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Supplementary Methods

Patients and clinical sample collection

Lymph node (LN) and peripheral blood (PB) samples were collected from 14 patients with
T follicular helper cell (Trn) lymphomas (TFHLSs) at the University of Tsukuba Hospital, Kameda
Medical Center (Kamogawa, Japan), and Toranomon Hospital (Tokyo, Japan) between October
of 2019 and February of 2021. For two of the TFHL patients (AITL1 and AITL2), PB samples
were collected at two-time points: once upon new diagnosis (ND) (AITL1xp and AITL2xp) and
again upon refractory/relapsed (RR) disease (AITL1rr and AITL2gr). LN samples from AITLS5
and AITL7 were analyzed in a previously reported study [1]. For single-cell RNA sequencing
(scRNA-seq) data from AITL4, only tumor cells were analyzed because systemic steroid
administration for coexisting collagen disease may affect the composition of immune cells.
Additionally, seven homeostatic LN (HLN) samples were also collected from patients with non-
hematological malignancies at the University of Tsukuba Hospital and were confirmed as
metastatic-free by flow cytometric (FCM) analysis of pan-cytokeratin. The patient characteristics

are summarized in Table S1.

Sample processing

LN samples were minced immediately after excision and filtered with a 70-um strainer.
The cells were washed with phosphate-buffered saline (PBS, Nissui, Tokyo, Japan), containing
0.04% weight/volume bovine serum albumin (BSA, Sigma-Aldrich, Louis, MO, USA), and
centrifuged twice for 5 min at 300 x g and 4°C. After removal of the supernatant, cells were
resuspended in PBS/0.04% BSA and cell count and viability were estimated using a

hemocytometer and trypan blue. After centrifugation for 5 min at 300 x g and 5°C once again,
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cells were resuspended in PBS/0.04% BSA and diluted to 1 x 10" cells/ml in preparation for
analysis or cryopreservation.

PB samples were stored at 4°C immediately after collection and processed within 24 h.
After red blood cell (RBC) lysis by the ammonium-chloride-potassium buffer, cells were washed
once with PBS/0.04% BSA and centrifuged for 5 min at 400 % g and 4°C. After removal of the
supernatant, cells were resuspended in 20 ml of PBS/0.04% BSA buffer and cell count and
viability were estimated. Cells were centrifuged for 5 min at 300 x g and 4°C, diluted to 1 x 10’

cells/ml and kept on ice until use.

FCM analysis and sorting

Surface protein expression analysis and sorting for scRNA-seq were performed using cell
suspensions obtained from the LN and PB samples described above. To prevent non-specific
reactions mediated by Fc receptors (FcRs), 20 ul/10” cells of FcR Blocking Reagent (Miltenyi
Biotec, Bergisch Gladbach, Germany) was added, and cell suspensions were incubated in a
refrigerator for 10 min, followed by staining based on the recommended concentration of each
antibody. Dead cells and doublets were removed by 7-amino-actinomycin D (7-AAD, Thermo
Fisher Scientific, Waltham, MA, USA) staining and forward versus side scatter plots (Fig. SIA—
B). FCM sorting and analysis were performed on BD FACSAria III (BD Biosciences, San Jose,
CA, USA). FlowJo software (v10.7.1, Tree Star Inc., Ashland, OR, USA) and the Ggplot2
package (v3.3.3) [2] were used for FCM data analysis and visualization. All antibodies used are

listed in Table S20.
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Library preparation, sequencing, and pre-processing of single-cell data

The scRNA-seq libraries for mononuclear cells (MNCs) from LNs and PB were prepared
using a Chromium Single Cell 5’ Library & Gel Bead Kit (vl chemistry, 10x Genomics,
Pleasanton, CA, USA) or a Chromium Next GEM Single Cell 5 Library & Gel Bead Kit (v1.1
chemistry) according to the manufacturer’s instructions (CG000086 Rev L or CG000207 Rev
E), aiming for 5 000 cells per library. Simultaneously, single-cell T- and B-cell receptor
sequencing (scTCR/BCR-seq) was performed for samples with sufficient T or B cells (> 20% of
all LN MNCs or > 10% of all PB MNCs; Table S1 and S4). scTCR/BCR-seq libraries were
constructed using a Chromium Single Cell V(D)J Reagent Kit (v1 or v1.1 chemistry). T cell-
enriched scRNA/TCR-seq libraries were generated similarly to the MNCs using sorted
CD4/CD8* T cells. Quantification and quality control of libraries were performed using a 2100
Bioanalyzer System with High Sensitivity DNA Kit (Agilent Technologies, Santa Clara, CA,
USA) and a KAPA Library Quantification Kit for [llumina platforms (KAPA Biosystems,
Wilmington, MA, USA). Each cDNA library was sequenced on the HiSeq X system (Illumina,
San Diego, CA, USA) with a paired-end 150-base read option. The publicly available 5’
scRNA-seq and scTCR/BCR-seq data from PB of 5 healthy donors (HDs) [3] generated by a
Chromium system (Chromium Single Cell 5’ Reagent Kit v2 chemistry and Chromium Single
Cell V(D)J Reagent Kit) were used as controls (Table S1). The age and sex of individual donors
were obtained from Supplementary Figure S1 of the original paper [3].

Using the “cellranger count” function of the Cell Ranger pipeline (v3.1.0, 10x
Genomics), we aligned scRNA-seq data to the reference genome (GRCh38) and performed
preliminary filtering and counting unique molecular identifiers (UMIs) for downstream analysis.
For scTCR/BCR-seq data, sequence assembly and paired clonotype calling were performed

with the “cellranger vdj” function. scRNA-seq and scTCR/BCR-seq data, after implementing
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the Cell Ranger pipeline, were primarily analyzed using R (v3.6.0, v3.6.2 or v4.0.2) on RStudio

(v1.2.1578 or v1.2.5019).

Quality control (QC) of scRNA-seq data

First, to remove low-quality cells and genes, only genes expressed by more than three
cells and cells expressing over 200 genes were included in further analyses. Next, we applied
the Scater package (v1.14.6) [4] to filter out outliers from count matrices for each sample.
Briefly, we used several common QC metrics to detect outliers: library size, which was defined
as the total sum of counts across all relevant features for each cell; the number of expressed
features in each cell; and the percentage of reads mapped to mitochondrial transcripts. Outliers
were identified based on the median absolute deviation from the median value of each QC
metric across all cells. Cells identified as outliers were considered to be low quality and
discarded. After excluding mitochondrial and ribosomal genes, the Seurat package (v3.2.3) [5,6]

was applied to log-normalize the count data by the default scale factor of 10 000.

