

Figure S1. Dietary fiber exclusion prevents intestinal inflammation in Tac-DKO mice fed CTR vs FD, Related to Figure 1.

Food consumption in RC- *vs* FD-fed Tac-DKO mice (A) or in CTR- *vs* FD-fed Tac-DKO mice (C). Up to three individual cages/each diet, the amount of food consumed by each animal was calculated. (B) Schematic representation of the experimental design for feeding strategies. (D) Fecal lcn-2 levels in Tac-DKO mice fed either the CTR or the FD mice for 9 weeks (preventive approach). (E) Representative H&E-stained colonic sections from CTR- and FD-fed Tac-DKO mice (preventive approach). Scale bar, 200 µm. Arrowhead shows ulcer. Black arrows indicate colonic transmural inflammation. (F) Histology scores of colonic tissue from CTR-fed Tac-DKO and FD-fed Tac-DKO mice. (H) Gene expression in colonic tissue isolated from CTR-fed Tac-DKO mice and from FD-fed Tac-DKO animals normalized to GAPDH expression.

Each symbol represents one mouse. Data are mean \pm SEM (A, C, D and H), or median (F), and representative of two independent experiments, n= 4-6 per group. *p<0.05; n.s. not significant by two-way repeated measures ANOVA followed by Sidak's post-test (A and C), or by two-tailed unpaired t-test (**p=0.0022, D; p=n.s., H), by two-tailed Mann-Whitney U test (**p=0.0043).

Figure S2. Mucus thickness and intestinal permeability in Tac-DKO mice fed different diets. Bacterial and host genomic copy numbers in Tac-DKO mice fed RC *vs* FD diet, Related to Figure 2.

(A) Intestinal permeability in Tac-DKO mice fed either RC or FD for three weeks (DSS-treated Tac-DKO mice, positive control). Colonic mucus layer measurements in RC-fed *vs* FD-fed Tac-DKO mice (therapeutic approach, B), and CTR-fed *vs* FD-fed Tac-DKO mice (preventive approach, C). Bacterial genome copies (D) and host genomic copy numbers (E) in intestinal luminal and mucus DNA samples isolated from RC-fed or FD-fed Tac-DKO mice.

Each symbol represents one mouse. Data are mean \pm SEM (A-C), or mean \pm SD (D-E) representative of at least two independent experiments, n= 3-7 per group. *p<0.05; ****p<0.0001; n.s. not significant by one-way ANOVA followed by Tukey's post-test (A), or by two-tailed unpaired t-test (**p=0.0024, B; *p=0.0206, C; p=n.s., D-E).

Muc2^{-/-}

*Muc*2+/-

D

Muc2-/-

Figure S3. Mucus thickness in Jax-DKO mice and Muc2-deficient colony. Lcn-2 levels and histological examination of Jax-DKO and Tac-DKO pups, Related to Figure 3.

(A) Alcian blue-stained (left panel) and Alcian blue/PAS-stained (central panel) colonic sections from *Mucispirillum*infected Jax-DKO mice fed either the RC (top panels) or the FD diet (lower panels). Opposing black arrows delineate the mucus layer. Scale bars, 200 μ m. Immunofluorescence images of colonic sections (right panel) from RC-fed (top panel) or FD-fed (lower panel) Jax-DKO mice stained with anti-Muc2 antibody (green) and DAPI (blue). White arrows indicate the mucus layer. Scale bars, 200 μ m. (B) Colonic mucus layer measurements in $Muc2^{+/+}$, $Muc2^{+/-}$ and $Muc2^{-/-}$ mice at steady state. (C) Alcian blue-stained sections of $Muc2^{+/+}$, $Muc2^{+/-}$ and $Muc2^{-/-}$ mice at steady state (C) or 1 day following *Mucispirillum* administration (D). Opposing black arrows delineate the mucus layer. Scale bars, 100 μ m. (E) Fecal lcn-2 levels in Tac-DKO pups fed either the RC or the FD . (F) Representative H&E-stained colonic sections from RC- and FDfed Tac-DKO pups. Scale bar, 200 μ m. Arrowhead shows ulcer. Black arrows indicate transmural inflammation. (G) Histology scores of colonic tissue from RC-fed Tac-DKO and FD-fed Tac-DKO mice. (H) Fecal lcn-2 levels in Jax-DKO pups fed either the RC or the FD. (I) Representative H&E-stained colonic sections from RC- and FD-fed Jax-DKO pups. Scale bar, 200 μ m. (J) Histology scores of colonic tissues from RC-fed Jax-DKO and FD-fed Tac-DKO mice.

