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Supplementary Note A: Origin-destination data (“Global Transnational Mobility Dataset”)
We use the “Global Transnational Mobility Dataset” (1, 2) as a reference data set of the import probabilities. It is a combination
of the World-Air-Transportation-Origin-Destination (WOD) data set from the company SABRE, and cross-boarder visits (CBV)
from the UNWTO (World Tourism Organization). The WOD has in contrast to the WAN the real number of passengers from
their origin airport to their final destination that booked their tickets via SABREs global distribution system (GDS). The WTO
data is based on cross border visits that include an overnight stay of non-residents, thus the backflow of residents in the country
is not monitored. The study (1) processed and combined the two data sets by:

1. decompose WOD in trend-, seasonal- and noise-component and only use the trend component timeseries :

)WODall,8 9 = )WOD,8 9 +)WODseason,8 9

+)WODnoise,8 9

2. symmetrize the tourism flow matrix (to account for returning residents):

)̂WTO,8 9 = )WTO,8 9 +)WTO, 98

3. correct the WOD data since it underestimates the mobility flow for close countries (the mobility on land or water is
missing):

)̂WOD,8 9 =
✓
3 (8, 9)
3<0G

◆1/2
)WOD,8 9

with 2 ⇡ 6.8, 3 (8, 9) as the distance between countries 8 and 9 and 3<0G as the maximal distance between all countries.
I.e., the closer two countries, the stronger the correction and the connection of the two farthest countries is not corrected.

4. combine the 2 data sets by the following rules: if only one data sets provides info on the connection, take this one,
otherwise take the larger flow

)̂8 9 =

8>>><
>>>:

)̂WTO,8 9 if )̂WOD,8 9 = ;
)̂WOD,8 9 if )̂WTO,8 9 = ;
max()̂WOD,8 9 , )̂WTO,8 9 ) otherwise

(A)

Note that the reference data set )̂8 9 is possibly an overestimation because the WOD data is increased for short connections.
The origin to final-destination data from SABRE is derived from bookings via its GDS. However, SABRE only had about 31%
market share in 2014 of all GDS‘ (Global Distribution System) (3) and an increasing number of bookings were not done via
GDS but directly via the airline company (e.g. about 30% of all Lufthansa flights were booked directly with an increasing trend
(4)). The WTO data is limited to overnight stays, i.e. private accommodations are not captured, also tending to underestimate
the passenger flow, especially for long-range connections where passenger transport is dominated by airplanes. Thus, the
reference is only an approximation and likely underestimates the real number of passengers.
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Supplementary Note B: Symmetrized flows
We assume, that the observed system is in equilibrium, i.e. there is no population change due to the human mobility on the
WAN. In other words, we neglect migration and assume that every visitor returns to its origin (5), i.e. the OD-flow )� out of
region � is the sum of the native population #̂� and the visiting populations:

$� = #̂�+
’
⌫<�

#̂⌫?= (�|⌫) (B)

with ?= (�|⌫) as the import probability of only the native population. As a consequence, we expect the true OD-matrix to be
symmetric, if it describes the human-mobility over a long time period. The shorter the time period represented by the OD-
matrix, the higher it is influenced by fluctuations (e.g. not yet all visitors returned to their origin). Thus, we expect a larger
asymmetry between distant countries (weakly connected countries), because the few visitors might stay longer.
We estimate the asymmetry by

0BH< (�,⌫) =
|)�⌫ �)⌫� |

max()�⌫,)⌫�)
(C)

and observe for the reference OD-matrix the lowest asymmetry in mean and median compared to all others estimates (compare
Fig. DM with A-L). The OD-matrices estimated by the import risk model (Fig. DD, H, L) are the most symmetric ones;
however, the asymmetry is still twice as high than for the reference trip (compare Fig. DL with M). Additionally, the typical
pattern of lower asymmetry for stronger connections is much less pronounced in the model estimates compared to the reference
data.
We symmetrize the OD-matrix by (i) compute the estimated OD-matrix

)
(0)
<,=

= ?
(0) (< |=)#= (D)

from the import probability estimate, (ii) correct it by computing its symmetric part,

S = (T+T>)/2 (E)

and (iii) compute the corresponding corrected import probability via

?
(1) (�|⌫) = S�⌫/(⌫ . (F)

By going through these steps, import probabilities that represent a flow which is larger than the respective return flow are
decreased and vice versa. However, the import probability after the first correction ?

