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ABSTRACT

Features of the Extracted Time Series
In the following, the plot of normalized computed features for the time series investigated in the manuscript is reported.
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Figure S1. Features of the individual Series. Plot of the feature for each considered time series. On the x-axis there is the
time. The dotted vertical line represents the largest event in the sequence whose magnitude is shown in the upper part of each
panel. The features are normalized in the range [-1,1], separately for each region. From the top to bottom: minimum magnitude
of completeness Mc, the b-value, moment magnitude (MW ), duration of events’ group, moment rate, Shannon’s Information
Entropy, coefficient of variation CoV, Nearest-Neighbour distance, Fractal Dimension (Dc)
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Further Details on Data splitting
The dataset under consideration, as reported in section “Study areas and data preparation” of the manuscript, is composed of 16
event series containing the event of interest for the present study in three different geothermal fields: The Geysers (TG), located
in California (USA), Cooper Basin (CB), located in Australia, and The Hengill (HG), located in Iceland.
In particular, as for TG and CB geothermal fields, the collection of the samples considered for each of the highest magnitude
events, i.e. what is defined as “time series” are composed of 2000 samples each, while for HG series of 600 samples have been
extracted. The difference in the number of samples related to the last geothermal area is due to the fact that events collected in
this catalogue are less frequent with respect to the other two catalogues. So, in order to make the time series span a reasonable
temporal window, the length of the HG series, in terms of number of extracted samples, has been shortened.
In total 27800 samples (2000×8+2000×5+600×3) are present in the dataset. In particular, the samples composing each
of the series are temporally consecutive: 1500 (TG and CB) or 350 (HG) events preceding the largest event in the sequence, the
largest event itself and 499 (TG and CB) or 249 (HG) events after it constitute a single time series. It is worth underlining that
this choice follows empirical and physical considerations, and the will to preserve a visual coherence between the phenomenon
under investigation and the results reported in the manuscript. However it should be stressed that, since (as reported in the
following and in the paper) the problem is framed as a classification one regarding each single sample, and so the presence of
the largest event and subsequent events is unnecessary for the purpose of precursors recognition.
By using the dataset built as described before, a Train/Validation/Test split procedure has been conducted. In details, once taken
apart three time series as Test set (i.e. 2000 for TG + 2000 for CB + 600 for HG samples related to three largest events), by
considering the remaining 23200 samples, the 50% of them have been randomly selected to create a Training set while the
remaining part has been selected as Validation set (as represented in the following figure).

Figure S2. Data Splitting. Schematic representation of Train/Validation split.
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Data Exploration and Discussion about Accuracy Results
From the splitting procedure described in the previous section it follows that, by construction, in the training set are present
samples of both classes, background and precursors, for all the series considered, except the ones used as Test set. This implies
that, as reported in the section “PreD-Net training” of the manuscript, even if the validation set is composed by samples unseen
by the network during the training procedure, they belong to series, within the meaning of set of samples related to an event of
interest , whose background events and precursors have been used to train the model: the regions in the features’ space on which
background and precursor validation samples lay, for each series, are identified during the training procedure. Therefore, we
can assess that validation samples are obviously unknown by the network, but the contexts they are drawn from are somehow
known.
On the other hand, since the samples used as Test set have been put apart before the Train/Validation split, both the single
samples and the contexts are totally unknown in this case: the classification of these events is hence harder and relies on the
generalization abilities of the model. These considerations impact the choice of preserving the natural disproportion of classes
present in the collected dataset: drastically reducing the number of background points in order to balance the dataset can
eventually cause the erroneous recognition of “background regions” in the features’ space, degrading the model performance.
The goal is then to train the model in such a way it recognizes as many patterns as possible, in order to also improve its
generalization abilities.
The aforementioned discussion is supported by observations on a non-linear two-dimensional projection obtained through the
TSNE algorithm of the features’ vectors: for each samples’ collection related to a event of interest (i.e. the largest magnitude
event in a specific series), it has been found that projected samples distribute in small groups, which are generally coherent
with respect to the labeling (see the following Figure S3). Moreover, it can be observed that groups of precursor samples are
usually separated from ones belonging to the class background. This also justify the high prediction accuracy achieved on
the Validation set: the PreD-Net Model is able to understand contexts from Training samples, i.e. it is able to understand,
in the features’ space, where small groups of background samples and of precursor samples are located. Validation samples,
belonging to regions identified during the training phase, are then classified with an high degree of confidence due to the
proximity to known regions.
The previous reasoning, of course, is not applicable to the Test samples, since the three series are completely unknown from
both the point of view of the samples and the contexts: the PreD-Net model has to rely on its generalization capabilities,
understanding, without any example, which “small clusters” are composed by background samples and which are composed
by precursor ones. This translates into a much more complex task, that explains the drop of accuracy in the classification of
samples whose contexts have been never seen in the training phase.
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Figure S3. t-SNE. t-SNE representation of samples of the series. In light blue the background seismicity is reported, while
precursory events are in dark blue.
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Preliminary Investigation on Features’ importance and Validation of PreD-Net Results
To assess the predictive importance of features, several tests have been carried out in order to verify that the PreD-Net model
does not just recognize trivial patterns that could be extracted from the features taken individually. Since no obvious difference
emerges among the features distribution in background and precursor contexts, as can be seen from the following Figure S4,
statistical tests have been exploited to check whether background related features’ distributions and precursors related ones
differ in terms of mean, median or variance. In particular, once assessed the non-normality of the features, a Mann-Whitney test
and a Levene test for the homoscedasticity have been explored.

