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Transmissible infections such as those caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) spread according to who contacts whom. Therefore, many epidemic models incorporate contact patterns
through contact matrices. Contact matrices can be generated from social contact survey data. However, the
resulting matrices are often imbalanced, such that the total number of contacts reported by group A with group
B do not match those reported by group B with group A. We examined the theoretical inf luence of imbalanced
contact matrices on the estimated basic reproduction number (R0). We then explored how imbalanced matrices
may bias model-based epidemic projections using an illustrative simulation model of SARS-CoV-2 with 2 age
groups (<15 and ≥15 years). Models with imbalanced matrices underestimated the initial spread of SARS-
CoV-2, had later time to peak incidence, and had smaller peak incidence. Imbalanced matrices also inf luenced
cumulative infections observed per age group, as well as the estimated impact of an age-specific vaccination
strategy. Stratified transmission models that do not consider contact balancing may generate biased projections
of epidemic trajectory and the impact of targeted public health interventions. Therefore, modeling studies should
implement and report methods used to balance contact matrices for stratified transmission models.

contact balance; contact mixing; contact reciprocity; infectious disease modeling; SARS-CoV-2; vaccine policy

Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SEIR, susceptible-exposed-infectious-recovered.

Contact patterns (i.e., who contacts whom) are a
fundamental component of infectious disease transmission
dynamics. Such patterns, and the role of highly connected
subgroups, can determine the size of epidemics, the
incidence of infection among subgroups of a population,
and whether epidemics emerge and persist (1). Mathematical
models are widely used to study transmission dynamics and
evaluate public health interventions; therefore, such models
are often structured to consider population and contact
heterogeneity (2–6).

Models with population and contact heterogeneity require
estimates of contact within and between subgroups, repre-
sented through a contact matrix. Data to generate contact
matrices are often obtained from contact diaries and surveys,
with the POLYMOD social contact study (7) among the
most commonly used data sources for models of respiratory
pathogens (2–5). POLYMOD collected data on daily age-
stratified social contacts of almost 8,000 individuals across

8 European countries. To enable broader application of
POLYMOD data, several techniques were then developed to
project contact matrices to other countries (8–10). For exam-
ple, Prem et al. (8, 9) used a Bayesian hierarchical model
with country-specific data on population demographic struc-
ture, school enrollment, workforce participation, and house-
hold makeup to project POLYMOD contact matrices to 177
different countries around the world.

When using empirical contact data to structure the under-
lying contact patterns in a population, analysts must consider
the balanced (i.e., reciprocal) nature of measured contacts
(11, 12). In reality, the total number of contacts that indi-
viduals in subgroup i form with individuals in subgroup
j must be equal to the total number of contacts that indi-
viduals in subgroup j form with individuals in subgroup i,
such that:

CijNi = CjiNj. (1)
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where Cij is the number of contacts an individual in sub-
group i forms with individuals in subgroup j per day; Ni
is the size of subgroup i; and likewise for Cji and Nj.

Here “measured contacts,” which may not always lead to
transmission, are distinguished from “effective contacts,”
which do lead to transmission (by definition). The measured
contact matrix (“who contacts whom”) must be balanced,
but the transmission matrix (“who infects whom”) is often
asymmetrical (13). This is because effective contacts that
lead to transmission are a function of measured contacts
and biological probabilities of transmission per contact (i.e.,
infectiousness and susceptibility, e.g., modified by vaccina-
tion). However, perfect reciprocity is rarely observed in mea-
sured contacts from survey data. Imbalances in empirical
contact data often arise due to measurement error in survey
responses (e.g., recall bias or social desirability bias). How-
ever, even when measurement error is absent, imbalances
can arise due to selection bias (e.g., differential sampling
of subgroups across the network). That is, contact surveys
rarely sample from closed, perfectly defined networks, and
sampling frames are seldom designed to reflect network
structures (11, 12).

Numerous mathematical transmission models have used
contact data from POLYMOD and Prem et al., but many lack
description of methods applied to handle the imbalanced
(i.e., nonreciprocal) nature of these matrices (6, 14–
16). For example, in some early models examining age-
based prioritization of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) vaccination, there was either
no mention of whether or not measured contacts were
balanced or how they were balanced (6, 14–16). As such, it
is not always clear if and when age-structured transmission
models used balanced or imbalanced contact patterns.
Moreover, how imbalanced contact matrices affect modeling
projections has yet to be quantified.

