impairment of the plexiglass, as well as the 

perceived rapport with their conversational partner (Supplementary Figure S5). Analyzing 

group differences in perceived rapport between the TD-TD dyads did not result in statistically 

significant differences before and after the installation of the screen (Supplementary Table S3). 
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Supplementary Figure S5. Perceived influence of plexiglass during interaction for all 
participants. 
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control participants (M = 3217.31 ms, SD = 1306.17 ms; t(34.80) = 4.01, padj < .001). 

Additionally, autistic participants were able to classify the emotions less accurate (M = .79, SD 

= .09) than control participants (M = .82, SD = .07). However, this differences did not reach 

significance (t(43.34) = -1.64, padj = .11). 

 

Supplementary Figure S6. Comparison of facial expression recognition accuracy and reaction 
time for diagnostic groups. 
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the TD-TD group, the former was significantly associated with the classification model based 

on intrapersonal coordination (Supplementary Figure S8). 

 

Supplementary Figure S7. Correlation between decision scores of Head Synchrony 
(HEADsync) and Full Body Movement & Facial Expressiveness (MovEx) Base Models for 
ASD-TD group 
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Supplementary Figure S8. Correlation between decision scores of intrapersonal head and body 
coordination (INTRAsync) and Full Body Movement & Facial Expressiveness (MovEx) Base 
Models for TD-TD group. 
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S4.7. Random Forest Classification 

While SVM is a commonly used machine learning algorithms for classification problems, other 

algorithms exist that tend to perform well with small datasets. For instance, Random Forest is 

a supervised machine learning algorithm, that combines predictions from a large number of 

independent decision trees, resulting in the best possible classification result 21. Using the same 

preprocessing pipelines and repeated nested cross-validation structure, we retrained our five 

base and two stacking models with a random forest classifier in Neurominer. Detailed results 

can be found in Supplementary Table S14. 
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S5. Supplementary tables 

Supplementary Table S1. Action Units included in this study as extracted by OpenFace. 

Action Unit Definition according to FACS 

1 Inner brow raiser 

2 Outer brow raiser 

6 Cheek raiser 

7 Lid tightener 

9 Nose wrinkler 

14 Dimpler 

15 Lip corner depressor 

17 Chin raiser 

20 Lip stretcher 

23 Lip tightener 

25 Lips part 

26 Jaw drop 

45 Blink 

Note. FACS = Facial Action Coding System 2 

 

Supplementary Table S2. Clinical self-ratings of autistic and control participants. 

Questionnaire ASD  

(n=28, 18 female) 

TD  

(n=60, 26 female) 

padjusted 

SPF 37.32 (7.82) 45.12 (5.54) < .001 

TAS20 59.82 (12.15) 36.87 (8.88) < .001 

BDI 14.25 (10.88) 3.68 (3.65) < .001 

SMS 6.07 (3.21) 9.42 (2.98)  < .001 

ADC  47.68 (17.82) 115.27 (9.30) < .001 
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Note. Mean parameter values (SD in parentheses) for each of the questionnaires are shown 

for the ASD and TD participants, as well as the results of Wilcoxon tests (assuming unequal 

variance). BDI includes one missing value for TD. AQ = Autism Quotient. SPF = 

Saarbrücker-Persönlichkeits-Fragebogen. TAS-20 = Toronto Alexithymia Scale. BDI = 

Beck Depression Inventory. SMS = Self-Monitoring-Scale. ADC = Adult Dyspraxia 

Checklist. p values adjusted for multiple comparisons using FDR. 

 

Supplementary Table S3. Mean group differences in perceived rapport before and after the 
Plexiglas setup for TD-TD dyads (n = 16 per group). 

