Supplementary information

Microalgae-derived Co₃O₄ nanomaterials for catalytic CO oxidation

Agnieszka Sidorowicz, ^a Nevzat Yigit,^b Thomas Wicht,^b Michael Stöger-Pollach,^c Alessandro Concas,^a Roberto Orrù,^a Giacomo Cao,^{a,*}and Günther Rupprechter^{b,*}

^aInterdepartmental Centre of Environmental Engineering and Sciences, University of Cagliari, 09123 Cagliari, Italy

^bInstitute of Materials Chemistry, TU Wien, Getreidemarkt 9/ BC, 1060 Vienna, Austria

^cUniversity Service Center for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria

Table of contents

Table S1 Used media composition for Spirulina platensis cultivation.	3
Table S2 Used media composition for Chlorella vulgaris cultivation	4
Table S3 Used media composition for Haematococcus pluvialis cultivation.	4
Figure S1 Experimental set-up (A) ATR-FTIR, (B) DSC, (C) CO oxidation, (D) DRIFTS.	5
Figure S2 Optical microscopy images of the used microalgae (A) Spirulina platensis, (B) Chlorella vulgaris	s, (C)
Haematococcus pluvialis.	5
Table S4 Elemental analysis of the used microalgae extract.	5
Table S5 FTIR values of Spirulina platensis extract.	6
Table S6 FTIR values of Chlorella vulgaris extract.	7
Table S7 FTIR values of Haematococcus pluvialis extract.	8
Figure S3 XRD analysis of Co ₃ O ₄ NMs: (A) wide angle, (B) selected magnified angle regions	9
Table S8 D-spacing values of SA400 Co₃O₄ NMs.	9
Table S9 D-spacing values for SP450, SP650, and SP800 Co3O4 NMs.	10
Table S10 D-spacing values for CH450, CH650, and CH800 Co ₃ O ₄ NMs.	10
Table S11 D-spacing values for HA450, HA650, and HA800 Co₃O₄ NMs	11
Figure S4 Influence of calcination temperature (A) crystallite size, (B) lattice parameter and volume, (C)	
surface area	11
Figure S5 BET isotherms for commercial and synthesized Co ₃ O ₄ NMs	12
Figure S6 TEM and SAED studies of Co ₃ O ₄ NMs: (A-B) SA400, (C-D) SP450, (E-F) CH450, (G-H) HA450	12
Figure S7 EELS spectra of the commercial and synthesized Co ₃ O ₄ NMs (A) SA, (B) SP450, (C) CH450, (D)	
HA450	13
Figure S8 UATR-FTIR spectra of Co ₃ O ₄ NMs	13
Figure S9 H ₂ -TPR of Co ₃ O ₄ NMs (A) SP400, (B) SP450, SP650, SP800, (C) CH450, CH650, CH800, (D) HA45	0,
HA6550, HA800	14
Table S12 Detected peaks in H2-TPR and O2-TPD (°C) for Co3O4 NMs.	14
Table S13 DSC activation energy values (J/g) for SA, SP450, CH450, and HA450 Co ₃ O ₄ NMs.	15
Figure S10 DSC measurements for SA400 Co ₃ O ₄ NMs	15
Table S14 DCS activation energy values (J/g) for SA400 Co3O4 NMs.	16
Figure S11 CO oxidation activity comparison between Co ₃ O ₄ NMs calcined at different temperatures: (A)
SP450, CH450, HA450, (B) SP650, CH650, HA650, (C) SP800, CH800, HA800	16
Figure S12 CO oxidation activity decrease with time of Co ₃ O ₄ NMs: (A), SA400, (B) SP, (C) CH, (D) HA	17
Figure S13 Tauc plots for commercial and synthesized Co ₃ O ₄ NMs.	17
Table S15 Bandgap values of Co ₃ O ₄ NMs.	19
Figure S14 DRIFTS spectra of SA400, SP450, CH450, and HA450 (A) CO oxidation activity over time	
(carbonate formation), (B) CO oxidation activity upon heating (carbonate stability)	19
Figure S15 DRIFTS spectra of SP650, SP800, CH650, CH800, HA450, and HA800 (A) CO oxidation activity	
over time (carbonate formation), (B) CO oxidation activity upon heating (carbonate stability)	20

 Table S1 Used media composition for Spirulina platensis cultivation.