Batch effects correction and data integration

The mutual nearest neighbors (MNN) batch correction technique in the Batchelor
package (v1.2.4) [7] was utilized to remove batch effects between datasets resulting from
technical biases and biological differences. Unlike the original method, the
“batchelor::fastMNN” function performs principal components analysis (PCA) on the
previously selected highly variable features (HVFs) to preemptively reduce the dimensions and
speed up MNN identification and correction. For integrating data from LNs of patients with

TFHL and HLNs, we used 2 000 HVFs and the first 50 principal components (PCs) for
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downstream steps. For data from PB, 3 000 HVFs and the first 100 PCs were used instead. In
LN data, variable genes of TCRa3 and immunoglobulins (TRAV, TRBV, IGHV, IGKV, and
IGLV) were removed from the HVF selection to avoid their effect on clustering. We applied the
“RunFastMNN” function in the SeuratWrappers package (v0.3.0;
https://github.com/satijalab/seurat-wrappers) for running the “fastMNN” function with a Seurat

object.

Unsupervised clustering and non-linear dimensional reduction

Subsequently, we applied Seurat to perform unsupervised graph-based clustering and
Uniform Manifold Approximation and Projection (UMAP) visualization using the MNN-
corrected components as input. Using the “FindNeighbors” function, a k-nearest neighbor graph
was constructed based on the Euclidean distance and a shared nearest neighbor graph was
generated by computing the neighborhood overlap between any two cells. Next, the
“FindClusters” function was used to identify clusters by the Louvain algorithm (default setting),
which was a shared nearest neighbor modularity optimization-based clustering algorithm. For

visualization, UMAP transformation was performed using the “RunUMAP” function.

Finding cluster biomarkers and cell type annotation

To characterize each cluster, we used the “FindMarkers” or “FindAllMarkers” functions
in the Seurat package to select upregulated genes in each cluster relative to other clusters. These
functions performed the Wilcoxon Rank Sum test between pairs of clusters and a P-value
adjustment using the Bonferroni correction. Clusters were manually assigned to a cell type by

comparing the marker genes of each cluster and known canonical markers. Specifically, we
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annotated CD3 gene (CD3D, CD3E, and CD247)- and CD4 or CD8 gene (CD84 and CD8B)-
positive clusters as "CD4/CD8" T cells", CD79A-positive clusters as “B cells," and myeloid cell
marker (LYZ, CD68, and CST3) [8,9]-positive clusters as "myeloid cells." CD3 gene-positive or
weakly positive but CD4 and CD8 gene-negative and natural killer (NK) cell marker (XCL1,
FCGR3A4, KLRDI, and KLRFI) [10]- or ydT cell marker (TRDV2, TRGV9, TRDC, TRGC2, and
TRGC1) [11]-positive clusters were named as “NK cells” (for LNs) or “NK/ydT cells” (for PB
samples). We also identified a CD34-positive "progenitor cell" cluster as a rare cell type (81
cells in all PB MNCs) in PB. Platelet clusters characterized by PPBP, GPY, and PF4 and RBC
clusters characterized by HBB and HBA1 were excluded from downstream analyses. For
clusters featured by the expression of multiple cell-type marker genes, we used the scDblFinder
package (v1.4.0) [12] and confirmed that most cells in these clusters were doublets. These cells
were also removed from further analysis.

Subsequently, after identifying tumor cells by the method described below, we
subclustered immune cells by major cell types and annotated each cluster based on canonical
markers. Results of manual annotations were confirmed by automated annotation by the

SingleR package (v1.4.1) [13] with reference to previously published single-cell data.

Single-cell TCR/BCR repertoire analysis

We identified clonotypes from scTCR/BCR-seq data after running the Cell Ranger pipeline.
Clonotypes were identified by sets of cells with unique and “productive” TCRa- and/or B-chains
(for B cells, immunoglobulin [Ig] heavy [IgH] chains and two types of light [IgL] chains: k or A
[IgK or IgL] chains), defined by identical complementarity-determining region 3 (CDR3)
sequences. Here, a "productive" sequence refers to an mRNA sequence that could be translated

into a functional protein. Those TCR- or Ig-chain sequences judged as productive met the
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following conditions: were full length (include from the beginning of the V gene to the end of the
J gene), started with a start codon, contained no stop codon, were in-frame, contained a CDR3
sequence, and matched the structural requirements calculated from the length of the V and J gene
regions of the sequence (https://support.10xgenomics.com/single-cell-
vdj/software/pipelines/3.1/algorithms/annotation). These clonotypes were named clonotype 1,
clonotype 2, and so on from the most clonally extended ones for each sample. Generally, afT and
B cells express a pair of functional a- and B-chains or H- and L-chains but, occasionally, a single
cell expresses multiple functional TCR or Ig chains [14—17]. Therefore, we detected up to two
productive TCRa- and B-chains (IgH- and L-chains) in each cell. Downstream analysis of

scTCR/BCR-seq was performed using the Immunarch package (v0.6.6) [18].

Tumor cell detection in TFHL LNs and PB

For LNs, we defined clonotypes that were expressed by over 20 CD4* T cells and
accounted for over 1.5% of all T cells with TCRs as “major tumor-cell clonotypes” and cells
with tumor-cell clonotypes as “tumor cells” (Fig. 1C; Table S3). Clonotypes composed only of
the TCR a.- and/or B-chains identical to the major tumor-cell clonotypes and expressed by five
or more CD4* T cells were defined as “minor tumor-cell clonotypes.” Cells expressing a minor
tumor-cell clonotype were also defined as tumor cells. Major and minor tumor-cell clnotypes
with the same TCR chains were grouped together as “tumor-clone subgroups” (Table S3).

In nine PB samples, with their paired LNs also subjected to single-cell sequencing, cells
harboring identical clonotypes to those of their respective LN tumor cells were defined as tumor
cells (Fig. S16A). In the remaining seven PB samples without paired LN single-cell data,
clonotypes that were expressed by over 100 cells and accounted for more than 10% of all TCRs

were defined as tumor-cell clonotypes. In patients with TFHL with sequential samples (AITL1
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and AITL2), cells expressing the clonotypes identical to those of tumor cells of the sequential

sample were defined as tumor cells, even if no clonotype met the definition above (Fig. S16B).