 M pre M post t p df 95% CI padjusted 

Responsiveness 2.81 2.50 1.91 .067 28.33 [-.02 – .65] .20 

Smoothness 2.69 2.44 1.43 .164 29.86 [-.11 – .61] .25 

Comfort 2.56 2.50 .34 .733 30.00 [-.31 – .43] .73 

Note. Two-sample Welch t-test. p-values were adjusted for multiple testing using Bonferroni-

Holm. Interaction (= “How responsive did you perceive your interactional partner?”), 

Smoothness (= “How smooth did you perceive the communication with your partner?”), 

Comfort (= “How comfortable did you feel during the interaction?”). Ratings went from 0 (= 

not at all) to 3 (= a lot) on a four-point scale. CI = confidence interval. 

 

 
Supplementary Table S4. Pearson correlation coefficients between the decision scores of the 
different base models for the participants from the ASD-TD dyad type 

Model decision scores M SD 1 2 3 4 

1. FACEsync .24 .37     

2. HEADsync .10 .39 .09    

3. BODYsync  -.01 .19 .01 .24   

4. INTRAsync -.03 .17 .24 -.01 .17  
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5. MovEx .14 .34 .15 .55*** .01 .27 

Note. M and SD are used to represent mean and standard deviation, respectively. p values are 

FDR corrected. *** indicates p < .001. 

 
 
Supplementary Table S5. Pearson correlation coefficients between the decision scores of the 
different base models for the participants from the TD-TD dyad type 

Model decision scores M SD 1 2 3 4 

1. FACEsync -.30 .77     

2. HEADsync -.01 .31 .28    

3. BODYsync -.02 .22 .24 .37   

4. INTRAsync .02 .13 -.14 .31 .29  

5. MoveEx -.21 .41 .25 .26 .44 .52* 

Note. M and SD are used to represent mean and standard deviation, respectively. p values are 

FDR corrected. * indicates p < .05. 
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Supplementary Table S6. Additional classification metrics for the ASD-TD vs. TD-TD SVM models. 

Model True 

negatives 

True 

positives 

False 

negatives 

False 

positives 

Accuracy 

(%) 

Number needed to 

diagnose 

Positive 

likelihood ratio 

Diagnostic odds 

ratio 

Permutation test, p 

value 

FACEsync 24 47 9 8 80.7 1.7 3.4 11.3 < .001 

MoveEx 24 35 21 8 67.0 2.7 2.5 6.2 < .001 

HEADsync 18 38 18 14 63.6 4.1 1.6 2.4 .002 

BODYsync 22 25 31 10 53.4 7.5 1.4 2.0 .009 

INTRAsync 14 25 31 18 44.3 -8.6 .80 .6 .994 

FACEsync + HEADsync 23 43 13 9 75.0 2.1 2.7 7.5 NA 

All  23 48 8 9 80.7 1.7 3.0 9.3 NA 
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Supplementary Table S7. FACEsync MODEL: Comparison Analyses of Clinical Variables between Correctly Classified and Misclassified ASD participants. 

Variables Mcorrect Mmisclassified ncorrect nmisclassified t p df conf.low conf.high   padjusted  

ADC_adult 34.61 35.80 23 5 -.15 .885 5.30 -21.11 18.73   .89  

ADC_child 13.48 10.00 23 5 1.16 .295 5.48 -4.05 11.01   .83  

AQ 34.78 34.00 23 5 .17 .874 5.27 -11.14 12.71   .89  

BDI 13.83 16.20 23 5 -.34 .745 4.88 -20.26 15.51   .89  

CFT_IQ 121.13 113.40 23 5 .73 .488 6.62 -17.48 32.95   .83  

MWT_IQ 114.74 108.80 23 5 .67 .530 5.59 -16.16 28.03   .83  

SMS_short 6.35 4.80 23 5 1.51 .155 12.98 -0.66 3.76   .70  

SPF_final 37.87 34.80 23 5 .64 .550 4.97 -9.26 15.40   .83  

TAS20 57.91 68.60 23 5 -3.06 .008 15.62 -18.10 -3.27   .07  
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Supplementary Table S8. HEADsync MODEL: Comparison Analyses of Clinical Variables between Correctly Classified and Misclassified ASD participants. 

