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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

This is a comprehensive review of the health effects of smokeless tobacco. I have some 

comments that should be addressed in a revision: 

1. In line 52 you refer to "local products". Local to where? the specific region is not stated. 

2. In lines 67/68 you cite the 89th IARC monograph (2004) that outlined the association 

between smokeless tobacco products and cancer. However, there is an updated IARC 

monograph (Vol 100 E) that evaluated the carcinogenicity of ST among other lifestyle 

factors. 

3. For lip and oral cavity cancers you estimated a relative risk of 3.88. This is the expected 

result. However, in line 298 you translate this risk to "at least 3-16%". It is not clear how a 

RR of 3.88 can be as low as a 3-16% increased risk. 

4. You did not find sufficient evidence of a significant association between chewing tobacco 

use and the 

risk of ischemic heart disease. This finding is contrary to many important epi studies earlier 

reported from India. Please refer to the high-quality work of P.C. Gupta. Perhaps including 

some US studies in your analysis (eg ref 26) may have attenuated the risk estimate. Kindly 

revisit this analysis as this is an important public health message. 

5. Under Methods line 445, you have excluded naswar, and gul from the analysis. Naswar, in 

particular, is a popular ST used in Pakistan and Afghanistan and is considered by many 

authors as an ST product. Naswar is the major risk factor for oral cancer in this Region. This 

should be included in the analysis. 

Reviewer #2 (Remarks to the Author):

“Health effects associated with chewing tobacco: a Burden of Proof study” 

First thoughts on the paper by Gabriela F. Gil et al. submitted to Nature Communications. 

Author: P. N. Lee 

Date: 21st June 2023 

I have conducted numerous meta-analyses related to the effects of smoking and tobacco in 



relation to numerous diseases, though I have never looked in detail at the evidence on 

chewing tobacco. At the present time I have looked at parts of this very large submission, 

which concludes that there is weak-to-moderate evidence that tobacco chewers have an 

increased risk of stroke, and of each of the five cancer groupings considered, but there was 

insufficient evidence of an association with ischaemic heart disease. When I conduct meta-

analyses I typically present results of standard fixed-effect meta-analyses and of random-

effect meta-analyses, and I looked for these in the material provided. I found Tables S13 to 

S19 which (inter alia) presented columns headed RR (95% UI without y) and RR (95% UI with 

y), noting that the RRs were always the same, but that the confidence intervals differed. For 

the primary analysis (results also shown in Table 2 of the main paper) all the without y RRs 

(except that for ischaemic heart disease) were significant, but all the with y RRs (except that 

for stroke) were not significant, and given the with y RRs seemed more relevant, it was 

unclear why the conclusion was reached that there was weak-to-moderate evidence of an 

association, especially as the with y RRs were virtually always non-significant in the 

sensitivity analyses for the five cancer types. I also did not understand why the without and 

with y RRs were always the same, as fixed-effect and random-effects RR estimates typically 

vary. 

I decided to do my own meta-analyses for one of the cancers, choosing nasopharynx cancer 

as it had relatively few estimates. Using the data in Table S5 “Summary of Data Inputs” I 

then extracted the 24 log effect sizes and standard errors from the 17 studies providing 

data. One major problem was that for the studies with multiple estimates (Arain 2015 – 4; 

Gajalakshmi 2012 – 4; and Wyss 2016 – 2) there was no indication whatsoever in Table S5 

(or anywhere else in the paper that I could find) to distinguish between the estimates (e.g. 

were some for males, and some for females, or did they relate to different levels of 

adjustment for covariates) or say which had been included in the primary analyses which 

were based on only one estimate from each study. According to my meta-analyses, if one 

included all 24 estimates, one ended up with a fixed-effect estimate of 2.87 (95% CI 2.57-

3.20) and a random-effects estimate of 2.65 (1.84-3.82), and even choosing the largest 

estimate from the studies with more than one estimate, one still ended up with estimates of 

fixed – 3.44 (3.05-3.89) and random – 3.42 (2.28-5.14), somewhat different from those 

given in the paper, with notably the random-effect estimate very clearly significant, 

consistent with the claims of the paper. I am not at all sure how the authors produce their 



with y RRs – it would seem simpler and better to use random-effects RR estimates. 