(1) (�|⌫) results in a OD-matrix T(1) of
higher symmetry but with still a significant asymmetry, e.g. ?

(1) (�|⌫) for the gravity model with exponential distance decay
and effective distance the median asymmetry decreases from "⇢⇡ (0BH<) = 0.84 to "⇢⇡ (0BH<) = 0.15. Thus, we recursively
iterate " = 3 times through steps (i) till (iii), i.e. until ? (3) (�|⌫), which returns for all models a comparable 0BH< in mean and
median to the reference data.

Alternative symmetrization. A possible reason for the asymmetry in the estimated ODs is that the import probability ?(�|⌫)
only represent the import of the native population ?= (�|⌫) from ⌫ but not the visitors from � returning from ⌫. However, we
are interested in the combined import probability ?2 (�|⌫) that we could in principle compute by

?2 (�|⌫) =
)2,�⌫

)2,⌫

(G)

=
)=,�⌫ +)=,⌫�

)2,⌫

(H)

=
?= (�|⌫)#̂⌫ +)=,⌫�

)2,⌫

. (I)

The problem is, that we only know the WAN flow network F and thus the outflow per node

�� = )�+�� (J)

which is the OD-outflow and the transit passenger �� through �. We could compute the combined import probability ?2 (�|⌫),
if we assume that our estimated import probability is the one of the native population, i.e. ?= (�|⌫), and if we could estimate
the native populations #̂⌫. To do so, we assume that there are no transit passengers, i.e. setting in �� = 0 in Eq. J we arrive at

#̂� = :��� with0 < :� < 1 . (K)
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Thus, it boils down to finding the coefficient vector k that estimates the combined OD-outflow

)̃2,⌫ (k) =
’
�<⌫

)̃2,�⌫ (L)

=
’
�<⌫

( )̃=,�⌫ + )̃=,⌫� ) (M)

=
’
�<⌫

( ?= (�|⌫) :⌫ �⌫ + ?= (⌫ |�) :� �� ) (N)

best compared to the true combined OD-outflow )2,⌫ ⇡ �⌫. Note that we use G̃ to mark estimates based on k. It is a high
dimensional optimization problem with a bounded parameter-search space. We used a simple square error function:

4(T̃2 (k),T2 =
’
�

()̃2,�(k)�)2,�)2 (O)

We tested available optimizers for a bounded search space from scipy (version=1.7.1, using ’scipy.optimize.minimize’) by
staying as close to the data as possible, i.e. using the observed outflow as native outflow and the estimated import probability as
import probability of natives. The optimizer ’Powell’ and ’trust-constr’ performed well on various import probability estimates,
while ’L-BFGS-B’, ’Nelder-Mead’, ’TNC’ and ’SLSQP’ did not converge to the correct solution. However, if applied to the
real data, the optimizer fails for 8 of the 12 import probability estimates, i.e. the coefficients do not result in a symmetric OD-
matrix (not shown). This suggests that the assumptions do not hold, i.e. the estimated import probability does not correspond
to the import probability of natives and/or transit passengers cannot be neglected.

Supplementary Note C: On the overestimation of low import probabilities
The import risk model does overestimate low import probabilities (Figs. G), i.e.

?1 / ?̂
U

, U ⇡ 2/3 . (P)

Here we present several attempts to understand mechanistically why this overestimation happens and introduce slight variations
of the import risk model.
We study the influence of the flow scaling exponent a that estimates the travelling population #8 of the airport 8 depending on
its WAN outflow �8 via

#8 = �
a

8
. (Q)

The larger the exponent, the smaller the difference to the reference data (Fig. HA). That means if passengers are more likely to
exit at larger airports, lower import probability are less strongly overestimated.
Instead, the effective distance offset 30 does not change the overestimation at all (Fig. HB), which suggests that the differences
in transition probability are too large to be influenced by penalizing hop distances.
Inspired by the fact that a larger exit at large airports decreases the overestimation and that large airports are rather at the
beginning of the shortest path, we introduce a descendant fraction exit parameter ` that generalizes the shortest path exit
probability from Eq. 6 to

@8 (=0) =
(1� `)# (8)