Variables  Mcorrect Mmisclassified  ncorrect nmisclassified t p df conf.low conf.high   padjusted  

ADC_adult  32.10 41.62  20 8 -2.09 .048 21.80 -18.97 -.08   .22  

ADC_child  11.25 16.88  20 8 -2.72 .016 14.46 -10.04 -1.21   .14  

AQ  34.45 35.12  20 8 -.27 .790 26.00 -5.84 4.49   .79  

BDI  15.45 11.25  20 8 .98 .342 14.93 -4.92 13.32   .69  

CFT_IQ  122.25 113.50  20 8 .73 .482 9.34 -18.13 35.63   .69  

MWT_IQ  116.40 106.88  20 8 1.38 .190 13.18 -5.36 24.41   .57  

SMS_short  5.90 6.50  20 8 -.43 .672 12.56 -3.60 2.40   .76  

SPF_final  37.80 36.12  20 8 .63 .537 21.81 -3.86 7.21   .69  

TAS20  60.95 57.00  20 8 .86 .404 16.43 -5.81 13.71   .69  
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Supplementary Table S9. BODYsync MODEL: Comparison Analyses of Clinical Variables between Correctly Classified and Misclassified ASD participants. 

Variables  Mcorrect Mmisclassified  ncorrect nmisclassified t p df conf.low conf.high   padjusted  

ADC_adult  35.00 34.71  11 17 .06 .957 23.57 -10.75 11.34   .96  

ADC_child  14.91 11.53  11 17 1.73 .096 26.00 -.64 7.40   .86  

AQ  34.00 35.06  11 17 -.35 .729 25.76 -7.27 5.16   .94  

BDI  15.36 13.53  11 17 .44 .661 23.81 -6.69 10.36   .94  

CFT_IQ  117.18 121.41  11 17 -.47 .642 23.24 -22.80 14.34   .94  

MWT_IQ  114.45 113.18  11 17 .20 .845 23.63 -12.06 14.61   .95  

SMS_short  5.18 6.65  11 17 -1.18 .251 20.96 -4.05 1.12   .94  

SPF_final  38.64 36.47  11 17 .82 .420 23.92 -3.28 7.61   .94  

TAS20  62.45 58.12  11 17 .94 .358 22.91 -5.22 13.90   .94  
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Supplementary Table S10. INTRAsync MODEL: Comparison Analyses of Clinical Variables between Correctly Classified and Misclassified ASD participants. 

Variables  Mcorrect Mmisclassified  ncorrect nmisclassified t p df conf.low conf.high   padjusted  

ADC_adult  29.92 39.07  13 15 -1.80 .084 25.45 -19.61 1.33   .29  

ADC_child  13.08 12.67  13 15 .18 .855 24.33 -4.18 5.00   .88  

AQ  35.46 33.93  13 15 .49 .628 25.35 -4.88 7.94   .88  

BDI  10.69 17.33  13 15 -1.73 .097 22.16 -14.59 1.31   .29  

CFT_IQ  119.00 120.40  13 15 -.15 .878 25.54 -20.00 17.20   .88  

MWT_IQ  110.85 116.13  13 15 -.81 .426 23.62 -18.76 8.19   .88  

SMS_short  6.31 5.87  13 15 .36 .721 26.00 -2.07 2.96   .88  

SPF_final  34.15 40.07  13 15 -2.11 .045 24.70 -11.70 -.13   .29  

TAS20  61.15 58.67  13 15 .54 .596 25.96 -7.03 12.00   .88  
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Supplementary Table S11. MovEx MODEL: Comparison Analyses of Clinical Variables between Correctly Classified and Misclassified ASD participants. 