In the process of doing these calculations, and also looking at the forest plots, various things 

struck me about study Gupta 2020. First, the RR estimate was enormously high (the log 

effect size of 4.27 being equivalent to a RR of 71.5, far far greater than that from any of the 

studies, where the largest other one (Singh 2008) was 7.61. Second, the log effect size 

estimate for nasopharynx cancer was the same (with the same standard error) for all the 5 

cancers studied. Without reference back to the source Singh paper, it seems that that the 

paper provided an estimate for the five cancers combined, and the authors have taken it to 

apply to all the cancers individually. This is total nonsense – on a par with saying that if 

smoking doubles the RR for overall mortality, it also doubles the risk of each individual 

disease – and anyway the frequency of the 5 types of cancer varies, so clearly the estimates 

cannot have the same standard error. I would definitely not assume that risk estimates for a 

broad group of diseases apply to each disease individually, and omit the Gupta 2020 

estimate from the analysis of nasopharynx cancer. There are a number of other studies 

where this error needs correction (e.g. Akhtar 2016, Anuradha 2019, Basu 2008) – if you are 

presenting results for a disease, one should not include estimates for a broader grouping 

including the disease. 

Looking at the Forest plots, some things struck me. One, why present the studies in reverse 

alphabetical order (bizarre!). Two, if you are going to include the multiple estimates from a 

study, can you not indicate which one was included in the primary estimate (or if some 

combined estimate was produced from the multiples show that). Three, I note that the blue 

shading indicates the width of the 95% confidence interval of the combined with y estimate, 

but as I have noted already these estimates appear to be very much too wide, based on a 

simple random-effects estimate. 

A few other things struck me – though I have not read everything in detail. 

In the sensitivity analyses, the results for the primary analysis and for the “no covariates 

included” are always the same. I can make no sense of this – if the primary analysis includes 

all the estimates, whether or not covariates were adjusted for, and the “no covariates 

included” only included unadjusted estimates, it would seem absolutely remarkable that the 

results could possibly be the same (unless no study adjusted for covariates, which can’t be 

true). 

Did any of the studies restrict attention to non-smokers in their analyses of chewing 



tobacco? It is generally true that those who use one source of nicotine are more likely to use 

other sources. Without such restriction, excess risks associated with chewing may be in part 

due to chewers being more likely to smoke. 

What about occupational risks? Chewing is a convenient way of getting nicotine in situations 

(e.g. down mines) where smoking is not allowed or hazardous, and excess risks for chewers 

may partly reflect occupational risks. 

In general, I thought there was too little information for each RR on what variables had been 

adjusted for, and which were sex-specific. This could be fitted into Table S5, by using 

abbreviations for the health outcomes, and much shorter headings for columns 3 and 4. 

There is some information in Table S9, but this is at the study level, and RRs within study 

may vary on the extent of adjustment.



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

This is a comprehensive review of the health effects of smokeless tobacco. I have some comments that 

should be addressed in a revision: 

1. In line 52 you refer to "local products". Local to where? the specific region is not stated.  

In our original submission, we noted that our definition of chewing tobacco refers to forms of smokeless 

tobacco that are masticated by the users and used the term “local products” to clarified that this 

definition also encompasses sub-types of chewing tobacco products that are used in specific 

communities around the world, like gutkha, mainpuri, and zarda. Per your comment, we removed the 

term “local” since, as you note, this term inaccurately suggests that there is a specific regional focus in 

our analysis. Instead, we hope this edit clarifies that our review encompasses any chewing tobacco sub-

type/product as long as the primary habitual form of use is mastication.  

2. In lines 67/68 you cite the 89th IARC monograph (2004) that outlined the association between 

smokeless tobacco products and cancer. However, there is an updated IARC monograph (Vol 

100 E) that evaluated the carcinogenicity of ST among other lifestyle factors. 

Thank you for bringing the updated IARC monograph (Vol 100 E) to our attention! We have reviewed the 

updated IARC for any studies that our review may have missed to make sure we encompass all of the 

available evidence on the association between chewing tobacco and the seven health outcomes of 

interest. Of the case-control or cohort studies mentioned in the updated IARC monograph that were 

published before 1970, we had already reviewed 36/40 as part of our first submission. We reviewed the 

remaining four and found that they did not report an effect size for chewing tobacco specifically. Of the 

studies we had already screened, most similarly examined smokeless tobacco broadly or non-chewed 

forms of smokeless tobacco, which fall outside of the scope of the present analysis. We confirmed that 

we have already included all the eligible studies in the updated IARC monograph pertaining to chewed 

forms of smokeless tobacco. We have also updated the citation and reference in lines 69-71, as well as 

other locations where the previous IARC monograph was cited, to this more recent update.  

3. For lip and oral cavity cancers you estimated a relative risk of 3.88. This is the expected result. 

However, in line 298 you translate this risk to "at least 3-16%". It is not clear how a RR of 3.88 

can be as low as a 3-16% increased risk. 