Differentially expressed gene (DEG) analysis

We performed DEG analysis using the “FindMarkers” or “FindAllMarkers” functions of
Seurat. The model-based analysis of single-cell transcriptomics (MAST, v1.12.0) [19] method
was mainly used for DEG detection, and P-values were corrected by the Bonferroni method. In
addition, the Wilcoxon rank sum test confirmed the DEGs detected by MAST. Genes with an
adjusted P-value < 0.05 in both tests, with a log fold-change (logFC) of the average expression
between the two groups > 0.15 (logfc.threshold = 0.15), and expressed by > 10% of cells in the
cluster (min.pct = 0.1) were considered significant. An adjusted P-value calculated by MAST
was used to create a volcano plot. Metascape [20] and gene set enrichment analysis (GSEA;
v4.1.0) [21] were used for gene ontology (GO) and pathway analyses of DEGs in specific

clusters, respectively.

Gene set variation analysis (GSVA)

The GSVA package (v1.34.0) [22] was applied to estimate signatures or pathways
enriched by each cell and cluster. The normalized data after log transformation was used as
input, and the Gaussian kernel was selected as the kernel function used for the nonparametric
estimation of enrichment scores for each cell. Gene sets for GSVA were downloaded from the
Molecular Signatures Database (MSigDB; http://www.gsea-msigdb.org/gsea/msigdb/index.jsp)
or extracted from a previously published RNA-seq dataset by DEG analysis using the edgeR

package (v3.28.1) [23,24]. We used raw count data as input for DEG analysis by edgeR, filtered
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out low-expression genes using the “filterByExpr” function, performed trimmed mean of M-
values (TMM) normalization using the “calcNormFactors” function, and applied a generalized
linear model (GLM) using the likelihood ratio test (LRT) with the “glmLRT” function. DEGs
with an adjusted P-value < 0.05 and logFC > 1 were extracted by the “decideTests” function.
Finally, we performed the pairwise Wilcoxon test and Bonferroni P-value correction using the

rstatix package (v0.7.0) [25] to compare median GSVA enrichment scores for each cluster.

Trajectory analysis

Trajectory analysis was performed using the Monocle2 (v2.18.0) [26], Monocle3
(v0.2.3.0) [27], and Slingshot (v1.8.0) [28] packages. The count data before normalization after
QC was used as the input data for Monocle2. After estimating size factors and dispersions with
the “estimateSizeFactors” and “estimateDispersions” functions, DEGs for each cluster were
extracted with the “differential GeneTest” function. Using only DEGs with a P-value < 0.01, the
“reduceDimension” function performed a DDRTree reduction, and the “orderCells” function
sorted the cells in trajectory order. In the Monocle3 analysis, we first converted the Seurat
object to a "cell data set" object that could be used in Monocle3 by the “as.cell data set”
function. After clustering with the “cluster_cells” function, trajectory estimation and cell sorting
were performed using the “learn_graph” and “orderCells” functions, using the results of
dimensional reduction by UMAP executed by Seurat. In trajectory analysis by Slingshot, after
converting the Seurat object to a "SingleCellExperiment" object using the
“as.SingleCellExperiment” function, dimensionality reduction data after batch effect correction
by fastMNN and clustering results by Seurat were used. Trajectory estimation was performed
by the “slingshot” function. We used the rgl package (v0.107.14,

https://github.com/dmurdoch/rgl) for 3D plots.
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Cell-cell interaction analysis

Ligand-receptor interactions between each cluster were estimated using the Python
package CellPhoneDB (v3.0.0) [29] and the R package NicheNetR (v1.0.0) [30]. We used
Python v3.8.5 for this analysis. In the CellPhoneDB analysis, we first performed the “statistical
method” and obtained P-values. Specifically, only ligand-receptor pairs expressed by over 10%
of the cells in each cluster were selected for analysis. Then, we randomly permuted the cluster
labels of all cells 1 000 times to create a null distribution of the mean of the average ligand and
receptor expression levels in the interacting clusters. P-values for the probability of enrichment
within clusters for each ligand-receptor complex were obtained by calculating the percentage of
the means equal to or higher than the actual mean. Subsequently, we performed the “DEGs
analysis method,” using DEGs upregulated in each cluster of LNs from patients with ND or RR
TFHL versus HLNs as the input genes of the DEG list. As for CD8 Tpys (T9), since the number
of cells belonging to CD8 Tpys of HLNs was too small to perform proper DEG analysis, we
compared them with CD8 Tgrr (T8) of HLNs. Genes whose expression profiles were
significantly elevated in the tumor cells versus non-malignant cells were used as the DEGs for
the tumor cells. In the “DEGs analysis method,” only ligand-receptor pairs expressed by over
10% of the cells in each cluster and for which at least one gene was included in the DEG list
were extracted as significant interactions. Finally, interactions detected as significant by both
methods were extracted and the numbers of interactions for each cluster were plotted in
heatmaps.

NicheNetR is a tool for predicting ligands that can promote gene expression changes in
specific target cells (“receiver/target”). In this analysis, the group of genes representing gene

expression changes in target cells was defined as a “gene set of interest (geneset_oi).” The CDS§
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Toys (T9) cluster and tumor cells from RR TFHL were set as receivers and senders,
respectively. Initially, genes expressed by over 10% cells in each cluster designated as a
receiver or sender were used as “expressed genes receiver” and “expressed genes sender,”
respectively. Scince the number of cells belonging to CD8 Tpys of HLNs was too small to
perform proper DEG analysis, DEGs between CD8 Tpys of RR TFHL LNs and CD8 Tgrr (T8)
of HL.Ns with an adjusted P-value < 0.05, min.pct = 0.1, and logFC > 0.35 were used as
“geneset o0i.” Next, we used the “predict ligand activities” function to estimate and rank the
potential ligands of target genes in “geneset_oi.” Among the potential ligands, the top 20 were
used as the “best upstream_ligands” for the following analysis. Furthermore, the

“get weighted ligand target links” and “Ir_network™ functions predicted target genes and
receptors of the “best upstream_ligands.” Finally, only bonafide interactions based on validated

curated ligand-receptor databases were visualized in heatmaps.