(1� `)# (8) + `# (⌦(8 |=0))
. (R)

With ` = 0.5, we recover Eq. 6 and with ` > 0.5 we shift the exit to the descendant (or offspring) nodes. We verify the expected
result, that an aversion of descendant exits decreases the overestimation of low import probabilities (Fig. HC).
Assuming that closer nodes on the shortest path tree are also geographically closer, we should observe a decrease in the
overestimation if we weight the node populations with the inverse of their distance to the outbreak location (referred to in the
main text as “geodesic distance weighted” exit probability). We find the expected relation (Fig. HD), i.e. the distance weighted
import risk model overestimates less. Additionally, we find that overestimation further decreases if the effective distance is
used for weighting.
Finally, we want to decrease the exit at nodes that have a large effective distance by setting the shortest path exit probability of
the leaf- or dead-end nodes to a value smaller than the default value 1. The idea is that the random walker is not determined to
end at leafs, but can walk on and is more likely return to hub nodes. Interestingly, the expected decrease in overestimation is
only present for low leaf exit values as 0.1 (Fig. HE).
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REFERENCES

Disease/Variant # #⇠0 #⇠1 #⇠0 & ⇠1 #⇠0 & ⇠1 & ⇠2

Theta 18 2 2 1 1
BA.3 29 2 11 2 1

Lambda 36 6 14 6 2
Zeta 37 4 20 3 3
Iota 43 7 11 7 5

Kappa 43 5 9 5 6
Epsilon 48 3 10 2 3

Mu 48 7 21 7 2
BA.2.75 54 5 24 5 1

Eta 72 13 40 12 2
Gamma 77 13 31 12 7

BA.5 88 30 53 30 24
BA.4 101 41 67 41 34
Beta 103 22 60 20 18

H1N1 115 54 53 38 38
BA.2 137 64 112 64 57
BA.1 143 65 115 65 48
Alpha 144 53 101 51 27

Omicron 158 98 145 97 67
Delta 159 68 131 65 62

COVID 231 134 164 131 115

Table A. Filtering criteria for the log-cases fit to extrapolate the arrival times C
�

. A country is excluded if (C0:) the detection is too sparse
before peak-0 (less than 6 weeks of data), (C1:) the number of cases at peak-0 is below 30 (otherwise the signal is too noisy), (C2:) the
extrapolated arrival time is before the WHO-outbreak date. # is the number of countries for which case data could be generated. #

⇠0

and #
⇠1 are the countries that pass criteria C0 and C1. #

⇠0 & ⇠1 and #
⇠0 & ⇠1 & ⇠2 are the numbers of countries that pass multiple

criteria.

Supplementary Note D: Disease arrival time analysis
In the main text the disease arrival time C� is estimated by the first reported case in a country. However, it is possible that the
cases were tested (or sequenced in case of the SARS-CoV-2 variants) not regularly and the first case appeared actually before
the first detection. This could be a source of noise and we use an alternative estimate of the first arrival time Ĉ� which is the
interception of a linear fit on the logarithmic number of new cases. The approach assumes that the disease/variant grows in the
early phase exponentially. That is why we identify the first local maxima of new cases in each country, to which we refer to as
peak-0, and use up to the 12 first data-points of its slope for the logarithmic fit (with the weekly resolution of the date sets, it
corresponds to maximal the first 3 month). We exclude a country if (C0:) the detection is too sparse before peak-0 (less than
6 weeks of data), (C1:) the number of cases at peak-0 is below 30 (otherwise the signal is too noisy), (C2:) the extrapolated
arrival time is after the WHO-outbreak date. The summary of the exclusion criteria is listed in Tab. A. For the arrival time
correlation analysis we only included disease/variants with at least 10 countries that passed the criteria, leaving us with 10

diseases/variants. The case data of the variants + in a country is the number of new COVID-19 cases times #( (+)/#( , with
#( (+) as the number of sequenced samples of the variant + and #( the number of all sequenced samples.
We illustrated for the SARS-CoV-2 variant Alpha the new cases of the countries that passed all three criteria (Fig. Q) and 25
randomly selected examples for countries whose new case numbers did not pass (Fig. R). With the extrapolated arrival times
C� of the 10 diseases we reproduce the correlation analysis results of the main text (compare Fig. 6, P). The difference between
the models becomes even smaller and some disease have a strongly decreased correlation. For example, for BA.2 and BA.1 the
simple C� estimation by first count correlation reaches values over 0.4 while the log-cases estimation for C� stays below 0.2 for
both.
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Disease/Variant outbreak country outbreak date date of WAN