We have added clarification in the Results (lines 147, 192, 231), the Discussion (line 329), in the 

Methods section (lines 618-620) regarding how we derived the estimated increased risk and made sure 

to describe this percentage as the minimum estimated increased risk. These percentages refer to the 

percentage increase in relative risk derived from the conservative interpretation of available evidence 

used in the burden of proof analytical approach. The relative risk estimate for lip and oral cavity cancers 

reflects the mean estimate of association, while the Burden of Proof Risk Function (BPRF) and the 

corresponding average increased risk is the 5th quantile of the relative risk estimates closest to a relative 

risk of 1. The average increased risk is calculated directly from the (BPRF), rather than from the relative 

risk point estimate, so it reflects the minimum increased risk of the health outcome experienced by 

chewing tobacco users based on the most conservative interpretation of all the evidence. 1-16% reflects 



the range of increased risk estimated for stroke, lip and oral cavity cancer, and esophageal cancer as the 

three health outcomes with star ratings of two in the burden of proof framework.  

4. You did not find sufficient evidence of a significant association between chewing tobacco use 

and the risk of ischemic heart disease. This finding is contrary to many important epi studies 

earlier reported from India. Please refer to the high-quality work of P.C. Gupta. Perhaps 

including some US studies in your analysis (eg ref 26) may have attenuated the risk estimate. 

Kindly revisit this analysis as this is an important public health message. 

Given the public health importance of ischemic heart disease, we considered it an important health 

outcome to evaluate and screened over 1500 studies to identify the breadth of available evidence 

related to the association between chewing tobacco use and the risk of ischemic heart disease. As our 

analysis is not limited to a specific region to capture all available evidence, we did not exclude studies 

based on their geography alone. However, as you mentioned and as we described in our Discussion 

(lines 397-400), there are potential differences in the risk profile of specific products used by some 

communities, which may translate into regional differences that cannot be fully explored at present 

time given the very limited amount of data available in most of the world. We modified the text to 

clarify this point.  

Within the constraints of existing literature, we also conducted a new sensitivity analysis for all our 

outcomes by limiting the studies to only those conducted in Asian countries, including India, Pakistan, 

and Bangladesh. The results of this sensitivity analysis reflect whether or not the inclusion of studies 

from countries with fewer users of chewing tobacco (like the US and European countries) may be 

attenuating our global risk estimates. Specifically for ischemic heart disease, we still did not find 

sufficient evidence of an association between chewing tobacco use and the risk of ischemic heart 

disease (See Supplementary Table S14 and Figure 3). This finding remains consistent with other meta-

analyses that find heterogeneous results on the relationship between chewing tobacco and ischemic 

heart disease (Discussion, lines 352-362). In fact, when limiting our data to only Asian studies, our 

results did not deviate from those of our primary analyses for any of the health outcomes with the 

exception of esophageal cancer, which saw a lower star rating (going from a two-star risk-outcome pair 

in our primary analysis to a one-star risk-outcome pair in this sensitivity analysis). We added this 

sensitivity analysis to our results. 

5. Under Methods line 445, you have excluded naswar, and gul from the analysis. Naswar, in 

particular, is a popular ST used in Pakistan and Afghanistan and is considered by many authors 

as an ST product. Naswar is the major risk factor for oral cancer in this Region. This should be 

included in the analysis. 

We completely agree with this reviewer’s comment that naswar is a popular form of smokeless tobacco 

used in Pakistan and Afghanistan, however, the present analysis and review focuses solely on chewed 

forms of smokeless tobacco, distinct from non-chewed forms of smokeless tobacco. Non-chewed and 

chewed forms of smokeless tobacco can be quite different in terms of their risk profile and composition, 

in addition to having different forms of administration, which guided our decision to narrow the scope 

of our review to only chewing tobacco products. As a result, we do not consider naswar, gul, snus, or 

other such non-chewed forms of smokeless tobacco because their main mode of administration is being 

placed in the mouth and sucked. This distinction in terms of mode of use is also described in the 

updated Volume 100E IARC monograph mentioned above1. While the risk of oral cancer associated with 



these forms of non-chewed smokeless tobacco may be significant, evaluating this risk is outside of the 

scope of this analysis that focuses on the health risks of chewing tobacco.  

Reviewer #2 (Remarks to the Author): 

 “Health effects associated with chewing tobacco: a Burden of Proof study” 

 First thoughts on the paper by Gabriela F. Gil et al. submitted to Nature Communications. 

 Author: P. N. Lee 

 Date: 21st June 2023 

I have conducted numerous meta-analyses related to the effects of smoking and tobacco in relation to 

numerous diseases, though I have never looked in detail at the evidence on chewing tobacco. At the 

present time I have looked at parts of this very large submission, which concludes that there is weak-to-

moderate evidence that tobacco chewers have an increased risk of stroke, and of each of the five cancer 

groupings considered, but there was insufficient evidence of an association with ischaemic heart 

disease. When I conduct meta-analyses I typically present results of standard fixed-effect meta-analyses 

and of random-effect meta-analyses, and I looked for these in the material provided. I found Tables S13 

to S19 which (inter alia) presented columns headed RR (95% UI without y) and RR (95% UI with y), 

noting that the RRs were always the same, but that the confidence intervals differed.  For the primary 

analysis (results also shown in Table 2 of the main paper) all the without y RRs (except that for ischaemic 

heart disease) were significant, but all the with y RRs (except that for stroke) were not significant, and 

given the with y RRs seemed more relevant, it was unclear why the conclusion was reached that there 

was weak-to-moderate evidence of an association, especially as the with y RRs were virtually always 

non-significant in the sensitivity analyses for the five cancer types. I also did not understand why the 

without and with y RRs were always the same, as fixed-effect and random-effects RR estimates typically 

vary. 