Whole-exome sequencing (WES) and data processing

Genomic DNA were extracted from fresh frozen tumor tissue and PB samples, formalin-
fixed paraffin-embedded (FFPE) tumor samples, and paired buccal swab samples to be used as
reference using a QlAamp DNA Blood Mini Kit or GeneRead DNA FFPE Kit (Qiagen, Hilden,
Germany) (Table S1). After DNA integrity number (DIN) values were measured using Agilent
TapeStation 2200 (Agilent Technologies) for quality control, DNA was fragmented with DNA
Shearing S220 (Covaris, Woburn, MA, USA). Exome capturing was performed using a
SureSelect XT Human All Exon V7 kit (Agilent Technologies). Next, 150-bp paired-end
sequencing was carried out according to the manufacturer’s recommendations on a HiSeq X

Ten system (Illumina).
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Sequencing reads were aligned to the reference genome (GRCh37) using the Burrows-
Wheeler Aligner (v.0.7.8). Mutation calling was performed using the Genomon?2 pipeline
(v.2.6.2, https://github.com/Genomon-Project) as previously described [1,31,32] with minor
modifications. Putative somatic mutations with a Fisher’s exact P-value < 0.01 or an EB call P-
value > 2.0, sequencing depth > 30, and variant reads > 4 were adopted. Furthermore, variants
only in unidirectional reads; variants in repetitive genomic regions; variants in intergenic,
intronic, untranslated, and noncoding RNA regions; and synonymous single-nucleotide variants
were excluded. Additionally, known recurrently mutated genes in TFHL, including RHOA
G17V, TET2, DNMT3A4, and IDH2, were manually screened for as additional mutations.
Mapping errors were excluded by visual inspection with Integrative Genomics Viewer (IGV)
[33]. Detected somatic mutations are listed in Table S5.

Somatic copy number variations (CNVs) were analyzed by the Genome Analysis Tool Kit
(GATK; v4.2, Broad Institute, Cambridge, MA, USA) [34]. Buccal samples were used as a
panel of normals. The interval list was generated from the target browser extensible data (BED)
file of the SureSelect XT Human All Exon V7 kit downloaded from the Agilent website
(https://earray.chem.agilent.com/suredesign/index.htm). Gains and losses less than 1 Mb in

length were removed from downstream analyses.

Inferring genetic mutations using scRNA-seq data

We applied VarTrix (v1.1.16, 10x Genomics, https://github.com/10XGenomics/vartrix) to
extract single-cell variant information from scRNA-seq data. First, BED files of the somatic
mutations extracted by the Genomon2 pipeline for WES data were lifted from GRCh37 to
GRCh38 with the UCSC web browser (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Then, the

BED files converted to variant call format (VCF) were used as input for VarTrix. We ran the
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“vartrix” command with --mapq 255, --padding 100, and --umi mode options using a cell barcode
file extracted from the integrated Seurat object and a binary alignment map (BAM) file generated
by the Cell Ranger pipeline for each sample. Briefly, local sequence alignment at the input variant
locus was performed by the Smith-Waterman algorithm, and then wild-type and mutant reads
were counted for each cell, respectively. In --umi mode, a consensus is taken across each UMI,
and only cases where each UMI exceeded a hardcoded 90% threshold for supporting the same
allele were reflected in the results. Owing to the phenomenon commonly occurring in scRNA-
seq called “allelic dropout” (insufficient amplification of one allele), it is impossible to judge
whether a cell is a “truly wild type (WT)” in the absence of mutant reads [35]. Therefore, we
defined a cell as “unknown” if only WT reads or no reads were detected. Cells from THFL patients

without WES-identified mutations were classified as “WT” cells.

Estimation of CNVs at the single-cell level

To infer large-scale CNVs from scRNA-seq data, we applied the R package inferCNV
(v1.10.1). [36] Non-malignant T cells from each sample were used as controls for analysis of
PB and LN tumor cells. We used the following parameters: default de-noise and hidden Markov
model (HMM) setting, cutoff = 0.1, cluster by groups = FALSE, analysis mode =
‘subclusters’, and tumor_subcluster partition method = ‘random_trees’. Specifically, after
removeing noise with the default settings, the random trees method was used to divide cells into
groups with consistent CNV patterns, and CNV prediction by HMM was performed at the
subcluster level. Uphyloplot2 (v2.3) [37] was applied to visualize phylogenetic trees using the
inferCNV output of each sample. CNV scores for each cell were calculated as previously

described [38].
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Immunohistochemical (IHC) staining

Regarding PLS3, which was identified as a candidate tumor cell-specific gene, IHC
staining using FFPE samples of tumor tissues was performed by either the Tsukuba Human
Tissue Biobank Center Tsukuba Pathological Analysis Support Service (T-PASS, Tsukuba,
Japan) or expert hematopathologists at Tokai University School of Medicine. After antigen
retrieval with Target Retrieval Solution pH 9.0 (Dako, Santa Clara, CA, USA) using the
automated pretreatment system PT Link (Dako; 97°C, 20 min), anti-PLS3 antibody (Sigma-
Aldrich) diluted 1:100 was added, and samples were stained with Autostainer Link 48 (Dako).

PLS3 staining was determined to be positive when 10% or more of the cells were positive.

High-dimensional spatial analysis by imaging mass cytometry (IMC)

Carrier-free antibodies were manually conjugated to metal isotopes using the MaxPar 8X
antibody labeling kit (Standard BioTools Inc., South San Francisco, CA, USA) following the
manufacturer’s protocol (Maxpar Antibody Labeling Kit PRD002 Version 11). Manually
conjugated or pre-metal-tagged antibodies obtained from Standard BioTools Inc. were used for
IMC staining (Table S17). FFPE samples from TFHL tissues were incubated in a dry oven for
15 min at 55°C, deparaffinized, and rehydrated using a graded ethanol series. Antigen retrieval
was performed using Target Retrieval Solution pH 9.0 (Dako) in a Decloaking Chamber
(Biocare Medical, Pacheco, CA, USA) for 10 min at 95°C. Slides were incubated overnight at
4°C with a cocktail of metal-conjugated primary antibodies after blocking with buffer
containing 3% BSA. The following day, slides were washed twice with Dulbecco’s PBS and
counterstained using Cell-ID Intercalator-Ir (Standard BioTools Inc.) for 30 min at RT to

visualize the DNA. After a final wash in doubly distilled H,O, the slides were air-dried for 20
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343
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345

346

347

348

349

350

351

352

min. IMC data was acquired using a Hyperion imaging system (Standard BioTools Inc.).
Subsequently, five regions of interest (ROIs) of 1 500 X 1 500 um per 1 FFPE sample were
identified on consecutive Hematoxylin and Eosin (H&E)-stained slides and ablated by the laser
beam.

We converted raw data, exported as MCD files, to the OME-TIFF format and segmented
into single cells using the ImcSegmentationPipeline [39]. Specifically, we applied Ilastik
(v1.3.3) [40] for pixel classification and generated pixel probability maps for three labels

99 ¢

(“nucleus,” “cytoplasm,” and “background”). Then, cells were segmented based on pixel
probabilities and single-cell or image features, such as channel intensities and the number of
neighbors, were measured using the CellProfiler (v4.2.1) [41].