Figure S4. Data Distribution. Distribution plot of the features with respect to the two classes considered in the classification
problem.

From the results shown in the Table S1, it emerges that some statistically relevant differences among features in the background
and precursor contexts are present. However, no information about obvious patterns that connect a specific feature to the
background/precursor label emerges.
Furthermore, in order to analyze the predictive power of the features, as well as the suitability of simpler algorithms with
respect to the proposed PreD-Net for the task addressed in the manuscript, a 10-fold cross validation procedure has been
implemented. In particular, the performances of some Machine Learning algorithms (Logistic Regression, Tree-based models,
Support Vector Classification and a simple Multilayer Perceptron) have been compared with ones provided by PreD-Net, and a
feature importance analysis has been conducted.
The cross validation has been then carried out on a dataset constituted by the entire data taken without the Test set. The
predictive performances of the Machine Learning models have been evaluated, for each of the 10 training phases, both on the
fold not used for the training, in this process named Validation set, and on the Test set, exploring the recognition abilities of the
models about “known” contexts and its generalization strength.
In particular, the relevance of the single features has been investigated through a permutation importance strategy, i.e. randomly
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Table S1. Mann-Whitney and Levene p value

Feature Mann-Whitney - p value Levene - p value

Depth 0.899 0.402
Mw 0.223 0.001
Seismic Moment 0.583 0.109
DeltaE 0.891 0.151
Mc 0.987 0.001
sigMc 0.002 0.001
b 0.002 0.002
sigb 0.001 0.003
Shannon Entropy 0.001 0.001
tdurw 0.003 0.003
Cov 0.074 0.002
Moment Rate 0.001 0.002
Dc 0.006 0.003
sigDc 0.001 0.001
Nearest Neighbour 0.004 0.001

shuffling the values of one feature at time during the iterations of the cross validation process: the accuracy variation of the
models reflects the importance of the shuffled feature in terms of prediction. Repeating ten times such a procedure for each fold
assures a robust estimation of the features’ predictive power with respect to the applied model. The results concerning both the
features’ importance analysis and the peculiarity of PreD-Net performances are shown and discussed in Sec. “Investigation on
Features’ importance” and Sec.“Investigation on Model Performances ” of the manuscript.
As concern these last set of tests, to further assess the reliability of the obtained high performances , a corrected paired t-test1

has been carried out to verify that the differences of mean accuracy metrics between the models are statistically significant.

Table S2. p-values from the t-test

Logistic Regression Random Forest XGBoost Bagged Extremely Randomized Tree MLP

Accuracy 0.0 0.0 0.000013 0.0 0.0
F1 Score 0.0 0.0 0.0 0.0 0.000015
ROC AUC 0.0 0.000011 0.000002 0.0 0.0

In the Table S2, p-values from the t-test computed on evaluation metrics obtained in the 10 fold cross validation procedure on
the Test set are shown. This null-hypothesis test confirms what has been discussed before, providing supplementary evidence
on the peculiarity of the results obtained through the PreD-Net architecture.