Components in Modified Zarrouk Medium	Concentration (mg/L)
NaHCO ₃	7000.0
NaNO ₃	3000.0
K ₂ HPO ₄	800.0
K ₂ SO ₄	400.0
MgSO ₄	240.0
$CaCl_2 \cdot 2 H_2O$	40.0
NaCl	1000.0
Na-EDTA-2 H ₂ O	100.0
КОН	1000.0
FeSO ₄ ·7 H ₂ O	10.0
EDTA	0.05000
H ₃ BO ₃	0.01140
ZnSO4·7 H ₂ O	0.02200
MnCl ₂ ·4 H ₂ O	0.00506
CoCl ₂ ·6 H ₂ O	0.00161
CuSO ₄ ·5 H ₂ O	0.00157
(NH ₄) ₆ Mo ₇ O ₂₄ ·4 H ₂ O	0.00110

Components in BBM Medium	Concentration (mg/L)
NaNO ₃	250.0
K ₂ HPO ₄	75.0
KH ₂ PO ₄	175.0
MgSO ₄ ·7 H ₂ O	75.0
CaCl ₂ ·2 H ₂ O	25.0
NaCl	25.0
EDTA	63.6
КОН	31.0
FeSO ₄ ·7 H ₂ O in H ₂ SO ₄ (10%)	5.0
ZnSO4·7 H ₂ O	8.82
CuSO4·5 H ₂ O	1.57
MnCl2·4 H ₂ O	1.44
MoO ₃	0.71
Co(NO ₃) ₂ ·6 H ₂ O	0.49

 Table S2 Used media composition for Chlorella vulgaris cultivation.

 Table S3 Used media composition for Haematococcus pluvialis cultivation.

Components in Modified OHM Medium	Concentration (mg/L)
KNO ₃	410.0
K ₂ HPO ₄	30.0
MgSO ₄ ·7 H ₂ O	246.5
CaCl ₂ ·2 H ₂ O	111.0
FeSO ₄ ·7 H ₂ O	3.0
MnCl₂·4 H2O	0.989
(NH ₄) ₆ Mo ₇ O ₂₄ ·4 H ₂ O	0.120
CuSO ₄ ·5 H ₂ O	0.012
CoCl ₂ ·6 H ₂ O	0.011
Se	0.005

Figure S1 Experimental set-up (A) ATR-FTIR, (B) DSC, (C) CO oxidation, (D) DRIFTS.

Figure S2 Optical microscopy images of the used microalgae: (A) Spirulina platensis, (B) Chlorella vulgaris, (C) Haematococcus pluvialis.

Table S4 Elemental analysis of the used microalgae extract.

	Phosphorous content (mg/L)	Potassium content (mg/L)
Spirulina platensis	1.070	100.0
Chlorella vulgaris	1.595	90.0
Haematococcus pluvialis	0.405	19.5

 Table S5 FTIR values of Spirulina platensis extract.

Spirulina platensis 1–3				
Wavenumber	Functional group	Characteristics		
3778, 3433, 3246, 3199	O-H and N-H	OH stretching vibrations of polysaccharides, proteins and water		
		NH stretching vibrations of proteins		
2072	CH ₂	Asymmetric stretching vibrations of C-H in CH ₃		
2572		group		
2945	CH ₂	Asymmetric stretching vibrations of C-H in CH ₂ group		
2007		Symmetric stretching vibrations of C-H in CH ₃		
2007		group		
2781	C-H	Stretching vibrations of cyclic aliphatic hydrocations		
2575, 2395, 2110	C=C and C=C	Stretching vibrations of conjugated systems		
1652, 1641	C=O	Amide I band		
1448, 1383	CH_3 and CH_2	C-H bending vibrations of lipids		
1408	CH_3 and CH_2	C-H bending vibrations		
1350, 1325	C-N	Amide III band		
1292	C-N	Stretching vibrations of CO-NH		
1190	C-0	Stretching vibrations of C-O-C in polysaccharides		
1086	C-O and PO ²⁻	Stretching vibrations in carbohydrates and stretching vibrations of phosphate group		
1048, 1039	C-0	Stretching vibrations of C-O-C of carbohydrates		
1009	CH ₂	Stretching vibrations of C-C, bending vibrations of a ring, rocking vibrations of CH ₂		

 Table S6 FTIR values of Chlorella vulgaris extract.