We sought to examine how imbalances in measured con-
tact matrices influence infection transmission dynamics.
First, we examined the theoretical influence of imbalanced
contact matrices on the estimated basic reproduction number
(R0). We then conducted an illustrative simulation study,
using a SARS-CoV-2 age-stratified compartmental model as
an example, to explore the influence of imbalanced contact
matrices on the temporal epidemic dynamics, cumulative
infections among age groups, and potential impact of age-
specific vaccination strategies.

METHODS

Study design

We conducted an analytical and simulation (mathemati-
cal modeling) study to examine 3 key characteristics of a
model’s underlying transmission dynamics that can be mod-
ified by a network structure: the basic reproduction number,
the temporal pattern of an epidemic, and the epidemic size.
First, we compared the basic reproduction number R0 of
an epidemic in a population stratified into 2 age groups
(<15 and ≥15 years) when parameterized with imbalanced
versus balanced contact matrices across all 177 demographic
settings studied by Prem et al. (8). We used contact matrices

from Prem et al. to inform parametrization because of their
use in most SARS-CoV-2 transmission models to date.

Next, we conducted a theoretical SARS-CoV-2 simulation
study using an SEIR (susceptible-exposed-infectious-
recovered) mathematical model in 3 demographic settings
where imbalanced contacts reported by persons aged ≥15
with those aged <15 were 1) larger than (Singapore), 2)
equal to (Luxembourg), and 3) less than (Gambia) balanced
contacts between those aged ≥15 and those aged <15.
We compared the timing and magnitude of peak infection
incidence, cumulative infections after 1 year of seeding,
and cumulative infections averted in the context of age-
specific vaccination strategies after 1 year of seeding,
when models were parameterized with imbalanced versus
balanced matrices.

Age-stratified social contact data

We obtained age-stratified social contact matrices and
population data from Prem et al. (8). Raw matrices were
imbalanced and stratified into 16 age groups, with each
matrix element, Cij, representing the mean number of con-
tacts that a person in age group i reported with a person in age
group j per day. To simplify our analysis, we transformed the
age structure of the matrices into 2 age groups: individuals
less than 15 years of age, and those aged 15 or older. Imbal-
anced contact matrices for these age groups were derived
by calculating the population-weighted average contacts per
person per day of contributing age groups (e.g., ages 0–4,
5–9, and 10–14 years for the new age group of <15 years)
from the raw, imbalanced, contact matrices from Prem et al.

Derivation of balanced social contact matrices

As has been done previously (10, 17, 18), we estimated the
balanced contacts between individuals in age groups i and
j (C′

ij) per day by averaging reported contacts from Prem as
follows:

C′
ij = 1

2Ni

(
CijNi + CjiNj

)
. (2)

Derivation of R0

We used methodology from Diekmann et al. (19) to cal-
culate R0. In brief, R0 is the dominant eigenvalue of the next
generation matrix (i.e., the number of secondary infectious
persons that result in each age group). In a population
divided into 2 age groups, the dominant eigenvalue is the
maximum solution of:

(
R0,ii − R0

) (
R0,jj − R0

) − R0,ijR0,ji = 0, (3)

where i and j denote the 2 age groups (i.e., <15 and ≥15
years of age), and R0,ij is the number of secondary infectious
individuals in age group i that result from contact with an
infectious person in age group j in a completely susceptible
population, calculated as:

R0,ij = βCijNiD

Nj
, (4)
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Table 1. SEIR Transmission Model Parameters

Parameter Symbol Value
Source: First Author, Year

(Reference No.)