H1N1 Mexico (MX) 2009-02-01 2014
COVID China (CN) 2019-12-01 2019

Beta South Africa (ZA) 2020-05-09 2020-05
Alpha United Kingdom (GB) 2020-09-05 2020-09

Epsilon United States (US) 2020-03-14 2020-03
Eta Nigeria (NG) 2020-11-07 2020-11

Delta India (IN) 2020-10-03 2020-10
Omicron South Africa (ZA) 2021-11-06 2021-11

Iota United States (US) 2020-11-07 2020-11
Gamma Brazil (BR) 2020-11-07 2020-11
Lambda Peru (PE) 2020-12-05 2020-12
Kappa India (IN) 2020-11-07 2020-11
Zeta Brazil (BR) 2020-04-18 2020-04
Mu Colombia (CO) 2021-01-09 2021-01

BA.1 South Africa (ZA) 2021-10-09 2021-10
BA.2 South Africa (ZA) 2021-11-06 2021-11

BA.2.75 India (IN) 2022-04-09 2022-04
BA.3 South Africa (ZA) 2021-11-20 2021-11
BA.4 South Africa (ZA) 2022-01-01 2022-01
BA.5 South Africa (ZA) 2022-02-05 2022-02

Table B. Disease and SARS-CoV-2 Variant outbreak information and WAN date. For each disease/variant the outbreak country
and the date of the WAN used to compute the import probability estimates with the different models is displayed. Note that we only have
the WAN from the years 2014 and 2019 in a yearly resolution and from 2020-2022 in monthly resolution. We repeated the analysis for
COVID with the WAN from the month 2020-01-01, instead of using the yearly WAN from 2019, which gave comparable results.

Fig A. Import probability dependence on the geographic distance (A), the effective distance (B) and the geographic path distance
(C). The orange line represents the median and ⇠ (G, H) is the correlation between the two measures either log-transformed or not. The
geographic distance between countries is averaged over all airport pairs. The geographic path distance is the geographic distance
along the shortest path derived from the WAN using 3eff , i.e. it is a combination of geographic and network information. The axis scale
corresponds to the one with the highest correlation, i.e. log-log for distance and path distance (A, C) and y-log for the effective distance
(B).

8. Kelsey Jordahl, Joris Van den Bossche, Martin Fleischmann, Jacob Wasserman, James McBride, Jeffrey Gerard, Jeff Tratner, Matthew Perry, Adrian Garcia Badaracco, Carson Farmer, Geir Arne
Hjelle, Alan D. Snow, Micah Cochran, Sean Gillies, Lucas Culbertson, Matt Bartos, Nick Eubank, maxalbert, Aleksey Bilogur, Sergio Rey, Christopher Ren, Dani Arribas-Bel, Leah Wasser, Levi John
Wolf, Martin Journois, Joshua Wilson, Adam Greenhall, Chris Holdgraf, Filipe, and François Leblanc. geopandas/geopandas: v0.8.1, July 2020.
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Fig B. Gravity model scans. Parameter depen-
dence of measures that compare the model es-
timated import probability with the reference im-
port risk ?̂(8 |=0). Thereby is "corr" the correlation,
"cpc" the common part of commuters, "log_corr"
the correlation on log-scale, "rmse" the root mean
squared error and "kendalltau" the rank correlation
via Kendalls tau. Two versions of the gravity model
are shown with an exponentially decaying distance
function 5 (3) = 4

�W3 (left column: A, C, E), and a
power law decaying distance function 5 (3) = 3

�V

(right column: B, D, F). As distance the geodesic
distance (first row: A, B), the geodesic path dis-
tance (second row: C, D) and the effective distance
(third row: E, F) are used. The dotted horizontal
lines show the comparison measure with the im-
port risk as model and have the same respective
color.