Chlorella vulgaris ^{2,3}				
Wavenumber	Functional group	Characteristics		
3295, 3232	O-H and N-H	OH stretching vibrations of polysaccharides, proteins and water		
		NH stretching vibrations of proteins		
2966	CH₃	Asymmetric stretching vibrations of C-H in CH ₃ group		
2926	CH ₂	Asymmetric stretching vibrations of C-H in CH_2 group of lipids and carbohydrates		
2883, 2835	CH ₃	Symmetric stretching vibrations of C-H in CH ₃ group		
1929	C=O or C=C	Bending vibrations		
1452, 1383	CH_3 and CH_2	C-H bending vibrations of lipids		
1326, 1270	C-N	Amide III band		
1088	C-O and PO ²⁻	Stretching vibrations in carbohydrates and stretching vibrations of phosphate group		
1028	C-0	Stretching vibrations of C-O-C of carbohydrates		

 Table S7 FTIR values of Haematococcus pluvialis extract.

Haematococcus pluvialis ^{2,3}

Wavenumber	Functional group	Characteristics
3773 3734	O-H and N-H	OH stretching vibrations of polysaccharides, proteins and water
5275, 5254		NH stretching vibrations of proteins
2972	CH₃	Asymmetric stretching vibrations of C-H in CH₃ group
2889	CH₃	Symmetric stretching vibrations of C-H in CH ₃ group
1927	C=O or C=C	Bending vibrations
1645	C=0	Amide I band
1448, 1414, 1383	CH_3 and CH_2	C-H bending vibrations of lipids
1327, 1275	C-N	Amide III band
1088	C-O and PO^{2-}	Stretching vibrations in carbohydrates and stretching vibrations of phosphate group
1039	C-0	Stretching vibrations of C-O-C of carbohydrates

Figure S3 XRD analysis of Co_3O_4 NMs: (A) wide angle, (B) selected magnified angle regions.

Table S8 D-spacing values of SA400 Co₃O₄ NMs.

SA400

Miller index (hkl)	Peak pos. [°2Th]	d- Spacing [Å]
(111)	19.067	4.651
(220)	31.400	2.847
(311)	36.915	2.433
(400)	44.876	2.018
(511)	59.435	1.554
(440)	65.310	1.428

Table S9 D-spacing values for SP450, SP650, and SP800 $\rm Co_3O_4$ NMs.

SP450		SP650		SP800		
Miller index (hkl)	Peak pos. [°2Th]	d- Spacing [Å]	Peak pos. [°2Th]	d- Spacing [Å]	Peak pos. [°2Th]	d- Spacing [Å]
(111)	19.088	4.646	19.108	4.641	19.449	4.560
(220)	31.340	2.852	31.461	2.841	31.842	2.808
(311)	36.915	2.433	36.975	2.429	37.396	2.403
(400)	44.916	2.016	44.957	2.015	45.277	2.001
(511)	59.415	1.554	59.495	1.552	59.816	1.545
(440)	65.251	1.429	65.331	1.427	65.652	1.421

Table S10 D-spacing values for CH450, CH650, and CH800 $\rm Co_3O_4$ NMs.

CH450		C	CH650	CI	H800	
Miller index (hkl)	Peak pos. [°2Th]	d- Spacing [Å]	Peak pos. [°2Th]	d- Spacing [Å]	Peak pos. [°2Th]	d- Spacing [Å]
(111)	19.128	4.636	19.148	4.631	-	-
(220)	31.420	2.845	31.421	2.845	-	-
(311)	36.975	2.429	36.975	2.429	37.637	2.388
(400)	44.936	2.016	44.937	2.016	-	-
(511)	59.455	1.553	59.515	1.552	60.057	1.539
(440)	65.290	1.428	65.351	1.427	65.932	1.416

HA450		F	IA650	H	A800	
Miller index (hkl)	Peak pos. [°2Th]	d- Spacing [Å]	Peak pos. [°2Th]	d- Spacing [Å]	Peak pos. [°2Th]	d- Spacing [Å]
(111)	18.927	4.685	-	-	-	-
(220)	31.340	2.852	31.681	2.822	-	-
(311)	36.895	2.434	37.256	2.412	37.557	2.393
(400)	44.956	2.015	45.197	2.005	-	-
(511)	59.395	1.555	59.776	1.546	60.017	1.540
(440)	65.290	1.428	65.632	1.421	65.973	1.415

Table S11 D-spacing values for HA450, HA650, and HA800 Co_3O_4 NMs.