Probability of transmission per contact β 0.015 Davies, 2020 (26)

Contact rate per day Cij Supplementary dataa Prem, 2021 (8)

Duration of pre-infectious (latent) period 1/Ω 5.5 days Xin, 2022 (27), Cheng, 2021 (28)

Duration of infectious period 1/γ 10 days Walsh, 2020 (29)

Population size Ni Supplementary dataa Prem, 2021 (8)

Abbreviation: SEIR, susceptible-exposed-infectious-recovered.
a Parameter varies by age group.

where β is the probability of transmission of an infectious
disease upon contact, and D is the duration of infectiousness.
We calculated R0 with imbalanced and balanced matrices
from 177 demographic settings studied in Prem et al. (8). We
then calculated a relative R0 (RR0) under imbalanced versus
balanced conditions where:

RR0 = Rimbalanced
0

Rbalanced
0

. (5)

We assumed the probability of transmission and the dura-
tion of infectiousness was constant across age groups (and
therefore had no impact on the relative reproduction num-
ber); thus, our estimate of the influence of imbalanced
matrices is independent of a specific infectious disease.

SEIR transmission model

For our simulations, we used a deterministic, compart-
mental transmission model of SARS-CoV-2 using a simpli-
fied SEIR system. Susceptible (S) individuals transitioned to
an exposed health state (E) via a force of infection, defined
by a probability of contact and probability of transmission
per contact with a person in the infectious (I) health state.
Individuals in the exposed health state became infectious
after a latent period. After an average period of infectious-
ness, individuals in the infectious health state moved to
the recovered health state (R), where they could not be
reinfected. Model equations and details are outlined in Web
Appendix 1 (supplementary equations; available at https://
doi.org/10.1093/aje/kwad185). Table 1 summarizes model
parameter values.

We made 3 key assumptions to simplify our model and
focus the analysis on the influence of imbalanced matrices.
First, we assumed the population size was fixed (i.e., the
model simulates a closed system with no births or deaths)
to avoid changes in the probability of contact over time.
Second, we assumed that there were no interventions to mit-
igate the spread of SARS-CoV-2 (e.g., isolation of infected
individuals, reduction in contacts in response to increases
in infection rates) as we were interested in isolating the
effect of imbalanced matrices rather than infection preven-
tion and control strategies. Finally, we assumed the probabil-
ity of transmission of, and duration of infectiousness with,

SARS-CoV-2 was fixed across age groups to estimate the
impact of imbalanced matrices independent of infection
properties by age.

Simulation of SARS-CoV-2 transmission

We simulated SARS-CoV-2 transmission in 3 demo-
graphic settings from Prem et al. (8), where imbalanced
contacts of ages ≥15 years reported with those of <15 years
were: larger than (Singapore), equal to (Luxembourg), and
less than (Gambia) balanced contacts between those aged
≥15 and those aged <15 (Web Figure 1). Models were
seeded with 1 individual in the infectious state per age group
for all simulations. We then compared the magnitude and
time to peak incidence, and the percent difference in cumu-
lative infections 1 year after seeding, when models were
parameterized with imbalanced versus balanced matrices.

Transmission impact of a targeted public health
intervention

To explore the influence of imbalanced matrices on the
impact of prioritized public health interventions, we sim-
ulated 2 age-specific SARS-CoV-2 vaccination scenarios
in all models: one in which vaccines were administered
to individuals of <15 years, and another where vaccines
were administered to individuals ≥15. We assumed that 50%
of the vaccinated age group were immune prior to seed-
ing, and these individuals could not be infected (i.e., were
permanently immune). We compared cumulative infections
overall and per age group in the presence and absence of
vaccination over 1 year, to calculate cumulative infections
averted from vaccination. Then, we calculated the percent
difference in cumulative infections averted between models
parameterized with imbalanced versus balanced matrices.

Validation analyses

To validate robustness of findings, we conducted 2
additional analyses. First, we assessed how imbalanced
matrices affected R0 in a population stratified into different
age groups: individuals younger than 40 years of age, and
40 or older. Next, we assessed how imbalanced matrices
affected R0 when biases in raw contact matrices were
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opposite to original observations from Prem et al. (8). For
example, if reported contacts between those aged <15 and
≥15 were larger than balanced contacts between those aged
<15 and ≥15 (e.g., Gambia), we forced those aged <15 to
underestimate contacts with those aged ≥15. We conducted
this analysis to assess how systematic bias in contact patterns
from Prem may have influenced our results.