Variables  Mcorrect Mmisclassified  ncorrect nmisclassified t p df conf.low conf.high   padjusted  

ADC_adult  34.53 35.44  19 9 -.17 .864 19.54 -12.00 10.16   .86  

ADC_child  12.47 13.67  19 9 -.53 .602 17.59 -5.92 3.54   .85  

AQ  35.05 33.78  19 9 .49 .626 25.52 -4.04 6.59   .85  

BDI  16.37 9.78  19 9 1.63 .119 18.54 -1.87 15.05   .36  

CFT_IQ  118.79 121.78  19 9 -.31 .757 16.44 -23.08 17.10   .85  

MWT_IQ  117.05 106.56  19 9 1.63 .121 17.27 -3.05 24.04   .36  

SMS_short  6.26 5.67  19 9 .45 .658 15.65 -2.21 3.41   .85  

SPF_final  37.05 37.89  19 9 -.36 .723 23.13 -5.66 3.99   .85  

TAS20  62.95 53.22  19 9 2.18 .043 17.44 .34 19.11   .36  
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Supplementary Table S12. Classification metrics based on ASD vs. TD classification 

Model ASD vs. 

TD 

BAC 

(%) 

AUC Sens. 

(%) 

Spec. 

(%) 

PPV 

(%) 

NPV 

(%) 

TN TP FN FP Acc. 

(%) 

# needed to 

diagnose 

Positive 

likelihood ratio 

Diagnostic odds 

ratio 

Permutation test, 

p value 

FACEsync 55.5 .55 39.3 71.7 39.3 71.7 43 11 17 17 61.4 9.1 1.4 1.9 .041 

HEADsync 53.9 .59 42.9 65.0 36.4 70.9 39 12 16 21 58.0 12.7 1.2 1.5 .065 

FACEsync + 

HEADsync 

60.2 .57 57.1 63.3 42.1 76.0 38 16 12 22 61.4 4.9 1.6 2.4 NA 

BODYsync 49.5 .49 35.7 63.3 31.2 67.9 38 10 18 22 54.5 -105.0 1.0 .9 .639 

INTRAsync 38.3 .35 25.0 51.7 19.4 59.6 31 7 21 29 43.2 -4.3 .5 .3 1 

MoveEx 66.1 .69 57.1 75.0 51.6 78.9 45 16 12 15 69.3 3.1 2.3 5.2  < .001 

ALL 63.6 .64 57.1 70.0 47.1 77.8 42 16 12 18 65.9 3.7 1.9 3.6 NA 
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Supplementary Table S13. Full lists of features per SVM model 

Model Dimensionality of feature vector List of individual features 
FACEsync 168 'min_hobbies_AU01_r' 