Each symbol represents one mouse. Data are mean \pm SEM (B, E and H), or median (G and J), and representative of two independent experiments, n= 3-10 per group. *p< 0.05; **p<0.01; n.s. not significant by one-way ANOVA followed by Tukey's post-test (B), by two-way repeated measures ANOVA followed by Sidak's post-test (E and H), by two-tailed Mann-Whitney U test (*p=0.0317, G; p=n.s., J).

В

Figure S4. *E. coli* growth in presence of SPF- and GF-derived supernatants, and α diversity in the fecal microbiota of Tac-DKO mice fed different diets, Related to Figure 4.

(A) *Mucispirillum* growth in the presence/absence of amino acids (AA) or glycerol in BHI medium (BHI medium, negative control; BHI medium with serum, positive control) after three days. (B) *E. coli* growth in cecal homogenates derived from SPF or GF mice (RC- or FD-fed) after 24 hours. α diversity of fecal microbiota of Tac-DKO mice (C) or Tac-DKO mice (D).

Each symbol represents one mouse, except for panel B, in which each dot represents data pooled from 3 individual mice. Data are mean \pm SEM (A-B), or mean \pm SD (C-D), and representative of at least two independent experiments, n= 3-10 per group. *p< 0.05; **p<0.01; ***p<0.001; ***p<0.001; n.s. not significant by one-way ANOVA followed by Tukey's posttest.

Figure S5. Phylogenetic tree of microbial species differentially abundant in Tac-DKO mice fed RC vs FD diet. *R. torques* growth in the presence of rectal glycoproteins, and bacterial colonization levels in monocolonized mice, Related to Figure 4.

(A) Phylogenetic tree calculated using the v4 16S rRNA sequences of the microbial species that were more abundant in RC- or FD-fed Tac-DKO mice. *R. torques* VIII was included in the clustering analysis. Numbers indicate phylogenetic distance. *R. torques* was grown in custom chopped meat broth in the presence or absence of rectal glycoproteins (rGP) or *Mucispirillum* for up to three days. (B) *R. torques* abundance was normalized to the universal 16S rRNA gene. Abundances of *R. torques* (C) or *E. coli* (D) in GF mice, in *R. torques*-monocolonized mice and in *E. coli*-monocolonized mice were normalized to the universal 16S rRNA gene. (E) Colonic mucus layer measurements in GF mice and *R. torques*-monocolonized mice.

Each symbol represents one mouse, data are mean \pm SEM (E), or median (B-D), and representative of at least two independent experiments, n= 3-10 per group. **p<0.01; ****p<0.0001; n.s. not significant by one-way ANOVA followed by Tukey's post-test (B), by Kruskal-Wallis test followed by Dunn's post-test (C-D), or by two-tailed unpaired t-test (E).

Figure S6. nro operon in Mucispirillum, Related to Figure 5.

Schematic of putative nitrate reductase operon nro found in *Mucispirillum schaedleri* (M.s.) is shown with the *E. coli* (E.c.) nar operon and the *Denitrovibrio acetiphilus* (D.a.) nro operon as the most homologous operons of *Mucispirillum*-related species. Same colors indicate homologous genes. *D. acetiphilus* has three tandem replicates of *nroE - nroC* homologues followed by *nroD* homologues and an additional far-related *nroC* homologue. The locus tag IDs of M.s. *nro*, D.a. *nro* and E.c. *nar* are N508_00422 - N508_00417 (complement) of GCA_000487995, Dacet_0191 - Dacet_0208 of CP001968.1, NarS - NarI of CP009685.1, respectively.