RESULTS

Imbalance in contact matrices by demographic setting

In comparison with balanced matrices, imbalanced matri-
ces from countries with older populations overestimated
total contacts reported by those ≥15 years of age with those
<15, and underestimated total contacts reported by those
who were <15 with those who were ≥15 (Web Figure
1). The opposite pattern was observed in countries with
younger populations, where contacts reported by those aged
<15 with those age ≥15 were overestimated and contacts
reported by those aged ≥15 with those aged <15 were
underestimated (Web Figure 1). For example, in Singapore
(median age, 42.2 years) the number of imbalanced contacts
reported by those aged ≥15 with those aged <15 were
1.5 times the balanced contacts between those aged ≥15
and those aged <15, whereas in Gambia (median age, 17.8
years), imbalanced contacts reported by those aged ≥15
with those aged <15 were 0.45 times the balanced contacts
between those aged ≥15 and those aged <15.

Influence of imbalanced contact matrix on R0 and
epidemic trajectory

In comparison with models with balanced matrices, mod-
els with imbalanced matrices consistently underestimated
R0 (Figure 1, Web Figure 2, Web Figure 3). For example,
R0 was 5.7% and 3.1% smaller in Gambia and Singapore,
respectively, when matrices were imbalanced versus bal-
anced. Models with imbalanced matrices also underesti-
mated the magnitude of, and had delayed time to, peak
incidence of SARS-CoV-2 (Web Figure 4). Peak incidence
was most dampened and delayed among the age group that
underestimated their contacts (i.e., ages ≥15 in Gambia and
<15 in Singapore).

When imbalanced and balanced contacts between those
aged ≥15 and those aged <15 were similar, there was
minimal influence on R0 and on the epidemic trajectory
of SARS-CoV-2. For example, in Luxembourg imbalanced
contacts reported by those aged ≥15 with those aged <15
were 0.99 times the balanced contacts; therefore, R0 was
nearly the same under imbalanced and balanced conditions
(difference in R0 = 0.0003%).

Influence of imbalanced contact matrix on cumulative
infections after 1 year of transmission

Models with imbalanced contacts consistently over-
estimated cumulative infections in the age group that
overestimated their contacts, and underestimated cumulative
infections in the age group that underestimated their contacts

(Figure 2). For example, cumulative infections were 3.2%
larger among those aged <15 years and 6.7% smaller among
those aged ≥15 in imbalanced versus balanced models in
Gambia, whereas cumulative infections were 1.6% larger
among those aged ≥15 and 10.2% smaller among those
who were <15 in imbalanced versus balanced models in
Singapore.

Influence of imbalanced contact matrix on age-specific
vaccination strategies

Imbalanced matrices also directly and indirectly biased
projected infections averted from age-specific SARS-CoV-
2 vaccination strategies (Figure 3). For example, when
vaccines were prioritized for individuals younger than
15, imbalanced models underestimated infections averted
among those aged ≥15 in Gambia (percent difference =
−24.4) and overestimated infections averted among those
aged ≥15 in Singapore (percent difference = 38.8). When
vaccines were prioritized to individuals 15 or older,
imbalanced models overestimated infections averted among
those aged <15 in Gambia (percent difference = 20.2) and
Singapore (percent difference = 25.5).

Validation analyses

Our results were robust to changes in stratification of age
groups (Web Figure 5A). For example, imbalanced contacts
reported by persons aged ≥40 years with those aged <40
were 1.4 and 0.38 times the balanced contacts reported by
persons aged ≥40 years with those aged <40 in Singapore
and Gambia, respectively. In these 2 settings, models with
imbalanced matrices underestimated R0 by 2.5% and 5.4%
respectively.

Results were also robust to assumptions regarding which
age group over- or underestimated their contacts (Web
Figure 5B). For example, when we forced imbalanced
contacts reported by those 15 years or older with those
aged <15 to be 0.48 and 1.6 times the balanced contacts
between those aged ≥15 and aged <15 in Singapore and
Gambia, respectively (i.e., opposite the original imbalance
direction observed in Prem et al.), models with imbalanced
matrices still underestimated R0 by 3.0% and 5.8%,
respectively.

DISCUSSION

Using a combination of analytical and simulation
methods, we found that the use of imbalanced contact
matrices reshaped the underlying transmission dynamics
of SARS-CoV-2. Models with imbalanced matrices con-
sistently underestimated R0, leading to: 1) biased time
to, and magnitude of, peak infection incidence, 2) biased
estimates of subgroup-specific cumulative infections, and
3) biased impact of age-specific SARS-CoV-2 vaccination
strategies. Biases resulting from imbalanced matrices
persisted as we varied age group definitions, and as we
transformed assumptions regarding which age group over-
or underestimated their contacts per demographic setting.