The output data from CellProfiler was imported into R (v4.1.0) as a SpatialExperiment
object by the imcRtools package (v1.0.2) [42]. After the inverse hyperbolic sine transformation
and normalization at the 99th percentile, batch effect correction and unsupervised clustering
were performed using the Batchelor and Seurat packages, like with the scRNA-seq data. When
performing clustering, four proteins with poor cell-to-cell variability (CD10, E-cadherin,
ICOSL, and CD40LG) and two proteins related to the stromal structures (o.-smooth muscle
actin [SMA] and collagen type 1) were excluded. By annotation with canonical markers, we
identified a Try marker-positive cluster thought to be tumor cells and performed re-clustering
with immune and stromal cells other than tumor cells. Next, we computed the averaged cell-cell
interaction counts and compared them to a null distribution of counts generated by random
permutations to estimate the interaction or avoidance between cell types using the

“testInteractions” function of imcRtools (Table S19). Finally, the pixel- and cell-level

visualization of each image was performed by the cytomapper package (v1.6.0) [43].
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Code Availability

The code used for data analysis are available from the corresponding author upon request

(sakatama@md.tsukuba.ac.jp [M.S.-Y.]).

Supplementary Notes

Supplementary Note 1: Related to “Expansion of dysfunctional CD8" and regulatory T cells

in LNs” and “Clonal tracking between T cells in LNs and PB”

The following is a comment regarding subclustering and the TCR analysis of non-malignant PB
T cells.

Subclustering of non-malignant PB T cells revealed a similar immunophenotype to those
of LNs. Specifically, the proportions of CD8 Tpys and Trropys were increased, whereas those of
CD4/CDS8 T and Tcm were decreased in patients with TFHL compared with those in HDs (Fig.
S10A—B). Although the increase in the proportion of Treg Was not significant, the proportion of
proliferating Trec and the expression levels of Treg activation markers such as FOXP3, BATF,
TNFRSF4, and TNFRSF18 [44] and co-inhibitory molecules such as PDCD1 and TIGIT were
higher in the Treg of patients with TFHL than those of HDs (Fig. SI0C-F).

By TCR repertoire analysis of non-malignant T cells in PB, we found that effector CD8*
T cells (effector memory [Tewm] and effector memory cells re-expressing CD45RA [Terma]) were
clonally expanded in both patients with TFHL and HDs, whereas CD8 Tpys/Tpropys were
clonally expanded only in the patients with TFHL (Fig. S17A). TCR overlap analysis showed
that CD8 Tpys and CD8 Trro/mys shared their TCRs in TFHL PB while no shared TCRs were
detected between effector and dysfunctional CD8* T cells of TFL PB, unlike the LN data (Fig.

S17B). In addition, over 50% of known, pathogen-specific CDR3s, such as cytomegalovirus
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396

(CMV), Epstein-Barr virus (EBV), and influenza virus detected by collation with VDJdb
database [45], were concentrated in effector CD8" T cells in both TFHL patients and HDs,
suggesting that they were “bystander” CD8™ T cells that recognized antigens unrelated to tumor

cells (data not shown).

Supplementary Note 2: Related to “In-silico and spatial intercellular interactions and

formation of the TFHL immune-evasive microenvironment”

The following is a comment regarding the subclustering and annotation of non-malignant cells
in the spatial analysis.

By unsupervised clustering and annotation using canonical markers, we identified 14
subclusters: granzyme B (GZMB)"*Y PD1"¢" CD8 Tpys, GZMB"€"PD1"°Y CDS8 T,
FOXP3/CD25" Treg, CD3/CD4* or CD3/CD8* T cells, CD19* B cells, CD3~CD4%" CD14*
myeloid cells, CD3/CD4/CD19~CD132/CD11B* NK cells, and CD21/CD35" follicular
dendritic cells (FDCs) (Table S18). Cluster 10 showed CD20~ CD19/CD79A%™, annotated as
PBL/PC (Fig. S18A). Cluster 13 exhibited high expressions of a-SMA and collagen type I,
whereas lineage markers were negative (Fig. S18B), suggestive of stromal cells such as
endothelial cells of blood and lymphatic vessels.

Consistent with previous reports on AITL [46], FDCs formed meshwork structures and
were identified as indistinguishable clusters from surrounding cells (clusters 3, 6, and 11; Fig.
S18C). Moreover, B cells adjacent to tumor cells were recognized as a single cluster with tumor

cells (cluster 12; Fig. S18D).
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Supplementary Table Legends

Supplementary Table 1. Characteristics of patients with TFHL and controls and comparison of

patient cohorts.

Supplementary Table 2. IMC analysis of TFHL tumor tissues.

Supplementary Table 3. Summary of tumor-cell clonotypes detected by scTCR-seq.
Supplementary Table 4. Proportion of cells detected by scRNA-seq and FCM analysis.
Supplementary Table 5. Somatic mutations detected by WES of 14 patients with TFHL.
Supplementary Table 6. Marker genes for each subcluster of LN and PB tumor cells.
Supplementary Table 7. Somatic mutations detected by reanalysis of scRNA-seq.
Supplementary Table 8. DEGs upregulated in LN and PB tumor cells compared with all
MNCs and normal Try cells.

Supplementary Table 9. DEG analysis of three candidate genes for novel tumor cell-specific
markers compared with all non-malignant MNCs.

Supplementary Table 10. IHC staining of PLS3 on PTCLs and B-cell lymphomas.
Supplementary Table 11. DEGs between Treg of RR TFHL LNs and HLNS.
Supplementary Table 12. DEGs between FCRL4* MBCs (B2) and FCRL4~ MBCs (B1) of
LNs.

Supplementary Table 13. DEGs in FCRL4* MBCs (B2) of ND or RR TFHL LNs compared
with those of HLNS.

Supplementary Table 14. AITL B-specific gene set cited from Fujisawa et al. (2022) [1] for
GSEA.

Supplementary Table 15. DEGs in XCLI* NK cells (NK1) of ND TFHL LNs compared with

those of HLNs.
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Supplementary Table 16. DEGs in XCLI* NK cells (NK1) of RR TFHL LNs compared with
those of HLLNs.

Supplementary Table 17. Antibodies used for IMC analysis.

Supplementary Table 18. Markers and annotation of each cluster for subclustering of non-
malignant cells in IMC analysis.

Supplementary Table 19. Results of spatial interaction analysis.

Supplementary Table 20. Antibodies used for FCM analysis and IHC staining.
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Figure S1. Cell-surface protein expression analysis and sorting by flow cytometry (FCM)

(A) Mononuclear cell (MNC) sorting of lymph node (LN) and peripheral blood (PB) samples.
After removing doublets and dead cells by forward versus side scatter plot and 7-Amino-
Actinomycin D (7-AAD) staining, MNCs were sorted, and library construction of single-cell
RNA and T-/B-cell receptor (TCR/BCR) sequencing (scRNA/TCR/BCR-seq) or FCM analysis
were performed. FSC, forward scatter; SSC, side scatter.