We have modified the text of our Methods to clarify the distinction between the RRs with gamma and 

without gamma. In brief, due to our usage of MR-BRT and the Burden of Proof framework, the 

difference between the RRs reported with gamma and without gamma is in how we estimate the 

uncertainty surrounding the mean RR, not in our estimation of the mean RR itself. The modeling 

methodology is described in detail in the Burden of Proof methods capstone and has been applied and 

validated in several Nature Medicine publications but, as elaborated upon in the Methods of this paper 

and a Commentary published in Nature Medicine, is distinct from traditional fixed and random effects 

models2–7. 

In traditional meta-analyses, between-study heterogeneity has a limited effect on the posterior 

uncertainty surrounding the mean effect size, and its impact is attenuated by increasing number of 

studies, even if these studies contradict each other. The uncertainty interval we report that does not 

incorporate gamma reflects the uncertainty around the mean effect, akin to what would be reported in 

a traditional meta-analysis. This estimate reflects the existence of an association between the health 

outcome and chewing tobacco based on current evidence and is the basis for evaluating whether or not 

a risk-outcome pair merits inclusion in the Global Burden of Disease study. 

With the RR with gamma, we take a step further and additionally incorporate the uncertainty 

surrounding between-study heterogeneity as well as between-study heterogeneity, which we believe is 

the appropriate course of action to fully capture the uncertainty within existing literature on the 



association between outcome and risk. The final uncertainty intervals we report with gamma are 

derived from both the posterior uncertainty surrounding the mean effect size and the 95th quantile of 

between-study heterogeneity, estimated using the inverse of Fisher Information Matrix. This measure, 

RR with gamma fully incorporated, is reported to reflect the degree to which existing literature 

consistently finds the association between the health outcome and chewing tobacco. It is not meant to 

be examined independently of the RR without gamma, but rather provides a complementary measure 

that captures unexplained sources of variation between studies. The Burden of Proof Risk Function, as 

the 5th quantile of the RR with gamma, informs our interpretation of the strength of the evidence, again 

explained in more detail by Zheng et al. (2022) and Aravkin et al. (2023)2,7.  

I decided to do my own meta-analyses for one of the cancers, choosing nasopharynx cancer as it had 

relatively few estimates. Using the data in Table S5 “Summary of Data Inputs” I then extracted the 24 log 

effect sizes and standard errors from the 17 studies providing data. One major problem was that for the 

studies with multiple estimates (Arain 2015 – 4; Gajalakshmi 2012 – 4; and Wyss 2016 – 2) there was no 

indication whatsoever in Table S5 (or anywhere else in the paper that I could find) to distinguish 

between the estimates (e.g. were some for males, and some for females, or did they relate to different 

levels of adjustment for covariates) or say which had been included in the primary analyses which were 

based on only one estimate from each study.  

We greatly appreciate the level of detail and time taken to replicate our meta-analysis! We hope others 

will also be able to draw upon the data provided in Table S5 to validate our estimates. We recognize 

Table S5 leaves ambiguity as to the differences across observations from the same studies, particularly 

since they are all used in our primary analyses. We addressed this issue by adding a couple of columns 

to Table S5, including one that describes the reason why multiple observations from one study may have 

been selected for inclusion in our primary analyses using our data point selection framework (which is 

described briefly in the Methods (lines 556-569) and in detail in Supplementary Information Section 2.2). 

In brief, for studies that reported multiple effect sizes, we selected those that best matched our 

outcome and exposure definitions, were the most-adjusted reported effect size, and were the most 

aggregated group if sub-group analyses were available. The selected effect sizes are those reported in 

Table S5. We modified the Methods (lines 556-569) to clarify this process further. When this selection 

schema resulted in multiple included observations from a single study based on overlapping samples 

(for example, two effect sizes reported for two different sub-types of chewing tobacco without 

accounting for dual users that would be reflected in both), we inflated the corresponding standard error 

by multiplying it with the square root of the number of included observations from the sample to reduce 

the over-weighting of a handful of studies in our estimates. These adjusted standard errors are reported 

in Table S5 as they are the direct data inputs for our primary analysis.  