Am J Epidemiol. 2023;00(00):1–9
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matrices using data from Prem et al. (8, 9). bal, balanced; C, population contact rate; o, “old” (≥15 years); R0, basic reproduction number;
y, “young” (<15 years).

The finding that R0 is always smaller when models are
parameterized with imbalanced versus balanced matrices
can be explained mathematically. In simplifying equation 3,
we see that R0 is monotonically related to the product of R0,ij
and R0,ji (proof provided in Web Appendix 1; supplementary
equations S5 to S8). We can also see that R0,ij and R0,ji
are proportionate to CijNi and CjiNj, respectively (i.e., equa-
tion 4). Following the isoperimetric theorem for rectangles,
given a fixed sum of population contacts between age groups
i and j (i.e., CijNi + CjiNj), the product of CijNi and CjiNj
will be maximized when CijNi = CjiNj (i.e., equation 1;
conditions for balanced mixing). Since we assumed all other
parameters in equation 4 were fixed across age groups,
and the sum of population contacts was constant between
imbalanced and balanced matrices (i.e., equation 2), the
product of R0,ij and R0,ji will maximize when CijNi and CjiNj
are equal. Therefore, under our model and assumptions, R0
will always be largest under balanced conditions.

It may also be intuitive that biases in cumulative infec-
tions per age group are related to biases in contact patterns
from imbalanced matrices. The number of infections among
subgroup i is dependent on the “force of infection” (λi):

λi = βCiiIi

Ni
+ βCijIj

Nj
. (6)

As Cij increases or decreases, the force of infection among
subgroup i will also increase or decrease, as will the number
of infections observed within the subgroup.

Given that infection transmission dynamics were biased
by imbalanced contact patterns, it was expected that they
would also bias impact of subgroup-specific public health
interventions. This is because biases in contact patterns
influence both risk of infection acquisition and transmission

potential once infected. That is, if a model underestimates
contacts that subgroup i makes with subgroup j, the model
also underestimates the transmission potential of subgroup
j to subgroup i. This was most notable when vaccine was
administered to 50% of the population aged <15 years,
where models that underestimated transmission potential of
those aged <15 underestimated infections averted among
those aged ≥15 (i.e., Gambia), and models that overes-
timated transmission potential of those aged <15 over-
estimated infections averted among those aged ≥15 (i.e.,
Singapore). Counterintuitively, when vaccine was adminis-
tered to 50% of the population aged ≥15, imbalanced mod-
els overestimated infections averted among those aged <15
in both Gambia and Singapore (i.e., regardless of direction
of bias in transmission potential of those aged ≥15). We
hypothesize that imbalanced models from Singapore over-
estimated infections averted among those aged <15 (despite
underestimating transmission potential of those aged ≥15)
because of indirect bias in infection transmission dynam-
ics. In addition to underestimating transmission potential
of those aged ≥15, imbalanced models from Singapore
overestimated transmission potential of those aged <15.
Therefore, in the absence of vaccination, there were more
infections observed among persons who were ≥15 years of
age in imbalanced models from Singapore. This provided
more opportunity for vaccination to stop transmission of
infection from those aged ≥15 to those aged <15.

To our knowledge, this is the first study to quantitatively
assess bias associated with imbalanced contact matrices
on compartmental models of infectious diseases. Our work
builds on a previous study by Arregui et al. (10) that demon-
strated that the way in which contact matrices are balanced
and projected to new demographic settings can influence the
epidemic trajectory observed. The issue of nonreciprocity
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Figure 2. Imbalanced (imbal) contact matrices bias estimates of cumulative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infections overall and among subgroups. Direction and magnitude of imbalance in synthetic contact matrices from Gambia (A), Luxembourg (B),
and Singapore (C). Percent difference in cumulative infections overall and per age group from models parameterized with imbalanced versus
balanced (bal) contact matrices in Gambia (D), Luxembourg (E), and Singapore (F). One infected individual was seeded per age group per
model. Cumulative infections were compared 1 year after seeding in a completely susceptible and closed population in the absence of public
health interventions. Contact matrices from Prem et al. (8, 9).

has been well-recognized in survey data on sexual part-
nerships, where various methods have been developed to
balance sexual partnerships, and balancing is an established
component of the modeling of sexually transmitted infec-
tions (11, 20, 21). However, the importance of balanced
contacts has been less discussed, and not yet established, as
part of standard practice and reporting of transmission mod-
eling studies with non–sexually transmitted infections (22).
Given that imbalanced matrices can create error in model
projections, and models with population heterogeneity are
increasingly used to inform public health decisions (23–25),
modelers should ensure and report on balancing of their
contact matrices.