(B) CD4/CDS8* T-cell sorting for T cell-enriched library. For samples in which tumor-
containing CD3~CD4* cells were detected in the lymphocyte fraction in the initial analysis, CD3*
CD8" cells and CD4" cells were sorted.

(C) Cytokeratin staining for homeostatic LNs (HLNs). Cytokeratin negativity confirmed the
absence of tumor-cell contamination.

(D) Detection of tumor cells by surface antigen. Tumor cells were detected as a PD1™€" CD4*

T-cell population, as previously reported [47].
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Figure S2. Subclustering and TCR repertoire analysis of LN samples

(A) Absolute number (top of panels) and proportion (bottom of panels) of cells within all LN
MNC:s (left panel) and non-malignant LN MNCs (right panel) for each sample, color-coded by
cell types. B, B cell; CD4/CD8 T, CD4* and CD8* T cell; Myeloid, myeloid cell; NK, natural
killer cell; ND, newly diagnosed T follicular helper cell lymphoma (TFHL); RR, relapsed or
refractory TFHL; Tumor, tumor cell.

(B) Comparison between T cells from scRNA-seq data and TCRs from scTCR-seq data of LN
samples.

(C) Clone size of TCRs in LNs. The number of cells expressing each clonotype was defined
as clone size and illustrated for each cell.

(D) Pie charts of TCR clonotypes for each sample. Tumor clones are colored.

(E) Sankey plots of each clonotype in cases where the major tumor-cell clonotype was a TCR
with a single chain. The major clonotypes are colored in red and green, showing the CDR3
sequences per TCR chain. “NA” indicates that no TCR chain was detected. NA, not available;
TRA, TCR alpha chain; TRB, TCR beta chain.

(F) Relationship between CD3~ CD4" cells and the expression level of PD1 in each sample.
CD3~ CD4" (red) and CD3* CD4" (grey) populations detected by a CD3 versus CD4 plot (left
panel) are plotted separately on a histogram of PD1 expression (right panel). Samples in which
CD3~CD4* cells were detected by FCM analysis of LN samples are shown. sCD3eg, surface CD3e.

(G) FCM plots of CD3 versus CD4 for TFHL patients without single-chain TCR expansion.
Since LN samples from AITL10 and AITL11 were not available for detailed FCM analysis, only

PB FCM data are shown for these patients.

24



Supplementary Figure 3
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Figure S3. Single-cell analysis of PB samples

(A) Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) plots
of all PB MNCs from 16 TFHL and 5 healthy donor (HD) PB samples, colored according to cell
type (top left). Cells are shown separately for each clinical status (top right and bottom). NK/ydT,
natural-killer and gamma-delta T cell.

(B) Absolute number (top of panels) and proportion (bottom of panels) of cells within all PB
MNCs (left panel) and non-malignant PB MNCs (right panel) for each sample, color-coded by
cell types.

(C) Relationship between CD3~ CD4* cells and the expression level of PD1 in PB samples.
CD3~ CD4* (red) and CD3* CD4* (grey) populations detected by a CD3 versus CD4 plot (left
panel) are plotted separately on a histogram of PD1 expression (right panel). Samples in which

CD3~ CD4" cells were detected by FCM analysis of PB samples are shown.
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Supplementary Figure 4
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Figure S4. Bulk genomic profiling of the 14 TFHL patients

(A) Recurrent gene mutations detected by whole-exome sequencing (WES). Red squares
indicate single mutations and black ones indicate multiple mutations.

(B) Copy number variation (CNV) analysis using WES data from tumor tissue samples.

Significant CNVs were called by the Genome Analysis Tool Kit [34].
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Supplementary Figure 5
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Figure S5. Subclustering of tumor cells from LN and PB samples

(A) UMAP plots of LN and PB tumor cell subclusters. Cells are color-coded by each sample
and shown separately for each tissue.

(B) Absolute number (top) and proportion within all tumor cells (bottom) of cells for each
sample, color-coded by tumor subclusters.

(C) Heatmap of the top 50 differentially expressed genes (DEGs) for each subcluster. T
follicular helper (Tru) markers are shown in red.

(D) Feature plot showing estimation of cell cycle phase. Cell cycle score calculations were
performed based on canonical markers using the “CellCycleScoring” function of Seurat, and each
cell is colored according to the estimated cell cycle phase.

(E) Comparison of the proportion of each cluster in LN and PB tumor cells. The boxplots show
the median (center line), interquartile range (box limits), minimum to max values (whiskers), and
samples (dots) for each group. P-values are shown only when there is a significant difference.

(F) Volcano plot of DEGs between LN (pink) and PB (blue) tumor cells. NS, not significant;
VS., VErsus.

(G) Comparison of gene set variation analysis (GSVA) enrichment score for Tru signature in
LN (pink) and PB (blue) tumor cells. The boxplots show the median (center line), mean (center
dot), interquartile range (box limits), and minimum to max values (whiskers) for each group.

(H) Comparison of PD1 expression levels by FCM in LN (pink) and PB (blue) tumor cells.
Tumor cells were detected as a PD1™" CD4* T cell population by FCM [47]. The boxplots show
the median (center line), mean (center dot), interquartile range (box limits), and minimum to max
values (whiskers) for each group. MFI, median fluorescence intensity.

(D t-Distributed Stochastic Neighbor Embedding (t-SNE) plots of FCM analysis for tumor

cells of AITLSLN (top) and AITL8PB (bottom), colored by the expression levels of Try markers
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503 (PDI1, CD10, and CXCRY).

504 (J) Trajectory analysis by Monocle3 [27] for LN (top) and PB (bottom) tumor cells. The red
505  points were set as the origins of trajectory.

506 (K) UMAP plot showing tumor cells with paired-chain (green) and single-chain (orange) TCRs
507  (top) and their proportions in each cluster (bottom).

508 (L) Heatmap of gene ontology (GO) analysis of tumor cells with paired-chain (green) and
509  single-chain (orange) TCRs.

510 *P<5.0x%x 1072, *%%P < 1.0x 1073, %P < 1.0 x 107,
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Supplementary Figure 6
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Figure S6. Estimation of genetic mutations using single-cell data

(A) Overview of reanalysis of somatic mutations using scRNA-seq data.