Figure S7. *R. torques* abundance in co-culture experiments with *Mucispirillum* in the absence of exogenous H_2 , and concentration of dissolved H_2 in bioreactors, Related to Figure 6.

(A) *R. torques* growth in the presence/absence of *Mucispirillum* in nitrate-supplemented BHI (no exogenous H₂ added) after three days. (B) Photograph of bioreactor vessels operated in batch mode. (C) Dissolved H₂ concentration at 26.5 hours post-inoculation (hpi), 50.5 hpi, and 69.5 hpi. 26.5 hours post-inoculation in either N₂/CO₂ sparged- (n=3) or H₂/CO₂-sparged vessels (n=3).

Each symbol represents one mouse, data are mean \pm SEM, and representative of two independent experiments, n= 3-4 per group. ***p<0.001; ****p<0.0001; n.s. not significant by one-way ANOVA followed by Tukey's post-test (A) or by two-way repeated measures ANOVA followed by Sidak's post-test (C).

Name	Sequence 5'-3'	Use	Reference
mouse TNFα	GCCTCCCTCTCATCAGTTCT	Quantitative PCR	(Caruso et al., 2019a)
qPCR Fw		of mouse $TNF\alpha$	
mouse TNFα	CACTTGGTGGTTTGCTACGA	Quantitative PCR	(Caruso et al., 2019a)
qPCR Rv		of mouse TNF α	
mouse IFNγ	TCAAGTGGCATAGATGTGGAAG	Quantitative PCR	(Caruso et al., 2019a)
qPCR Fw	AA	of mouse IFNy	
mouse IFNγ	TGGCTCTGCAGGATTTTCATG	Quantitative PCR	(Caruso et al., 2019a)
qPCR Rv		of mouse IFNy	
mouse IL-17A	GGACTCTCCACCGCAATGA	Quantitative PCR	(Caruso et al., 2019a)
qPCR Fw		of mouse IL-17A	
mouse IL-17A	GGCACTGAGCTTCCCAGATC	Quantitative PCR	(Caruso et al., 2019a)
qPCR Rv		of mouse IL-17A	
mouse IL-6	CTGCAAGAGACTTCCATCCAGTT	Quantitative PCR	(Caruso et al., 2019a)
qPCR Fw		of mouse IL-6	
mouse IL-6	AAGTAGGGAAGGCCGTGGTT	Quantitative PCR	(Caruso et al., 2019a)
qPCR Rv		of mouse IL-6	
mouse Muc2	CCCAGAAGGGACTGTGTATG	Quantitative PCR	(Bergstrom et al., 2012)
qPCR Fw		of mouse Muc2	
mouse Muc2	TTGTGTTCGCTCTTGGTCAG	Quantitative PCR	(Bergstrom et al., 2012)
qPCR Rv		of mouse Muc2	
mouse Muc5ac	GGTTGTCGATGCAGCCTTGCTT	Quantitative PCR	(Liu et al., 2021)
qPCR Fw		of mouse Muc5ac	
mouse Muc5ac	CCACTTTCTCCTTCTCCACACC	Quantitative PCR	(Liu et al., 2021)
qPCR Rv		of mouse Muc5ac	
mouse Tff1	CAGGCCCAGGCCCAGGAAGA	Quantitative PCR	https://www.origene.com/catalog/g
qPCR Fw		of mouse Tff1	ene-expression/qpcr-primer-
			pairs/mp217526/tff1-mouse-qpcr-
			primer-pair-nm_009362
mouse Tff1	CTGTCATCAAAACAGCAACCTCT	Quantitative PCR	https://www.origene.com/catalog/g
qPCR Rv	C	of mouse Tff1	ene-expression/qpcr-primer-
			pairs/mp217526/tff1-mouse-qpcr-
T (22)			primer-pair-nm_009362
mouse Tff3	CICIGICACAICGGAGCAGIGI	Quantitative PCR	(Bergstrom et al., 2012)
qPCR FW	TCAACCACCACCACATT	of mouse 1ff3	(D. (1. 2012)
mouse 1113	IGAAGCACCAGGGCACAII	Quantitative PCR	(Bergstrom et al., 2012)
QPCK KV	COTOTO ATCOTTOCTOCO	Of mouse 1113	
mouse KLF3	CETETEAIGGITTEETIGIEGG	Quantitative PCR	https://www.origene.com/catalog/g
qPCK FW		of mouse KLF5	ene-expression/qpcr-primer-
			pairs/mp20/224/kii5-mouse-qpci-
mouse KI F3		Quantitative DCD	https://www.origene.com/catalog/g
aPCR Rv		of mouse KI F3	ene-expression/aper-primer-
			pairs/mp207224/klf3-mouse-aper-
			primer-pair-nm 008453
mouse-	CACCATCTTCCAGGAGCGAG	Quantitative PCR	(Caruso et al., 2019a)
GAPDH aPCR		of mouse GAPDH	
Fw			