Fig C. Mean optimal parameters for gravity models. For each
gravity model with exponentially and power law decaying distance
function and with one of the three different distance measures
(geodesic distance, geodesic path distance and effective distance),
the exponent W or V that results in the best fit to the reference
import risk is shown. The comparison is quantified via the corre-
lation (corr), correlation between the log-transformed import risks
(log_corr), root mean square error (rmse), root mean square error
of the log-transformed import risks (log_rmse), Kendall rank corre-
lation (kendalltau) and the common part of commuters (cpc). The
mean optimal parameter for each model is marked by a horizon-
tal line and their values are W = [6.71,6.41] ⇤ 10

�4 for geographic
and geo. path distance and W = 0.84 for the effective distance, and
V = [1.90,1,95,5.10] for geo., geo. path, and effective distance, re-
spectively.
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Fig D. Symmetry check for OD-matrix. Each dot represents the number of passengers that travel between 2 countries and back. The
OD-matrix is computed by the radiation model (1st. column), gravity model with exponentially (2nd column) and power law decaying
(3rd column) distance function and by the import risk model (4th column). The OD-matrix of the models is computed by multiplying the
import probability with the source-outflow. The reference trips and return trips have the highest symmetry (5th column, M). The orange
line depicts the median and the gray line is H = G and illustrates perfect symmetry. The mean (AVG(0BH<)) and median (MED(0BH<))
asymmetry of the flows, computed according to Eq. C, are shown in each panel. The reference trips (M) show the lowest asymmetry,
especially for large passenger flows.

Fig E. Relative comparison measures for the import probability estimates. The rank (A) and the relative performance (B) for the
different import probability estimation models. The model that agrees best (worst) with the reference import risk according a specific
measure has the highest (lowest) rank and a relative performance of one (zero). The relative performance is then a linear interpolation
between the best and worst model. The comparison measures are the correlation (corr), correlation between the log-transformed import
risks (log_corr), Root-mean-square error (rmse), Root-mean-square error of the log-transformed import risks (log_rmse), Kendall rank
correlation (kendalltau) and the common part of commuters (cpc). As exponents of the gravity models the mean optimal parameter is
used (horizontal lines in Fig. C).
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Fig F. Absolute comparison measures for the import probability estimates. The comparison measures are the correlation (corr),
correlation between the log-transformed import risks (log_corr), Root-mean-square error (rmse), Root-mean-square error of the log-
transformed import risks (log_rmse), Kendall rank correlation (kendalltau) and the common part of commuters (cpc). As exponents
of the gravity models the mean optimal parameter is used (horizontal lines in Fig. C). The colors depict the 4 different models. The
solid circles are the models with corrected import probability by symmetrizing their OD-matrix, and the transparent squares are the
non-corrected import probabilities of the respective model.

Fig G. Import risk comparison and
its deviation from a linear relation.
Scatter plot (left) and only median
and IQR with an exponential fit (right).
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Fig H. Variations of the import risk model to investigate how additional parameters influence the relation between the import risk
and the reference import risk. A: the flow scaling exponent a that estimates the travelling population # (8) of the airport 8 depending on
its WAN outflow �8 via # (8) = �

a

8
(default: a = 1). B: the effective distance offset 30 that penalizes larger hop-distances in the effective

distance 3eff (8 |=0) = 30 � ln(%8 9 ) when creating the shortest path tree (default: 30 = 1). C: the descendant fraction introduced in the
shortest path exit probability, where 0.5 is the default value and values larger than 0.5 mean that the exiting at the descendant (or
offspring) nodes compared to the current node becomes more likely. D: different weight options introduced for the shortest path tree
exit probability. Per default, the node populations are not weighted. The weight is the inverse of either the geodesic or the effective
distance. E: manually set shortest path exit probability of leaf nodes (dead-end nodes). Per default, the exit probability is 1. A decrease
to 0.9 or 0.8 does not visually change the median.

Fig I. Country outflow reconstruction by import risk. The flow in the WAN leaving a country �
⇠

is estimated by the import risk
model by )

⇠
=
Õ

=2⇠
Õ

<8⇠ ?1 (< |=)#=. Both measures are directly compared (A) and the relative error is computed depending on the
number of airports in the respective country #0A ?CB (B). The import risk model does not include the concept of a country which partly
explains the overestimation for larger airports. Another explanation is the overestimation of the respective airport population #= = �= by
the WAN outflow for the import risk model (the true population is smaller because of the transit passengers that need to be excluded).
Note that the WAN is used here, i.e. we check for self-consistency of the model and no reference data is included.
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Fig J. Uncorrected models: rank and relative performance. Same analysis as in the main text in Fig. 4), however, here the
uncorrected model predictions are used, i.e. without symmetrizing the OD-matrix.