(B) Distribution of RHOA G17V (G17V) for each sample in LN and PB tumor cells. MUT,
mutant cells; Unknown, cells with no mutant reads or no coverage.

(C) Distribution of detectable mutations other than G17V (LRRC41, KRAS 1.23R, LCK,
CTNNBI1, PSMB3, and RING) in LN and PB tumor cells. The sample names in parentheses show
the samples in which the mutations were detected. WT, wild-type cells.

(D) Volcano plot of DEGs between G17V mutant (red) and WT (blue) cells in LN and PB
tumor cells. G17V unknown cells were removed from the analysis.

(E) Heatmap of GO analysis of G17V mutant (red) and WT (white) tumor cells.

(F) Relationship between LRRC4] mutant cells and their clonotypes in AITLALN/PB tumor
cells. In the Sankey plot, tumor clones of AITL4 and LRRC41 mutant cells (green) are colored.

(G) UMAP plot showing the distribution of AITL4 tumor clones.
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Figure S7. Inferring CNVs using single-cell data

(A) Heatmaps of estimated CNVs for LN tumor cells by inferCNV [36]. Right bars represent
tumor clones, subclusters of tumor cells, and subgroups based on CNV patterns, respectively. chr,
chromosome.

(B) Volcano plot of DEGs between tumor cells with chr5 gain (red) and those without (blue).

(C) Comparison of GSVA enrichment score for the Try signature between tumor cells with
chr5 gain (pink) and those without (blue) in TFHL LNs with partial chr5 gain.

(D) Heatmaps of estimated CNVs for PB tumor cells in AITL10 and AITL12.

(E) Distribution (left) and comparison for each cluster (top right) or tissue (bottom right) of
CNV scores estimated using scRNA-seq data. In the boxplots of the top right panel, the dotted
line represents the mean CNV scores across all clusters and adjusted P-values are calculated by
the pairwise Wilcoxon test for each cluster against the mean value of all clusters.

All boxplots show the median (center line), mean (center dot), interquartile range (box limits),

and minimum to max values (whiskers) for each group. **P < 1.0 x 1072, ****P < 1.0 x 10,
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Figure S8. Identification of novel tumor-specific cell markers

(A) Feature plots of candidate marker genes in all LN (top) and PB (bottom) MNCs.
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Figure S9. Annotation of subclusters of non-malignant LN T cells

(A) Proportion of each cluster within non-malignant MNCs (top) and within non-malignant T
cells (bottom) for each sample. Tcm, central memory T cell; Toys, dysfunctional T cell; Tgrr,
effector T cell; Tx, naive T cell; Tero, proliferative T cell; Teropys, proliferative dysfunctional T
cell; Treg, regulatory T cell.

(B) Heatmap of the top 20 DEGs for each cluster of non-malignant LN T cells.

(C) Average expression per cluster of selected markers for cell-type annotation in non-
malignant LN T cells.

(D) Feature plots of dysfunctional T-cell markers.

(E) Feature plots of Treg markers.

(F) Subclustering of the CD4 Trro (T5) cluster. UMAP plot (top) and feature plots of Treg and
Tru markers (bottom).

(G) Cell-type estimation scores by SingleR [13] using previously published single-cell data as
a reference [48] for each subcluster of non-malignant T cells.

(H) Comparison of proportions of each subcluster of CD4 Tpro in non-malignant MNCs of
each sample. The boxplots show the median (center line), interquartile range (box limits),
minimum to max values (whiskers), and samples (dots) for each group. P-values are shown only
for significant differences. *P < 5.0 x 1072, **P< 1.0 x 1072

(D) Volcano plot of DEGs in Treg from RR TFHL LNs (red) and those from HLNs (blue).
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Supplementary Figure 10
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Figure S10. Subclustering of non-malignant PB T cells and non-malignant TCR repertoire
analysis

(A) UMAP plot of non-malignant PB T-cell subclusters. MAIT/ydT, mixture of mucosal-
associated invariant T cells and gamma-delta T cells; Tewm, effector memory T cell; Temra, effector
memory T cells re-expressing CD45RA; Tnicm, mixture of naive T cells and memory T cells.

(B) Comparison of proportions of each cluster in non-malignant MNCs of each sample. P-
values are shown only for significant differences.

(C,D) Subclustering of CD4 Trro (T5) cluster from non-malignant PB T cells. UMAP plot (C)
and expression levels of FOXP3 and PDCD1 (D).

(E) Comparison of proportions of each T5 subcluster in non-malignant MNCs of each sample.
P-values are shown only for significant differences.

(F) Volcano plot of DEGs between PB Trec of TFHL patients and those of HDs.

(G) Clone size of TCRs in non-malignant LN T cells. The proportion of each clonotype in all
TCRs of non-malignant T cells was calculated for each sample and shown separately for each
cluster. Non-expanded, clonotypes were expressed in < 2 cells.

(H) Trajectory analysis by Monocle3 [27] for non-malignant LN T cells. The red and blue
points were set as the origin of CD4"and CD8* T cells, respectively.

(D) TCR overlap analysis between LN (pink) and PB (blue) non-malignant T cells of TFHL
patients.

All boxplots show the median (center line), interquartile range (box limits), minimum to max

values (whiskers), and samples (dots) for each group. *P < 5.0 x 107,
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Supplementary Figure 11
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Figure S11. Annotation of LN myeloid-cell subclusters

(A) Proportions of each LN myeloid-cell subcluster within non-malignant MNCs (top) and
myeloid cells (bottom) for each sample. C1Q" M@, complement component Clq positive
macrophage; CDIC* ¢DC2, CDIC-positive type2 conventional dendritic cell; Class Mono,
classical monocyte; CLEC94* ¢cDC1, CLECY9A-positive typel c¢DC; Inter Mono, intermediate
monocyte; LAMP3* ¢cDC, LAMP3-positive cDC; pDC, plasmacytoid DC.

(B) Heatmap of the top 20 DEGs for each cluster of LN myeloid cells.

(C) Average expression per cluster of selected markers for cell-type annotation in LN myeloid
cells.

(D) Cell-type estimation scores by SingleR [13] for each cluster of LN myeloid cells using
scRNA-seq data from Cheng et al. [9] (left) and Villani et al. [5] (right).

(E) Trajectory inference by Slingshot [28] for LN monocytes and macrophages (M0-2) of
TFHL, color-coded by cluster (left) and pseudo-time (right).

(F) GSVA enrichment scores for “mature DC enriched in immunoregulatory molecules
(mregDC)” signature [49] in LN myeloid cells.

(G) Estimation of the origin of LAMP3* ¢cDCs of TFHL using a previously reported scoring
system [9,49].