According to my meta-analyses, if one included all 24 estimates, one ended up with a fixed-effect 

estimate of 2.87 (95% CI 2.57-3.20) and a random-effects estimate of 2.65 (1.84-3.82), and even 

choosing the largest estimate from the studies with more than one estimate, one still ended up with 

estimates of fixed – 3.44 (3.05-3.89) and random – 3.42 (2.28-5.14), somewhat different from those 

given in the paper, with notably the random-effect estimate very clearly significant, consistent with the 

claims of the paper. I am not at all sure how the authors produce their with y RRs – it would seem 

simpler and better to use random-effects RR estimates. 



We appreciate the reviewer’s approach to validating our relative risk estimates! As described above, all 

24 estimates in Table S5 were included in our primary analysis, which reflected adjustments made to 

account for overlapping study samples. When comparing the reviewer’s results with all 24 estimates, we 

do not find them to be significantly different from our own without the full incorporation of gamma 

(2.55; 95% UI: 1.83-3.54). The differences in our results can be easily explained by our use of the MR-

BRT modeling tool. For models with more than 10 observations, including nasopharynx cancer, we 

applied 10% trimming to remove interference from outliers, which would not have been used in a 

simple random-effects or fixed-effects model using all data points. It is also possible that the reviewer 

did not incorporate the two bias covariates that were detected for inclusion in our own model for 

nasopharynx cancer.  

Our incorporation of gamma in estimating the uncertainty of the RR, which involves both quantifiying 

between-study heterogeneity and uncertainty surrounding between-study heterogeneity, drives the 

further differences between the reviewer’s results and our RRs with gamma, as it does the differences 

between our RRs with and without gamma. The strengths of this approach have been described above 

and in a recently published Commentary in Nature Medicine.2 The Burden of Proof approach presents a 

comprehensive series of measures, including RRs with gamma, to evaluate the strength of the available 

evidence. Our use of MR-BRT and how we produce our estimates are described in the Methods (lines 

546-609) and the Supplementary Information Section 3.4. We have added more detail on our estimation 

of the RRs with gamma in the Methods (lines 603-609). 

In the process of doing these calculations, and also looking at the forest plots, various things struck me 

about study Gupta 2020. First, the RR estimate was enormously high (the log effect size of 4.27 being 

equivalent to a RR of 71.5, far far greater than that from any of the studies, where the largest other one 

(Singh 2008) was 7.61. Second, the log effect size estimate for nasopharynx cancer was the same (with 

the same standard error) for all the 5 cancers studied. Without reference back to the source Singh 

paper, it seems that that the paper provided an estimate for the five cancers combined, and the authors 

have taken it to apply to all the cancers individually. This is total nonsense – on a par with saying that if 

smoking doubles the RR for overall mortality, it also doubles the risk of each individual disease – and 

anyway the frequency of the 5 types of cancer varies, so clearly the estimates cannot have the same 

standard error. I would definitely not assume that risk estimates for a broad group of diseases apply to 

each disease individually, and omit the Gupta 2020 estimate from the analysis of nasopharynx cancer. 

There are a number of other studies where this error needs correction (e.g. Akhtar 2016, Anuradha 

2019, Basu 2008) – if you are presenting results for a disease, one should not include estimates for a 

broader grouping including the disease. 

We greatly appreciate the reviewer’s attention to detail! We reviewed Gupta 2020 again to confirm the 

accuracy of our extraction given this very large effect size, and we confirmed that the very high RR 

estimate was accurately extracted from the reported number of cases and controls for head and neck 

cancers. In our present models, the trimming algorithm incorporated in the Burden of Proof analysis, 

described in the Methods (lines 550-555), consistently acts as expected and marks Gupta 2020 as an 

outlier among the cancer outcomes. Consequently, the high effect size does not affect our relative risk 

estimates, burden of proof risk function, or uncertainties.  

As the reviewer correctly pointed out, for studies that reported on the association between chewing 

tobacco and a grouping of more than one head and neck cancer, we applied the reported relative risk to 



each of the head and neck cancer outcomes included in the given grouping. We believe this is 

reasonable given that chewing tobacco affects the risk of these different cancers through similar 

mechanisms and, as the reviewer stated, would not make the same assumption for larger groups of 

outcomes, like all-cause mortality. Prior to our first submission, we investigated strategies for potentially 

adjusting the effect sizes or standard errors based on disease incidence to account for the limitations in 

applying these aggregated outcome definitions, however, we decided against doing so because the 

majority of studies with aggregate outcome definitions did not report on the proportions of the sub-

types included in their sample. Any adjustment made would have introduced even more assumptions, 

particularly regarding the study populations and sampling strategy, and added additional uncertainty to 

our estimates that could not be adequately substantiated. 

