iScience, Volume 27

Supplemental information

What happens when the lights

are left on? Transcriptomic and phenotypic

habituation to light pollution

Valentina J. Alaasam, Cassandra Hui, Johnathan Lomas, Stephen M. Ferguson, Yong Zhang, Won Cheol Yim, and Jenny Q. Ouyang

Supplementary materials for "What happens when the lights are left on? Transcriptomic and phenotypic habituation to light pollution"

Authors: Alaasam VJ, Hui C, Lomas J, Ferguson SM, Zhang Y, Cheol Yim W, Ouyang JQ

Table S1: Generalized linear mixed-effect model to test whether behavioral responses of naïve birds to ALAN (count of active minutes per night) depend on duration of activity / time of year animals were exposed (stage). There was no significant effect of sex, so it was dropped from the final model. Fixed effects include day (integer) and the interaction of ALAN (factor) and stage (factor), with individual as a random effect to account for repeated measures and a Poisson distribution.

Predictor	IRR ¹	SE	CI(95%)	p				
Day	1.00	0.002	1.00, 1.00	0.433				
ALAN	2.31	0.919	1.06, 5.04	0.035				
ALAN * stage								
0 * 3	0.87	0.145	0.63, 1.21	0.407				
1*3	1.27	0.539	0.55, 2.92	0.579				
¹ IRR = Incidence Rate Ratio								

Table S2: Linear mixed-effect models to test whether oxidative responses of naïve birds to ALAN depend on duration of captivity or time of year animals were exposed. Fixed effects include sex (factor), ALAN treatment group (factor) and day (integer), with individual bird as a random effect to account for repeated measures. There was no significant interaction of ALAN and day, so the interactive term was dropped from the final model. Results of models using a combined stress index as well as individual biomarkers (oxy absorbance and dROMs).

	Stress Index			Oxy Absorbance			dROMs					
Predictor	β	SE	CI (95%)	р	β	SE	CI (95%)	р	β	SE	CI (95%)	p
Sex	0.79	0.342	0.07, 1.5	0.033	-33	19.6	-73, 8.1	0.110	0.51	0.815	-1.2, 2.2	0.539
Day	-0.02	0.017	-0.06, 0.01	0.166	0.19	0.635	-1.1, 1.5	0.768	-0.06	0.039	-0.14, 0.02	0.134
ALAN	-0.09	0.288	-0.67, 0.48	0.748	-2.0	10.7	-24, 19	0.850	-0.25	0.657	-1.6, 1.1	0.704

Table S3. Gene annotation analysis of down- and upregulated genes for 1) naïve ALAN exposure compared to acclimation period (pre-ALAN); 2) Recovery 11 weeks post-exposure compared to during naïve exposures, and 3) Secondary re-exposure compared to naïve exposure. Gene annotation analysis conducted in Metascape [4]. Only top 20 results are shown, and all *q*-values of less than 0.05 are bolded. Full output available on GitHub (https://github.com/valaasam)