'max_hobbies_AU01_r' 
'sd_hobbies_AU01_r' 
'mean_hobbies_AU01_r' 
'md_hobbies_AU01_r' 
'skew_hobbies_AU01_r' 
'kurtosis_hobbies_AU01_r' 
'min_mealplanning_AU01_r' 
'max_mealplanning_AU01_r' 
'sd_mealplanning_AU01_r' 
'mean_mealplanning_AU01_r' 
'md_mealplanning_AU01_r' 
'skew_mealplanning_AU01_r' 
'kurtosis_mealplanning_AU01_r' 
'min_hobbies_AU02_r' 
'max_hobbies_AU02_r' 
'sd_hobbies_AU02_r' 
'mean_hobbies_AU02_r' 
'md_hobbies_AU02_r' 
'skew_hobbies_AU02_r' 
'kurtosis_hobbies_AU02_r' 
'min_mealplanning_AU02_r' 
'max_mealplanning_AU02_r' 
'sd_mealplanning_AU02_r' 
'mean_mealplanning_AU02_r' 
'md_mealplanning_AU02_r' 
'skew_mealplanning_AU02_r' 
'kurtosis_mealplanning_AU02_r' 
'min_hobbies_AU06_r' 
'max_hobbies_AU06_r' 
'sd_hobbies_AU06_r' 
'mean_hobbies_AU06_r' 
'md_hobbies_AU06_r' 
'skew_hobbies_AU06_r' 
'kurtosis_hobbies_AU06_r' 
'min_mealplanning_AU06_r' 
'max_mealplanning_AU06_r' 
'sd_mealplanning_AU06_r' 
'mean_mealplanning_AU06_r' 
'md_mealplanning_AU06_r' 
'skew_mealplanning_AU06_r' 
'kurtosis_mealplanning_AU06_r' 
'min_hobbies_AU07_r' 
'max_hobbies_AU07_r' 
'sd_hobbies_AU07_r' 
'mean_hobbies_AU07_r' 
'md_hobbies_AU07_r' 
'skew_hobbies_AU07_r' 
'kurtosis_hobbies_AU07_r' 
'min_mealplanning_AU07_r' 
'max_mealplanning_AU07_r' 
'sd_mealplanning_AU07_r' 
'mean_mealplanning_AU07_r' 
'md_mealplanning_AU07_r' 
'skew_mealplanning_AU07_r' 
'kurtosis_mealplanning_AU07_r' 
'min_hobbies_AU09_r' 
'max_hobbies_AU09_r' 
'sd_hobbies_AU09_r' 
'mean_hobbies_AU09_r' 
'md_hobbies_AU09_r' 
'skew_hobbies_AU09_r' 
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'kurtosis_hobbies_AU09_r' 
'min_mealplanning_AU09_r' 
'max_mealplanning_AU09_r' 
'sd_mealplanning_AU09_r' 
'mean_mealplanning_AU09_r' 
'md_mealplanning_AU09_r' 
'skew_mealplanning_AU09_r' 
'kurtosis_mealplanning_AU09_r' 
'min_mealplanning_AU14_r' 
'max_mealplanning_AU14_r' 
'sd_mealplanning_AU14_r' 
'mean_mealplanning_AU14_r' 
'md_mealplanning_AU14_r' 
'skew_mealplanning_AU14_r' 
'kurtosis_mealplanning_AU14_r' 
'min_hobbies_AU15_r' 
'max_hobbies_AU15_r' 
'sd_hobbies_AU15_r' 
'mean_hobbies_AU15_r' 
'md_hobbies_AU15_r' 
'skew_hobbies_AU15_r' 
'kurtosis_hobbies_AU15_r' 
'min_mealplanning_AU15_r' 
'max_mealplanning_AU15_r' 
'sd_mealplanning_AU15_r' 
'mean_mealplanning_AU15_r' 
'md_mealplanning_AU15_r' 
'skew_mealplanning_AU15_r' 
'kurtosis_mealplanning_AU15_r' 
'min_hobbies_AU17_r' 
'max_hobbies_AU17_r' 
'sd_hobbies_AU17_r' 
'mean_hobbies_AU17_r' 
'md_hobbies_AU17_r' 
'skew_hobbies_AU17_r' 
'kurtosis_hobbies_AU17_r' 
'min_mealplanning_AU17_r' 
'max_mealplanning_AU17_r' 
'sd_mealplanning_AU17_r' 
'mean_mealplanning_AU17_r' 
'md_mealplanning_AU17_r' 
'skew_mealplanning_AU17_r' 
'kurtosis_mealplanning_AU17_r' 
'min_hobbies_AU20_r' 
'max_hobbies_AU20_r' 
'sd_hobbies_AU20_r' 
'mean_hobbies_AU20_r' 
'md_hobbies_AU20_r' 
'skew_hobbies_AU20_r' 
'kurtosis_hobbies_AU20_r' 
'min_mealplanning_AU20_r' 
'max_mealplanning_AU20_r' 
'sd_mealplanning_AU20_r' 
'mean_mealplanning_AU20_r' 
'md_mealplanning_AU20_r' 
'skew_mealplanning_AU20_r' 
'kurtosis_mealplanning_AU20_r' 
'min_hobbies_AU23_r' 
'max_hobbies_AU23_r' 
'sd_hobbies_AU23_r' 
'mean_hobbies_AU23_r' 
'md_hobbies_AU23_r' 
'skew_hobbies_AU23_r' 
'kurtosis_hobbies_AU23_r' 
'min_hobbies_AU25_r' 
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'max_hobbies_AU25_r' 
'sd_hobbies_AU25_r' 
'mean_hobbies_AU25_r' 
'md_hobbies_AU25_r' 
'skew_hobbies_AU25_r' 
'kurtosis_hobbies_AU25_r' 
'min_mealplanning_AU25_r' 
'max_mealplanning_AU25_r' 
'sd_mealplanning_AU25_r' 
'mean_mealplanning_AU25_r' 
'md_mealplanning_AU25_r' 
'skew_mealplanning_AU25_r' 
'kurtosis_mealplanning_AU25_r' 
'min_hobbies_AU26_r' 
'max_hobbies_AU26_r' 
'sd_hobbies_AU26_r' 
'mean_hobbies_AU26_r' 
'md_hobbies_AU26_r' 
'skew_hobbies_AU26_r' 
'kurtosis_hobbies_AU26_r' 
'min_mealplanning_AU26_r' 
'max_mealplanning_AU26_r' 
'sd_mealplanning_AU26_r' 
'mean_mealplanning_AU26_r' 
'md_mealplanning_AU26_r' 
'skew_mealplanning_AU26_r' 
'kurtosis_mealplanning_AU26_r' 
'min_hobbies_AU45_r' 
'max_hobbies_AU45_r' 
'sd_hobbies_AU45_r' 
'mean_hobbies_AU45_r' 
'md_hobbies_AU45_r' 
'skew_hobbies_AU45_r' 
'kurtosis_hobbies_AU45_r' 
'min_mealplanning_AU45_r' 
'max_mealplanning_AU45_r' 
'sd_mealplanning_AU45_r' 
'mean_mealplanning_AU45_r' 
'md_mealplanning_AU45_r' 
'skew_mealplanning_AU45_r' 
'kurtosis_mealplanning_AU45_r' 