Figure S4 Influence of calcination temperature: (A) crystallite size, (B) lattice parameter and volume, (C) surface area.

Figure S5 BET isotherms for commercial and synthesized Co_3O_4 NMs.

Figure S6 TEM and SAED studies of Co_3O_4 NMs: (A-B) SA400, (C-D) SP450, (E-F) CH450, (G-H) HA450.

Figure S7 Raw EELS spectra of the commercial and synthesized Co₃O₄ NMs: (A) SA, (B) SP450, (C) CH450, (D) HA450.

Figure S8 UATR-FTIR spectra of Co₃O₄ NMs.

Figure S9 H₂-TPR of Co₃O₄ NMs: (A) SP400, (B) SP450, SP650, SP800, (C) CH450, CH650, CH800, (D) HA450, HA6550, HA800.

Sample	H ₂ -TPR	O ₂ -TPD
SA400	278, 333	97, 205, 253, 314
SP450	425	130, 190, 272, 381, 428
SP650	444	111, 397, 481
SP800	490, 560	111, 471
CH450	413	107, 203, 362, 423
CH650	440	89, 211, 293, 440
CH800	540	123, 474
HA450	329, 589	105, 267
HA650	436	130, 282
HA800	436	138, 325

Table S12 Detected peaks in H₂-TPR and O₂-TPD (°C) for Co₃O₄ NMs.

Sample	5% CO	5% CO + 5% O ₂	5% O ₂	5% CO + 5% O ₂	5% CO
SA400	-14.4	-12.3	-3.6	-10.6	-6.3
SP450	-0.4	-0.3	-0.2	-0.2	-0.2
CH450	-2.4	-1.3	-0.4	-0.3	-0.3
HA450	-6.5	-2.6	-1.0	-1.0	-0.7

Table S13 DSC activation energy values (J/g) for SA, SP450, CH450, and HA450 Co_3O_4 NMs.

Figure S10 DSC measurements for SA400 Co₃O₄ NMs.

Gas concentration (%)	Cycle	СО	CO + O ₂	O ₂	CO + O ₂	СО
1	1 st	-15.8	-178.0	-64.2	-133.0	-68.6
Ţ	2 nd	-14.8	-120.8	-47.5	-80.2	-37.7
5	1 st	-14.4	-12.3	-3.6	-10.6	-6.3
	2 nd	-0.9	-0.8	-0.3	-0.7	-0.3
10	1 st	-17.3	-1356.8	-338.7	-670.7	-194.0
10	2 nd	-14.8	-204.9	-52.8	-53.2	-12.1

Table S14 DCS activation energy values (J/g) for SA400 $\rm Co_3O_4$ NMs.

Figure S11 CO oxidation activity comparison between Co₃O₄ NMs calcined at different temperatures: (A) SP450, CH450, HA450, (B) SP650, CH650, HA650, (C) SP800, CH800, HA800.

Figure S12 CO oxidation activity decrease with time of Co₃O₄ NMs: (A), SA400, (B) SP, (C) CH, (D) HA.

Figure S13 Tauc plots for commercial and synthesized Co₃O₄ NMs.

Table S15	Bandgap	values of	² Co ₃ O ₄	NMs.
-----------	---------	-----------	---	------

	SA400	SP450	SP650	SP800	CH450	CH650	CH800	HA450	HA650	HA800
Bandgap (eV)	1.06	1.06	1.00	0.94	1.07	1.11	0.96	1.12	1.17	1.02

Figure S14 DRIFTS spectra of SA400, SP450, CH450, and HA450: (A) CO oxidation activity over time (carbonate formation), (B) CO oxidation activity upon heating (carbonate stability).

Figure S15 DRIFTS spectra of SP650, SP800, CH650, CH800, HA450, and HA800: (A) CO oxidation activity over time (carbonate formation), (B) CO oxidation activity upon heating (carbonate stability).

References

- 1 I. Michalak, M. Mironiuk, K. Godlewska, J. Trynda and K. Marycz, *Process Biochem.*, 2020, **88**, 129–137.
- 2 M. Mecozzi, M. Pietroletti, M. Scarpiniti, R. Acquistucci and M. E. Conti, *Environ. Monit. Assess.*, 2012, **184**, 6025–6036.
- A. Poonprasartporn and K. L. A. Chan, *Biochim. Biophys. Acta Mol. Cell Res.*, 2021, **1868**, 119024.