	Direction	Category	Name	# of	р	q
NT 11	D			Genes	- 0.001	- 0.001
Naïve	Down-	Reactome Gene Sets	Cellular response to stress	15	< 0.001	< 0.001
Exposure	regulated		Neddylation	8	< 0.001	0.004
			Golgi Associated Vesicle Biogenesis	4	< 0.001	0.044
			Oxygen-dependent proline hydroxylation of	4	< 0.001	0.074
			Hypoxia-inducible Factor Alpha			
		GO Biological Processes	Hemopolesis	11	< 0.001	0.014
			Response to peptide	8	< 0.001	0.089
			Cellular response to decreased oxygen	5	< 0.001	0.089
			levels		01001	
Recovery	Down-	KEGG Pathway	Platelet activation	19	< 0.001	< 0.001
	regulated		Focal adhesion	19	< 0.001	< 0.001
			Leukocyte transendothelial migration	11	< 0.001	< 0.001
			Thyroid hormone signaling	11	< 0.001	< 0.001
		WikiPathways	VEGFA-VEGFR2 signaling	22	< 0.001	< 0.001
			Myometrial relaxation and contraction	11	< 0.001	< 0.001
		Canonical Pathways	PID FAK	9	< 0.001	< 0.001
		Reactome Gene Sets	Muscle contraction	14	< 0.001	< 0.001
		GO Biological Processes	Response to wounding	29	< 0.001	< 0.001
			Actin cytoskeleton organization	28	< 0.001	< 0.001
			Positive regulation of cell migration	24	< 0.001	< 0.001
			Regulation of vesicle-mediated transport	23	< 0.001	< 0.001
			Cellular response to nitrogen compound	23	< 0.001	< 0.001
			Regulation of kinase activity	23	< 0.001	< 0.001
			Circulatory system process	21	< 0.001	< 0.001
			Cellular response to organic cyclic	19		< 0.001
			compound		< 0.001	00001
			Regulation of cell-substrate junction	10		< 0.001
			organization	10	< 0.001	0.001
			Actomyosin structure organization	10	< 0.001	< 0.001
			Release of sequestered calcium ion into	8	. 0.001	< 0.001
			cytosol	0	< 0.001	• •••••
			Cell-substrate junction assembly	7	< 0.001	< 0.001
	Un-	WikiPathways	Translation factors	'	< 0.001	< 0.001
	regulated	Reactome Gene Sets	Asparagine N-linked glycosylation	9	< 0.001	0.023
	l'éguiatea		Hypusine synthesis from eIF5A-lysine	3	< 0.001	< 0.020
		GO Biological Processes	Translation	33	< 0.001	< 0.001
			Endomembrane system organization	17	< 0.001	< 0.001
			Protein catabolic process	16	< 0.001	0.001
			Ribosome biogenesis	13	< 0.001	< 0.004
			Regulation of cellular amide metabolic	13		0.001
			process	12	< 0.001	0.033
			Process Positive regulation of organalle organization	11	< 0.001	0.050
			A archia electron transport chain	10	< 0.001	0.038
			Collular component disassembly	10	< 0.001	0.001
			Centular component disassembly	10	< 0.001	0.006

]	Response to oxidative stress	9	< 0.001	0.074
			Mitochondrial gene expression	8	< 0.001	0.001
			Regulation of proteolysis involved in	8	< 0.001	0.001
			protein catabolic process	Ŭ	0.001	0.017
			Protein localization to organelle	7	< 0.001	0.001
			Vacuole organization	7	< 0.001	0.022
			Protein folding	7	< 0.001	0.068
			Regulation of ubiquitin protein ligase	4	< 0.001	0.003
			activity		0.001	0.000
			tRNA threonylcarbamoyladenosine	3	< 0.001	0.033
			metabolic process			
		CORUM	Parvulin-associated pre-rRNP complex	3	< 0.001	0.009
Re-	Down-	KEGG Pathway	Regulation of actin cytoskeleton	21	< 0.001	< 0.001
exposure	regulated		Platelet activation	17	< 0.001	< 0.001
1			Leukocyte transendothelial migration	14	< 0.001	< 0.001
			Oxytocin signaling pathway	14	< 0.001	< 0.001
		WikiPathways	VEGFA-VEGFR2 signaling pathway	22	< 0.001	< 0.001
			Myometrial relaxation and contraction	16	< 0.001	< 0.001
			pathways			
		Reactome Gene Sets	Hemostasis	35	< 0.001	< 0.001
			GPCR downstream signaling	25	< 0.001	< 0.001
			Cell-Cell communication	13	< 0.001	< 0.001
			Smooth Muscle Contraction	8	< 0.001	< 0.001
		GO Biological Processes	Actin filament-based process	35	< 0.001	< 0.001
			Regulation of body fluid levels	24	< 0.001	< 0.001
			Regulation of vesicle-mediated transport	24	< 0.001	< 0.001
			Positive regulation of cell migration	24	< 0.001	< 0.001
			Cell morphogenesis	23	< 0.001	< 0.001
			Regulation of anatomical structure size	21	< 0.001	< 0.001
			Regulation of GTPase activity	21	< 0.001	< 0.001
			Regulation of small GTPase mediated	19	< 0.001	< 0.001
			signal transduction			
			Regulation of cell morphogenesis	17	< 0.001	< 0.001
			Small GTPase mediated signal transduction	15	< 0.001	< 0.001
	Up-	Canonical Pathways	PID Telomerase Pathway	5	< 0.001	0.012
	regulated	GO Biological Processes	Immune system development	15	< 0.001	0.003
			Histone modification	11	< 0.001	0.003
			Neural tube closure	6	< 0.001	0.006
			Chaperone cofactor-dependent protein	4	< 0.001	0.012
			Refolding			
			Negative regulation of macroautophagy	4	< 0.001	0.016
			Nucleocytoplasmic transport	7	< 0.001	0.046
			Heterochromatin formation	4	< 0.001	0.052
			Protein autophosphorylation	6	< 0.001	0.071
			Protein hydroxylation	3	< 0.001	0.091
			Nucleus localization	3	< 0.001	0.091
			Regulation of cell cycle process	11	< 0.001	0.100
			Regulation of dephosphorylation	5	< 0.001	0.100