Further Details of PreD-Net Architecture and Training Procedure
The PreD-Net model consists of a three branch network composed of a Convolutional (CNN) stack, a Dilated convolutional
(DiCNN) stack and a recurrent (GRU) stack. The architecture has been designed to operate with or without lagged variables
associated to each sample: the first refers to the case each sample is taken individually (each sample will be a vector 1×16),
the latter refers to the case in which temporal subsequences are taken into account, i.e. the case that features’ values of events
(t−m)−(t−1) are associated to the generic sample at timestep t (the sample will be a vector 1×(m×16), with m representing
the length of the subsequence considered, i.e. m timesteps).
In detail, the central branch of the network follows a structure of shrinking convolutional one dimensional filters and expanding
transposed one dimensional convolutional filters. This architecture performs pattern extraction and noise reduction along the
features’ dimension, therefore acting as an Autoencoder.
The latent space generated by the encoding stage of the central branch serves as input of a stack of GRU layers, whose aim is to
recognize temporal patterns between the sample under consideration and related lagged ones, if present. In other words, given
an input vector 1× (m×16) which represents a sample at time t accompanied by its (m−1) preceding events, the latent space
generated by the Encoding section of the central branch will be a vector m×nF , with nF being the number of convolutional
filters; this will be the input of the GRU stack.
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Figure S5. Convolutional Filters. Example of how convolutional filters work in the central branch of the network: given 2
events, with the related features (blue squares for the first sample, orange ones for the second) convolutional filters act in the
way the variables related to a single sample are compressed to a low-dimensional representation.

The third branch, composed by dilated convolutional layers, acts on the input of the network extracting temporal patterns among
the single features: due to a dilation rate of 16 (the number of features), these convolutional filters act on the temporal stack of a
single feature at a time. The aim of this branch is therefore to “understand” the behavior, in time, of each of the single variables
out of the 16, returning an output of dimensions 16×nF , where also in this case nF represents the number of filters associated
to this convolutional stack.

Figure S6. Dilated Convolutional Filters. Example of how dilated convolutional filters work in the network: given 2 events,
with the related features (blue squares for the first sample, orange ones for the second) dilated convolutional filters act in order
to extract patterns between different timestep of a specific feature at time. In the case no lagged variables are provided, this
branch acts as an embedding.

The main idea behind the designed architecture has been to analyze the information in input from different points of view,
providing a compressed representation of the input data and analyzing temporal relations between events and single features.
As aforementioned, the model has been prepared to work with temporal subsequences of events as well as a single event at time.
All the performed experiments have reported better classification performances in the second case: this could be explained with
the fact that some of the features are computed on backward temporal windows that implicitly express temporal patterns; on the
contrary, taking into account samples added with lagged values introduces a degree of complexity due to the choice of lagged
timesteps to consider, therefore introducing noise in the training process. The results shown in the manuscript refers to the
classification of single events. In this case, obviously, the GRU branch of the network is cut off, while the dilated convolutions
act as an embedding for each single feature of the sample.
The choice of preserving the architecture of the neural network with also the GRU branch has been made to keep the possibility
of applying the model to new datasets exploiting also temporal subsequences: as regards the three catalogs tested in the
presented work, and as discussed before, the performances about the classification task suggest the “single event at time” shape
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for the input data. However, it should not be excluded that on different catalogs, or considering more data, i.e. more time series
contexts, the contribution of temporal patterns among events overcome the introduced noise, improving the overall accuracy of
the classification.
As pointed out in the section “Data Exploration and Discussion about Accuracy Results” of these supplementary materials,
the dataset presented in the manuscript suffers from a certain degree of class imbalance: while the choice of preserving this
characteristic has the aim of keeping a physical peculiarity of the problem, this turns the classification task into a rare case
recognition task, which may require specific strategies to be addressed.
The loss function adopted in the case under examination is a combination of Binary Categorical Cross-Entropy and Dice
Coefficient on the class 1, i.e. precursors. This combination aims to exploit the stability of the former with respect to the
backpropagation process while compensating the class unbalance through the latter, which acts as a penalization term on
misclassified samples belonging to the minority class. Defined the Binary Crossentropy as:

CE(p,q) =−p · log(q)+(1− p) · log(1−q)

and the Dice Coefficient, written as loss, as:

DICE(p,q) = 1− 2∑ pq
∑ p2 +∑q2

the loss function exploited in the experimental phase presented in the work can be written as:

Loss = (1−β ) ·C̄E +β ·DICE1

where β acts as a balancing parameter. The determination of the value for such a balancing parameter has been carried out in
the training process itself: β has been defined as a trainable parameter, and its value has been optimized during the optimization
of the loss function. However, since the Dice component constitutes a corrective term for the Binary Cross Entropy and must
not overcome this component, the value of β has been bounded in the interval [0.2,0.5].
Moreover, as pointed out in the introductory section of the manuscript, the labeling of precursors require empirical/subjective
criteria to be carried out; to take into account the uncertainty connected to such criteria, as well as to allow the model to
better generalize over the discrimination of backgrounds and precursors, a relaxation parameter for the crossentropy has been
introduced.
Finally, in order to enhance the network performances, a specific training procedure has been developed: subsequent training
sub-phases of the network are carried out with finer learning rates, in such a way each sub-phase starts from the best result (in
terms of value of the loss function, and related setting of the network’s weights) attained in the preceding one. In particular,
each sub-phase ends when an early-stopping criteria is matched; then, best weights of the network are restored, and a new
sub-phase starts with a new learning rate obtained as a fraction of the previous one. The training procedure ends when a limit
value for the learning rate is reached. This procedure ensures that the minimization process over the loss function does not
get stuck in local minima, and stabilizes the performances of the PreD-Net with respect to the uncertainty introduced by the
random shuffling of the Train/Val split and the random initial allocation of the layers’ weights. In the Table S3 main parameters
for the network, training phase and loss function are reported.

Further Test Experiments
The process described in section “PreD-Net training and prediction” of the manuscript has been carried out considering other
time series as Test set. The following figures show the obtained results.
Moreover, an experiment has been carried out to test the sensitivity of the settings used for the warning strategy. In the following
time series of 2000 elements have been extracted from the TG catalogue, in particular chosen to not contain any events of
magnitude greater than 2.1. In other words, PreD-Net has been tested on a series of pure backgrounds in order to assess its
performances. As can be observed, for each series, the whole sequence is correctly predicted as background. Furthermore,
it can be noticed that the developed warning strategy correctly returns no alert since it is based on the slope of cumulative
predicted probability for the precursors: in the regions this probability suddenly increase, a peak of the CDF derivative is
present; however, since no threshold is crossed, it remains green due to the smoothness of the CDF and the low probability of
being precursors for the large majority of considered samples.
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Table S3. Parameter Values for PreD-Net Training

Parameters Value
Architectural Parameters

# Convolutional Filters 32
GRU Layers [64, 64, 64]
Dense Layers [512, 64, 8]

Learning Parameters
Optimizer Adam
Initial Learning Rate 1e−3
Decreasing Factor for LR 3
Final Learning Rate 1e−6
L2 Regularization 2e−6
# Epochs 1000
Initial Patience 50
Increasing Factor for Patience 0.2

Loss Parameters
Relaxation Parameter 0.025
Bounds for the Balancing Coefficient (0.2 - 0.5)
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Figure S7. Test results of PreD-Net: Test of PreD-Net by considering, as Test set, the series 2 of the Hengill geothermal
region, the series 3 of Cooper Basin and the series 5 of The Geysers.In the upper panel of each subfigure is reported the
probability an event is predicted as “precursor” (y-axis), while the color represents the ground truth (orange for precursors, blue
for background samples). In the middle panel is reported the warning strategy. In the last panel values of MW for the samples
considered are reported, in pink if background samples, in dark if precursors.
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Figure S8. Test results of PreD-Net: Test results considering, as Test set, the series 1 of the Hengill geothermal region, the
series 2 of Cooper Basin and the series 3 of The Geysers.In the upper panel of each subfigure is reported the probability an
event is predicted as “precursor” (y-axis), while the color represents the ground truth (orange for precursors, blue for
background samples). In the middle panel is reported the warning strategy. In the last panel values of MW for the samples
considered are reported, in pink if background samples, in dark if precursors.
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Figure S9. Test results on Background: Test results of PreD-Net considering series of only background samples taken from
TG. It is worth noticing that, for visual purposes, the CDF and the CDCF are normalized on the 2000 samples constituting the
whole time series.
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