Fig K. Mean correlation between arrival time and effective model distance vs. the speed of the disease estimated by the mean
arrival time hC

�
(⇠)i

⇠
, averaged over all countries ⇠. The correlation ⇠ (C

�
,3" ) between arrival time C

�
and effective model distance

3" is averaged over all models. The size of the datapoints illustrates the number of countries that were reached by the disease.
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Fig L. Import risk between world regions to a specific target region. In contrast to its derivation the import risk is displayed in
a target-centric view, i.e. each panel displays the import probability to a single target region from all source regions. The distance
between world regions is the mean distance between their airport locations. The grey line represents a power-law fit ?1 = 2 · 3�U. The
mean import risk is marked for each world region by a horizontal dashed line. The 22 target-world-regions are sorted according to their
mean import risk. Maps are created with geopandas (8).
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Fig M. Source countries prediction quality and WAN outflow for two gravity models. Same model-result representation as in
Fig. 7 but here instead of the import risk model, the gravity model with power-law distance decaying function using the geodesic 3geo

(left) or effective 3eff (right) distance is applied. Also for these models the logcorr between import probability estimates ?(8 |=0) and the
reference data ?̂(8 |=0) improves for countries with a larger outflow in the WAN.

Fig N. WAN flow out of countries vs. population and GDP The WAN flow out of a country is best mapped by its gross domestic
product (GDP, C) compared to its population (A) or per capita GDP (B). The linear double-logarithmic regression results are shown
in the lower part of each panel (r- and p-value). The size of each country corresponds to its population (A) and the color codes its
continent. GDP is taken from the World Bank Dataset for the year 2014 (6).
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Fig O. Variant outbreak detection and fraction of sequenced samples for each of the considered variants. To illustrate the spread
of the variant and how often it occurs worlwide the fraction of the variant in all sequenced probes is plotted, i.e. if it reaches 1,
all sequenced probes are the respective variant. The official WHO outbreak date (7) is highlighted as red dotted vertical line. We
estimated an outbreak date by 45 days before the fraction of sequenced samples reached 2.5% of its world-wide peak. The orange
vertical lines (lower row of lines) show for each country the arrival of the variant, estimated by the first sequenced probe ("count1"). The
black vertical lines (upper row of lines) show the arrival times after the outbreak which are used in the main text.

Fig P. Correlation analysis with log-cases estimated arrival time. Each model’s import probability is converted to an effective
distance 3" (8 |=0) = � ln(?(8 |=0)) with =0 as the outbreak country of the respective disease. The correlation results ⇠ (C

�
,3" ) with the

arrival time C
�
(8) of the disease in the target country 8 are grouped by model (A) and by the disease (B). As comparison distances, the

correlation of the geodesic, geodesic path (on the effective shortest path tree) and the effective distance with C
�

are shown. Each dot
represents a correlation result of the 10 considered outbreaks (H1N1 in 2009, COVID-19 in 2020 and the spread of 8 of its variants in
the years 2020-2022). For the analysis only those diseases/variants were used with more than 10 datapoints (see Tab. A).
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Fig Q. New case numbers of the Alpha variant for countries that passed the selection criteria for the log-cases fit to extrapolate
the arrival time C

�
in the attempt to reduce noise. The vertical dashed line marks the outbreak as listed by the WHO (7), the yellow star

is the extrapolated arrival time from the log-cases fit that is illustrated by a yellow line. To determine the peak-0 (marked by a vertical
line) we used a difference analysis on the smoothed new-cases data.

Fig R. New case numbers of the Alpha variant for countries that failed the selection criteria for the log-cases fit to extrapolate the
arrival time C

�
in the attempt to reduce noise. The vertical dashed line marks the outbreak as listed by the WHO (7). Those countries

that passed the criteria C0 and C1 (see Tab. A for details) show the log-cases fit. Note that the latter have an extrapolated C
�

before the
outbreak date listed by the WHO. To determine the peak-0 (marked by a vertical line) we used a difference analysis on the smoothed
new-cases data.
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