We acknowledge that this is a limitation of our study necessary to leverage the full expanse of existing 

evidence given the wide range of head and neck cancer groupings that are used in literature. We 

describe it in our Discussion (lines 408-421) as an important caveat to the interpretation of our results. 

We also conducted a sensitivity analysis for our cancer outcomes to examine the extent to which the 

effect sizes derived from aggregate outcome definitions influenced our final results. In this sensitivity 

analysis, described in the Methods (lines 649-650) and in detail in the Supplementary Information 

Section 4, we only included studies specific to the given cancer. The results are reported throughout the 

Results, Figure 3, and Supplementary Information Section 4, and overall, we found this analysis to be 

largely consistent with our primary analysis.  

Looking at the Forest plots, some things struck me. One, why present the studies in reverse alphabetical 

order (bizarre!).  

We have changed the order that the studies are presented on the forest plots in alphabetical order.  

Two, if you are going to include the multiple estimates from a study, can you not indicate which one was 

included in the primary estimate (or if some combined estimate was produced from the multiples show 

that).  

As described in one of our responses above, all the effect sizes reported in Table S5 and in our forest 

plots are included in the primary analysis. We have modified the captions of the forest plots to clarify 

this point. We describe our process for selecting these observations briefly in the Methods (lines 556-

562) and in more detail in the Supplementary Information Section 2.2. For selected observations from 

the same study derived from mutually exclusive samples, we did not make any further adjustments. 

When a study reported more than one observation that aligned with our selection criteria and that were 

derived from non-mutually exclusive samples, we downweighed its observations by multiplying the 

standard error by the square root of the number of observations to avoid over-representing a single 

sample in the results. This process is described in the Methods (lines 562-568).  

Three, I note that the blue shading indicates the width of the 95% confidence interval of the combined 

with y estimate, but as I have noted already these estimates appear to be very much too wide, based on 

a simple random-effects estimate. 

As described above, the 95th confidence interval with gamma reflects was estimated by incorporating 

both standard estimates of uncertainty as estimated by a random-effects model and the 95th percentile 



of between-study heterogeneity. This process is aligned with the Burden of Proof methodology used 

throughout this analysis. 

A few other things struck me – though I have not read everything in detail. 

In the sensitivity analyses, the results for the primary analysis and for the “no covariates included” are 

always the same. I can make no sense of this – if the primary analysis includes all the estimates, whether 

or not covariates were adjusted for, and the “no covariates included” only included unadjusted 

estimates, it would seem absolutely remarkable that the results could possibly be the same (unless no 

study adjusted for covariates, which can’t be true). 

We clarified in the Methods (lines 646-648) that the sensitivity analysis that does not include covariates 

does not refer to a sensitivity analysis only with unadjusted observation, but rather, it involved not 

evaluating any bias covariates for inclusion in our models. The dataset for this sensitivity analysis was 

unchanged from the primary analysis. We acknowledge that the results are nearly identical to 2 decimal 

places between the models that incorporate bias covariates that were found to be significant and those 

that do not incorporate any bias covariate (the “no covariates included” analysis). The Burden of Proof 

analytic framework uses strong Gaussian priors in the selection of bias covariates to avoid overfitting the 

model in the face of limited data for each value of the covariate. More details on the use of the Gaussian 

priors can be found in the Burden of Proof methods capstone7. The use of this prior was also 

incorporated in the framework to reduce the instability observed in the covariate selection process 

during its development prior to its application in this study. We have modified the Methods (line 583) 

and referenced the Methods capstone to highlight the role of the prior as the driver of attenuated 

differences between the models including covariates and the sensitivity analyses without covariates. 

Did any of the studies restrict attention to non-smokers in their analyses of chewing tobacco? It is 

generally true that those who use one source of nicotine are more likely to use other sources. Without 

such restriction, excess risks associated with chewing may be in part due to chewers being more likely to 

smoke. 

The reviewer correctly highlights that smoking status is an important consideration when examining the 

health effects of chewing tobacco. In our original submission, we account for studies that controlled for 

smoking status or limited their analytical sample by smoking status through our series of dummy 

covariates that depicted a data point’s degree of adjustment. Observations needed to be controlled for 

smoking status to be considered maximally adjusted or even appropriately adjusted. These covariates 

were tested for inclusion in our models through a bias covariate selection algorithm that evaluated 

whether data points with the given adjustment levels deviated significantly from the data points that 

were not adjusted for at least smoking status, age, and sex. The covariate flagging observations adjusted 

for at least age, sex, and smoking status were selected for the primary analysis for esophageal cancer 

and nasopharynx cancer.  

Based on this feedback, we decided to go further and return to the subset of studies that explicitly 

limited their analysis to only non-smokers. We ran an additional sensitivity analysis by restricting our 

data to only the observations derived from samples of non-smokers. This limited the number of included 

observations substantially, relative to our primary analysis, to fewer than 10 for four of our seven 

outcomes and fewer than the minimum of three necessary to run our meta-analysis for stroke. 