HEADsync 56 'min_hobbies_headsync' 
'max_hobbies_headsync' 
'sd_hobbies_headsync' 
'mean_hobbies_headsync' 
'md_hobbies_headsync' 
'skew_hobbies_headsync' 
'kurtosis_hobbies_headsync' 
'min_mealplanning_headsync' 
'max_mealplanning_headsync' 
'sd_mealplanning_headsync' 
'mean_mealplanning_headsync' 
'md_mealplanning_headsync' 
'skew_mealplanning_headsync' 
'kurtosis_mealplanning_headsync' 
'min_hobbies_pose_Rxsync' 
'max_hobbies_pose_Rxsync' 
'sd_hobbies_pose_Rxsync' 
'mean_hobbies_pose_Rxsync' 
'md_hobbies_pose_Rxsync' 
'skew_hobbies_pose_Rxsync' 
'kurtosis_hobbies_pose_Rxsync' 
'min_mealplanning_pose_Rxsync' 
'max_mealplanning_pose_Rxsync' 
'sd_mealplanning_pose_Rxsync' 
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'mean_mealplanning_pose_Rxsync' 
'md_mealplanning_pose_Rxsync' 
'skew_mealplanning_pose_Rxsync' 
'kurtosis_mealplanning_pose_Rxsync' 
'min_hobbies_pose_Rysync' 
'max_hobbies_pose_Rysync' 
'sd_hobbies_pose_Rysync' 
'mean_hobbies_pose_Rysync' 
'md_hobbies_pose_Rysync' 
'skew_hobbies_pose_Rysync' 
'kurtosis_hobbies_pose_Rysync' 
'min_mealplanning_pose_Rysync' 
'max_mealplanning_pose_Rysync' 
'sd_mealplanning_pose_Rysync' 
'mean_mealplanning_pose_Rysync' 
'md_mealplanning_pose_Rysync' 
'skew_mealplanning_pose_Rysync' 
'kurtosis_mealplanning_pose_Rysync' 
'min_hobbies_pose_Rzsync' 
'max_hobbies_pose_Rzsync' 
'sd_hobbies_pose_Rzsync' 
'mean_hobbies_pose_Rzsync' 
'md_hobbies_pose_Rzsync' 
'skew_hobbies_pose_Rzsync' 
'kurtosis_hobbies_pose_Rzsync' 
'min_mealplanning_pose_Rzsync' 
'max_mealplanning_pose_Rzsync' 
'sd_mealplanning_pose_Rzsync' 
'mean_mealplanning_pose_Rzsync' 
'md_mealplanning_pose_Rzsync' 
'skew_mealplanning_pose_Rzsync' 
'kurtosis_mealplanning_pose_Rzsync' 