mouse- GAPDH qPCR	GCCTTCTCCATGGTGGTGAA	Quantitative PCR of mouse GAPDH	(Caruso et al., 2019a)
mouse- Actin	CTCTCAGCTGTGGTGGTGAA	Quantitative PCR	(Chen et al., 2021)
mouse- Actin aPCR Rv	AGCCATGTACGTAGCCATCC	Quantitative PCR of mouse <i>Actin</i>	(Chen et al., 2021)
Mucipirillum nroA qPCR Fw	AGAAAGCTCAGTATCAAGGCGT	Quantitative PCR of <i>Mucispirillum</i> <i>nro</i> A	This study
<i>Mucipirillum</i> nroA qPCR Rv	CTGCCATCTTTAGAGCAGCCAT	Quantitative PCR of <i>Mucispirillum</i> <i>nro</i> A	This study
<i>Mucipirillum</i> <i>nro</i> B qPCR Fw	ATCATGGGGGGCAGACTGGTG	Quantitative PCR of <i>Mucispirillum</i> <i>nro</i> B	This study
<i>Mucipirillum</i> <i>nro</i> B qPCR Rv	GCAGGGCTGCTTGGAACATC	Quantitative PCR of <i>Mucispirillum</i> <i>nro</i> B	This study
<i>Mucipirillum</i> <i>nro</i> C qPCR Fw	GCCGCATGCTCACAAAATGC	Quantitative PCR of <i>Mucispirillum</i> <i>nro</i> C	This study
<i>Mucipirillum</i> nroC qPCR Rv	TGAGTGGCAGCAAATGGACA	Quantitative PCR of <i>Mucispirillum</i> <i>nro</i> C	This study
<i>Mucipirillum</i> nroD qPCR Fw	TCAACAGTCAAGGGAACAGGTG	Quantitative PCR of <i>Mucispirillum</i> <i>nro</i> D	This study
<i>Mucipirillum</i> nroD qPCR Rv	GCTCATAGGCAATAAAGTCTTCT GG	Quantitative PCR of <i>Mucispirillum</i> <i>nro</i> D	This study
<i>Mucipirillum</i> nroE qPCR Fw	TATACGGCGGTCTGCCTGTC	Quantitative PCR of <i>Mucispirillum</i> <i>nro</i> E	This study
<i>Mucipirillum</i> nroE qPCR Rv	GCCTCTGGCAGTATGGGTGT	Quantitative PCR of <i>Mucispirillum</i> <i>nro</i> E	This study
<i>Mucipirillum</i> nroF qPCR Fw	CCATGCCCGAGCAGGATTTG	Quantitative PCR of <i>Mucispirillum</i> <i>nro</i> F	This study
Mucipirillum nroF qPCR Rv	TCACAGTATGCAGAGCACCTGA	Quantitative PCR of <i>Mucispirillum</i> <i>nro</i> F	This study
<i>Mucipirillum ubi</i> D qPCR Fw	CGCAGGGAAGGTCCTTTTGG	Quantitative PCR of <i>Mucispirillum</i> <i>ubi</i> D	This study
<i>Mucipirillum ubi</i> D qPCR Rv	GCAGTCTTCCATAGGCGGCTT	Quantitative PCR of <i>Mucispirillum</i> <i>ubi</i> D	This study