(H) Violin plots of the top 3 DEGs upregulated in myeloid subclusters increasing in RR TFHL
LNs compared with those of HLNs. P-values are shown only for significant differences. *P < 5.0
x 1072, **P < 1.0 x 1072, #*#P < 1.0 x 1073, ****P < 1.0 x 107,

(D) Feature plot of CCL17 in LN myeloid cells from TFHL patients.
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Supplementary Figure 12
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Figure S12. Annotation of LN B-cell subclusters

(A) Proportions of each LN B-cell subcluster within non-malignant MNCs (top) and within B
cells (bottom) for each sample. FCRL4* MBC, FCRL4-positive memory B cell; GCB (DZ),
germinal center B cell in the dark zone; GCB (LZ), GCB in the light zone; MBC, memory B cell;
NBC, naive B cell; PBL, plasmablast; PC, plasma cell; preGCB, pre-germinal center B cell.

(B) Heatmap of the top 25 DEGs for each cluster of LN B cells.

(C) Average expression per cluster of selected markers for cell-type annotation in LN B cells.

(D) Volcano plot of DEGs in FCRL4" MBCs (B2, red) and FCRL4 MBCs (B1, blue) of LNs.

(E) Volcano plot of DEGs in FCRL4* MBCs from RR TFHL LNs (red) and those from HL.Ns
(blue).

(F) Dot plot of GO analysis of DEGs upregulated in B cells from TFHL LNs compared with
those from HLNs for GCB-related pathways analyzed by Fujisawa et al. [1].

(G) Dot plot of gene set enrichment analysis for an AITL B-specific gene set previously
reported [1]. Cut-off, false discovery rate (FDR) g-value < 0.25; NSE, normalized enrichment
score.

(H) Pie charts of BCR clonotypes for each TFHL sample. The top 10 BCRs are colored and
the proportions of the top 5 BCRs are shown.

(D) Clone sizes of the top 10 BCR clonotypes for each LN sample. The number (top) and
proportions (bottom) of cells expressing each clonotype were shown color-coded by cell types.

(J) Trajectory analysis by Monocle3 [27] for the cells sharing BCRs with FCRL4* MBCs in
AITLILN. The red point was set as the origin of the trajectory. The cells without sharing the

BCRs are shown in gray.
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Figure S13. Subclustering of LN NK cells

(A) UMAP plot of LN NK-cell subclusters. FCGR3A4* NK, FCGR3A-positive activated natural
killer cell; NKpro, proliferative NK; XCLI* NK, XCLI-positive tissue-resident NK.

(B) Proportions of each LN NK-cell subcluster within non-malignant MNCs (top) and within
NK cells (bottom) for each sample.

(C) Heatmap of the top 50 DEGs for each cluster of LN NK cells.

(D) Feature plots of marker genes in LN NK cells.

(E) Comparison of proportions of each subcluster of LN NK cells in non-malignant MNCs of
each sample. The boxplots show the median (center line), interquartile range (box limits),
minimum to max values (whiskers), and samples (dots) for each group. P-values are shown only
when there is a significant difference. *P < 5.0 x 107,

(F) Heatmap of the top 10 pathways detected by GO analysis between XCLI* NKs (NK1) from
TFHL LNs and those from HLNS.

(G) Volcano plot of DEGs in XCLI* NKs (NK1) from RR TFHL LNs (red) and those from

HLNs (blue).
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Figure S14. In silico cell-cell interaction analysis of TFHL LNs

(A) Number of significant interactions detected by in silico cellular interaction analysis using
CellPhoneDB [29] performed between tumor cells and subclusters of immune cells from ND (left)
and RR (right) TFHL LNs.

(B,C) Estimation of possible ligands (B), which can cause dysfunctional/exhausted signatures
of CD8 Tpys from RR TFHL LN, and their receptors expressed on tumor cells (C) by NicheNetR
[30]. Only interactions selected based on validated curated ligand-receptor databases are
visualized.

(D) Dot plot of average expression per tumor-cell subcluster of the receptors that can drive the

CD8 Tpys signature estimated by NicheNetR.
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Supplementary Figure 15
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Figure S15. Single-cell spatial analysis of TFHL tissues

(A) Feature plots of Try markers in all cells from TFHL tissues.

(B) Proportions of each cluster within all cells (left) and within non-malignant cells (right) for
each sample.

(C) Feature plots of markers related to CD8" T cell types in non-malignant cells.

(D) Heatmap of markers for each cluster of non-malignant cells.
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Supplementary Figure 16
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TCR clonotypes of all PB T cells
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Figure S16. TCR repertoire analysis of PB samples

(A) Pie charts of TCR clonotypes for each sample. Tumor clones are colored. Major tumor-
cell clonotypes are indicated by solid lines, and minor tumor-cell clonotypes are indicated by
dotted lines. Clonotypes with only one TCR chain are indicated by an asterisk (*).

(B) Sankey plots showing TCR tracking of sequential samples (AITL1 and AITL2). The top
10 clonotypes of samples from ND (AITL1xp and AITL2xp) and RR (AITL1grr and AITL2gr)
TFHLs were compared and CDR3 sequences of each clonotype are shown. The major clonotypes

of tumor cells are indicated by an asterisk (*).
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Supplementary Figure 17
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Figure S17. Characteristics of subclusters of non-malignant PB T cells

(A) Clone size of TCRs in non-malignant PB T cells. The number of cells expressing each
clonotype was defined as clone size and illustrated for each cell.

(B) TCR overlap analysis of non-malignant PB T cells, analyzed and illustrated for PB from

TFHL patients (upper right) and HDs (lower left), respectively.
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Supplementary Figure 18
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Figure S18. Annotation of subclusters of non-malignant cells in spatial analysis

(A) Violin plots of B-cell markers in B-cell clusters (clusters 9—12).

(B) Violin plots of stromal and lineage markers in a stromal-cell cluster (cluster 13).

(C) Representative IMC images of doublet clusters of FDCs and CD8* T (cluster 3, left), CD4*
T (cluster 6, middle), and B (cluster 11, right) cells, colored according to expression levels of
markers for FDCs (CD21 and CD35) and each cell (CD8A, CD4, and CD19, respectively). Cells
belonging to each doublet cluster are outlined with white lines. ROI, region of interest; Scale bar,
300 um (top) and 100 um (bottom).

(D) Representative IMC images of doublet clusters of B and tumor cells (cluster 12) colored
according to expression levels of markers for B cells (CD19), tumor cells (PD1), and FDCs
(CD21). Cells belonging to each doublet cluster are outlined with white lines. Scale bar, 300 pm

(left) and 100 um (right).
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