Limitations

The simplicity of our analytical study and simulation
model allowed us to quantitatively assess and interpret

the influence of imbalanced versus balanced matrices
irrespective of other infection transmission parameters. As
such, important sources of variability in transmission risk
that lead to asymmetry in effective contact matrices could
potentially amplify or dampen the influence of imbalanced
measured contact matrices, and would benefit from further
examination. Our results may also vary when studied in
open populations (with births, deaths, and/or movement of
individuals) or when considering infection prevention and
control measures such as school closures or isolation proce-
dures. Bias may also vary when considering heterogeneity
in biological characteristics, such as immunity to infection,
duration of infectiousness, and probability of transmission
once infected. For example, we assumed that the probability
of transmission and duration of infectiousness was constant
across age groups. If older individuals were more likely to
transmit SARS-CoV-2 than those in younger age groups,
and had a longer duration of infectiousness, they would

Am J Epidemiol. 2023;00(00):1–9
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Figure 3. Imbalanced (imbal) contact matrices bias the impact of age-specific severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) vaccination strategies. Percent difference in cumulative infections averted in models parameterized with imbalanced versus balanced (bal)
contact matrices when 50% of the population aged <15 years was vaccinated, using examples of different age-demographic settings: Gambia
(A), Luxembourg (B), and Singapore (C). Percent difference in cumulative infections averted in models parameterized with imbalanced versus
balanced contact matrices when 50% of the population ≥15 was vaccinated, using examples of different age-demographic settings: Gambia
(D), Luxembourg (E), and Singapore (F). One infected individual was seeded per age group, per model. Cumulative infections averted were
compared 1 year after seeding in a completely susceptible and closed population, in the absence of additional public health interventions other
than vaccination. Contact matrices from Prem et al. (8, 9).

have greater transmission potential and we might see even
greater bias in models that overestimate the contacts that
those aged <15 made with those aged ≥15. Our examination
was restricted to direct transmission of respiratory pathogens
in the context of close contacts and, thus, via droplet
or close-range aerosolized transmission. Other modes of
transmission, such as transmission via fomites, blood
products, or in the context of waterborne (e.g., fecal-oral)

pathogens require different types of contacts in their force
of infection. The survey data used to generate symmetrical
measured contact matrices also do not capture the potential
for point-source transmission events, including those that
may occur via long-range aerosolized pathogens.

There are different ways to balance a measured contact
matrix. Thus, differences in epidemic dynamics between
models with imbalanced versus balanced matrices could

Am J Epidemiol. 2023;00(00):1–9
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differ based on the balancing method used. We used a
population-weighted average of reported contacts given that
the matrices were synthetic (8). However, when using survey
data (e.g., POLYMOD (7)), it is more common to calculate
respondent weighted averages of population contacts (10),
or use statistical techniques to infer patterns across the pop-
ulation according to participant demographic information
(12). Therefore, the balancing method used may change the
extent to which raw contacts are considered imbalanced, and
thus the magnitude and direction of potential bias. Finally,
our balancing approach (as with many others) assumes that
self-reported numbers from each group are equally subject
to measurement error. That is, no age group’s answers are
more or less reliable than any other.

Conclusions

We showed that compartmental models of infectious dis-
eases parameterized with imbalanced contact matrices may
produce biased estimates of initial epidemic characteristics
(e.g., R0), epidemic trajectory (e.g., timing and magnitude of
peak infection incidence), cumulative impact on populations
(e.g., cumulative infections per age group), and impact of
prioritized public health interventions. To avoid biases in
projections, stemming from how the model is parameterized,
modelers should account for and report reciprocity of con-
tact matrices in their stratified transmission models.
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