<i>Mucipirillum</i> <i>nth</i> qPCR Fw	AGTGCCGGGGGATGGTTGTAG	Quantitative PCR of <i>Mucispirillum</i>	This study
<i>Mucipirillum</i> <i>nth</i> qPCR Fw	TGCCAAACAGCACAAGCTGA	Quantitative PCR of Mucispirillum nth	This study
<i>Mucipirillum</i> gap qPCR Fw	CCCTGCTAATCTTCCTTGGGCTA	Quantitative PCR of <i>Mucispirillum</i> gap	This study
<i>Mucipirillum</i> gap qPCR Rv	TGGGTCTGTTGCTGGTGCAG	Quantitative PCR of <i>Mucispirillum</i> gap	This study
<i>Mucipirillum</i> qPCR Fw	TCTCTTCGGGGGATGATTAAAC	Quantitative PCR of <i>Mucispirillum</i>	(Gomes-Neto et al., 2017)
<i>Mucipirillum</i> qPCR Rv	AACTTTTCCTATATAAACATGCAC	Quantitative PCR of <i>Mucispirillum</i>	(Gomes-Neto et al., 2017)
<i>R. torques</i> VIII qPCR Fw	TCTAGAGTGCTGGAGAGGTAAG	Quantitative PCR of <i>R. torgues</i> VIII	This study
<i>R. torques</i> VIII qPCR Rv	GGGATGTCAAGAGCAGGTAAG	Quantitative PCR of <i>R. torques</i> VIII	This study
<i>E. coli</i> qPCR Fw	GAGTAAAGTTAATACCTTTGCTC ATTG	Quantitative PCR of <i>E. coli</i>	(Kitamoto et al., 2020)
<i>E. coli</i> qPCR Rv	GAGACTCAAGCTKRCCAGTATCA G	Quantitative PCR of <i>E. coli</i>	(Kitamoto et al., 2020)
<i>A. muciniphila</i> qPCR Fw	AGAGGTCTCAAGCGTTGTTCGG AA	Quantitative PCR of <i>A. muciniphila</i>	(Seregin et al., 2017)
<i>A. muciniphila</i> qPCR Rv	TTTCGCTCCCCTGGCCTTCGTGC	Quantitative PCR of <i>A. muciniphila</i>	(Seregin et al., 2017)
Bacterial 16S (8F) qPCR Fw	AGAGTTTGATCCTGGCTCAG	Quantitative PCR of bacterial 16S (<i>in vivo</i> studies)	(Caruso et al., 2019a)
Bacterial 16S (338R) qPCR Rv	TGCTGCCTCCCGTAGGAGT	Quantitative PCR of bacterial 16S (<i>in vivo</i> studies)	(Caruso et al., 2019a)
Bacterial 16S (341F) qPCR Fw	CCTACGGGAGGCAGCAG	Quantitative PCR of bacterial 16S (<i>in vitro</i> studies)	(Chen et al., 2021)
Bacterial 16S (518R) qPCR Rv	ATTACCGCGGCTGCTGG	Quantitative PCR of bacterial 16S (<i>in vitro</i> studies)	(Chen et al., 2021)

Table S7. Primers used in this study, Related to Figures 1 to 6, to Figures S1, S2, S3, S4 and S7, Star Methods.