BODYsync 14 'min_hobbies_bodysync' 
'max_hobbies_bodysync' 
'sd_hobbies_bodysync' 
'mean_hobbies_bodysync' 
'md_hobbies_bodysync' 
'skew_hobbies_bodysync' 
'kurtosis_hobbies_bodysync' 
'min_mealplanning_bodysync' 
'max_mealplanning_bodysync' 
'sd_mealplanning_bodysync' 
'mean_mealplanning_bodysync' 
'md_mealplanning_bodysync' 
'skew_mealplanning_bodysync' 
'kurtosis_mealplanning_bodysync' 

MovEx 6 'hobbies_body_total_movement' 
'hobbies_head_total_movement' 
'mealplanning_body_total_movement' 
'mealplanning_head_total_movement' 
'mean_intensity_mp' 
'mean_intensity_h' 

INTRAsync 14 'min_hobbies_intra' 
'max_hobbies_intra' 
'sd_hobbies_intra' 
'mean_hobbies_intra' 
'md_hobbies_intra' 
'skew_hobbies_intra' 
'kurtosis_hobbies_intra' 
'min_mealplanning_intra' 
'max_mealplanning_intra' 
'sd_mealplanning_intra' 
'mean_mealplanning_intra' 
'md_mealplanning_intra' 
'skew_mealplanning_intra' 
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'kurtosis_mealplanning_intra' 
Note. The SVM models were trained on a total of 88 participants, with n = 56 participants belonging to a 
mixed dyad (ASD-TD) vs. n = 32 participants belonging to a non-autistic control dyad (TD-TD). min = 
minimum, max = maximum, sd = standard deviation, skew = skewness, md = median, AU = action unit. 
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Supplementary Table S14. Random Forest Classification Metrics 

Model  

ASD-TD vs. TD-TD 

BAC (%) AUC Sens. 

(%) 

Spec. 

(%) 

PPV 

(%) 

NPV 

(%) 

TN TP FN FP Acc. 

(%) 

# needed to 

diagnose 

Positive likelihood 

ratio 

Diagnostic odds 

ratio 

FACEsync 67.0 .80 96.4 37.5 73.0 85.7 12 54 2 20 75.0 2.9 1.5 2.4 

HEADsync 60.9 .58 92.7 29.0 69.9 69.2 9 51 4 22 69.8 4.6 1.3 1.7 

FACEsync + 

HEADsync 

67.0 .77 96.4 37.5 73.0 85.7 12 54 2 20 75.0 2.9 1.5 2.4 

BODYsync 59.0 .53 83.6 34.4 68.7 55.0 11 46 9 21 65.5 5.6 1.3 1.6 

INTRAsync 53.7 .54 85.5 21.9 65.3 46.7 7 47 8 25 62.1 13.6 1.1 1.2 

MoveEx 69.5 .65 89.1 50.0 75.4 72.7 16 49 6 16 74.7 2.6 1.8 2.6 

ALL 66.1 .77 94.6 37.5 72.6 80.0 12 53 3 20 73.9 3.1 1.5 2.3 
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S6. Additional supplementary figures 

Supplementary Figure S9. p-value histogram of permutation analysis 

 

Note. Figure depicts the results of the permutation testing procedure for our FACEsync model. The 
permutation testing procedure determines how statistically significant the model’s performances are (i.e., 
BAC) using the current data compare to models trained on the dataset but with the labels randomly 
permuted. The permutation test was repeated 1000 times. The significance level was set to a = .05.   
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