However, from the analyses we were able to run with and without trimming, we actually did find 

stronger evidence of an association for other pharynx cancer, larynx cancer, and lip and oral cavity 



cancer than in our primary analysis, while our star rating (or lack thereof) remained unchanged for 

ischemic heart disease and nasopharynx cancer. For esophageal cancer, we had insufficient observations 

to run our analysis with 10% trimming of outliers, so while the non-smoker sensitivity analysis without 

trimming resulted in a one-star rating (as opposed to the two-star rating in our primary analysis), this 

aligned with the untrimmed results from our complete dataset. This evaluation of a subset of our data is 

a great contribution to the paper, affirms our results as a conservative interpretation of all available 

data, and bolsters our call for further research attention to chewing tobacco distinct from other forms of 

tobacco use, including smoking.  

What about occupational risks? Chewing is a convenient way of getting nicotine in situations (e.g. down 

mines) where smoking is not allowed or hazardous, and excess risks for chewers may partly reflect 

occupational risks. 

We appreciate that the reviewer brought up occupational risks in association with chewing tobacco as 

chewing tobacco is engaged with in occupational settings in some parts of the world. We have added a 

brief discussion of this question in the Discussion (lines 399-402), however, very few of our included 

studies adjusted for occupation, so we are limited in our ability to account for this potential source of 

unmeasured confounding. As you mention, differing occupational risks and occupational profiles of the 

individuals included in studies conducted in different locations may be one of the factors contributing to 

the large heterogeneity we observed across studies, so we have made sure to highlight this alongside 

other potential sources of variation and as a potential area for future meta-analyses to explore when 

more data stratified by occupation is available. 

In general, I thought there was too little information for each RR on what variables had been adjusted 

for, and which were sex-specific. This could be fitted into Table S5, by using abbreviations for the health 

outcomes, and much shorter headings for columns 3 and 4. There is some information in Table S9, but 

this is at the study level, and RRs within study may vary on the extent of adjustment.  

Per your suggestion, we’ve made changes to both Table S5 and S9. As described above, we added three 

columns to the data-point specific rows in Table S5: 1) A column flagging whether a data point is sex-

specific, 2) A column that clarifies the difference between data points for studies with multiple included 

observations in the primary analysis (eg. one observation for smokers and one for non-smokers), and 3) 

A column describing, in short form, which bias covariates the data point was flagged for. We believe this 

level of additional detail for each RR will help make the data point selection process more transparent 

and improve the replicability of our results with the MR-BRT tool. For Table S9, we clarified that each 

row corresponds to an observation from the corresponding study.  
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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

Thank you for responding to reviewers' comments 

Reviewer #2 (Remarks to the Author):

“Health effects associated with chewing tobacco: 

a Burden of Proof study” 

Comments on the revised manuscript (NCOMMS-23-21587A) 

_______________________________________________ 

Author : P.N. Lee 

Date : 9th August 2023 

I thank the authors for the detailed replies to my rather lengthy comments on the original 

manuscript. While I myself would have done the meta-analyses differently (using standard 

fixed-effect and random-effects meta-analyses, and not assuming that relative risks for a 

combined endpoint apply equally to its component endpoints) the reply convinces me that 

what has been done seems valid. Partly due to pressure of other work, and partly as it 

would take me a very considerable time to fully get to grips with the detail of the 

methodology used ( I am nearly 80 and perhaps the saying about teaching old dogs new 

tricks applies!), I am happy to accept that the revised manuscript is now OK. Certainly the 

replies to my earlier comments give me confidence in the validity of the revised paper. 

Reviewer #3 (Remarks to the Author): 

Thank you for the opportunity to review this manuscript, “Health effects associated with 

chewing tobacco: a Burden of Proof study”. I commend the authors for using a new and 

complex method for analysis that holds great promise for the field of meta-analysis and for 

writing a clear and easily interpreted manuscript. My expertise is in statistical methods for 



meta-analysis, and as such my critiques will focus on those aspects of this manuscript. 

1. Greater justification is needed for the authors’ choice of how they inflated standard 

errors of effect size estimates from the same study by multiplying by the square root of 

shared sample size. While I agree some adjustment must be made for correlated effects (as 

is common in multivariate meta-analyses), the authors’ approach to this appears overly 

punitive and introduces unnecessary noise in their analysis, potentially by an order of 

magnitude (see example below). I highly suggest the authors either incorporate multivariate 

meta-analysis methods and estimate estimation error covariances (which can be done from 

2x2 tables), or find a more reasonable approach to adjusting for this correlation. 