Figure S1. Telomere lengths did not differ between ALAN and control groups at either timepoint (A). Males consistently had shorter telomeres that females across timepoints (B). Individual changes in telomere length over time were all positive, indicating a shortening of telomeres over time, but there was no difference in degree of attrition between groups (C).

Figure S2. Effect of ALAN on activity, shown for treatment groups. **(A).** Boxplot version of Figure 2 in main text, showing raw data. Nighttime (top) and daytime (bottom) activity, measured as total minutes active in the night and/or day, across stages of the experiment. Stage "A" represents acclimation period. Note differences in y axis between daytime and nighttime plots. **(B).** A closer look at individual responses to repeated ALAN exposure. Here we show individual birds (n=6) in our experimental group that were exposed to ALAN in both stages 1 and 3. Points represent individual averages (across days of exposure), and error bars show standard errors. Stage 2 here was omitted, to illustrate the change in magnitude of response between first and second exposure (*i.e.*, habituation).

Figure S3. Raw activity data over time. **(A).** In stage 1 (8 weeks), we found that for birds under ALAN, nighttime activity increases slightly over time (day), while birds under dark nights showed consistently low nighttime activity. Points represent raw counts of minutes active per night for all birds (n=11 per ALAN and Dark groups). **(B).** Daytime activity decreased across the duration of experiment, regardless of ALAN exposure.

Figure S4. Volcano plots representing differentially expressed genes for comparisons between treatment groups. **(A-C)** Pairwise comparisons between timepoints of our control group, maintained in dark-night conditions for the duration of the experiment, performed to validate the impact of ALAN treatment. **(D-H)** Pairwise comparisons of various groups exposed to ALAN (see Figure 1). "Acclimation" represents birds under dark-night conditions, with no previous ALAN exposure. "Single" represents naïve birds during first ALAN exposures. "Recovery" represents birds returned to dark-night conditions, 8 weeks *after* first ALAN exposures. "Reexposure" represents birds during secondary exposures to ALAN.

Supplementary References

 Cawthon RM (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 37:e21–e21. https://doi.org/10.1093/nar/gkn1027

- 2. Criscuolo F, Bize P, Nasir L, et al (2009) Real-time quantitative PCR assay for measurement of avian telomeres. J Avian Biol 40:342–347. https://doi.org/10.1111/j.1600-048X.2008.04623.x
- 3. Morinha F, Magalhães P, Blanco G (2020) Different qPCR master mixes influence telomere primer binding within and between bird species. J Avian Biol 51:
- 4. Zhou Y, Zhou B, Pache L, et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523. https://doi.org/10.1038/s41467-019-09234-6