a. As an example, consider two effect size estimates from the same study that are perfectly 

correlated (i.e., they use identical participants and their outcomes; basically the same effect 

size used twice) computed on 100 total observations (shared between both effects) and 

denote their common estimation error variance as ν. If both effects were incorporated into 

a fixed-effects meta-analysis (i.e., if you include an effect twice), then that one effect (which 

is included twice) would receive twice the weight it should; the weight given to this one 

effect (which is included twice) would be 2/ν. The solution, then, would be to multiply the 

standard errors by √2, which would effectively halve the weight each of the effects received 

(i.e., both effects would receive a weight proportional to 1/2ν, and hence overall the one 

effect that is repeated would get weight proportional to 1/ν, rather than 2/ν). However, 

under the authors’ approach, one would multiply the standard errors by 10 in this example, 

which would give each effect a weight proportional to 1/100ν and would give the overall 

effect a weight proportional to 1/50ν. Further, since standard errors in meta-analyses are 

inverse functions of the weights, not only does this approach give too little weight to the 

study in this example, it also inflates uncertainty in estimated parameters to an unnecessary 

degree. 

2. Zheng et al. argue for trimming outliers in the context of estimating exposure-risk curves 

via spline models. However, given that does not appear to be a step in the present analysis, 

why do the authors opt for outlier exclusion in their primary analysis? I would think that 



their inclusion of all studies in their “sensitivity analysis” would be more reflective of the 

data. If my understanding of the methods used in this manuscript is correct (see below), the 

models presented are ostensibly mixed effects meta-regressions, and seldom are outliers 

trimmed in the fitting of those models (without the identification of scientific or analytic 

flaws in the studies excluded). As well, some of the trimmed effects displayed in forest plots 

do not visually appear to be striking outliers. 

3. I appreciate that this is a complex estimation procedure in general and that describing it 

step-by-step can be useful to the non-statistical readers, but as a statistician, I had a hard 

time figuring out exactly what the final model was. My understanding is that you ultimately 

fit a meta-regression model with random study effects and included variables selected from 

a stepwise LASSO procedure. Is this correct? 

4. In the context of the present manuscript, the exposure is binary and hence the spline 

portion of the methods described by Zheng et al. appear not to be included in the present 

analysis, is this correct? 

5. The step-by-step description (both here and in the article by Zheng et al.) also makes it a 

little unclear if fixed and random effects in the final models are estimated jointly or if the 

method uses a plug-in estimate for the variance component. 

6. I have some confusion regarding how the BPRF is calculated: are relevant quantiles 

determined from a full a posterior predictive distribution of effect parameters? Or is there a 

different type of calculation using the conservative 95th percentile of the estimated 

between-study variance component? If it is the latter, I suggest reporting a similar quantity 

using the posterior predictive distribution of effect parameters as that reflects a more 

conventional Bayesian statement regarding updated beliefs about the impact of chewing 

tobacco given the data. 



7. The inclusion of a random study effect in the final model allows for heterogeneity 

between effects in different studies, as well as a correlation between effects in the same 

study. However, I wonder if the authors considered within-study variation as an important 

source of effect heterogeneity, and if so, the methods outlined in the present manuscript 

and by Zheng et al. do not appear to include parameters for that type of variation.



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

Thank you for responding to reviewers' comments 

We are grateful for the opportunity to respond to original comments provided by the reviewers and for 

the time taken to review our updated manuscript.

Reviewer #2 (Remarks to the Author): 

“Health effects associated with chewing tobacco: a Burden of Proof study” 

 Comments on the revised manuscript (NCOMMS-23-21587A) 

Author : P.N. Lee 

Date : 9th August 2023 

I thank the authors for the detailed replies to my rather lengthy comments on the original manuscript. 

While I myself would have done the meta-analyses differently (using standard fixed-effect and random-

effects meta-analyses, and not assuming that relative risks for a combined endpoint apply equally to its 

component endpoints) the reply convinces me that what has been done seems valid. Partly due to 

pressure of other work, and partly as it would take me a very considerable time to fully get to grips with 

the detail of the methodology used ( I am nearly 80 and perhaps the saying about teaching old dogs new 

tricks applies!), I am happy to accept that the revised manuscript is now OK. Certainly the replies to my 

earlier comments give me confidence in the validity of the revised paper. 

We appreciated the attention to detail in the original comments by this reviewer because they gave us 

the opportunity to strengthen our submission and clarify some of the more complex components of the 

burden of proof methodology. We are heartened to hear that our responses thoroughly addressed the 

reviewer’s concerns and appreciate the reviewer’s decision. 

Reviewer #3 (Remarks to the Author): 

Thank you for the opportunity to review this manuscript, “Health effects associated with chewing 

tobacco: a Burden of Proof study”. I commend the authors for using a new and complex method for 

analysis that holds great promise for the field of meta-analysis and for writing a clear and easily 

interpreted manuscript. My expertise is in statistical methods for meta-analysis, and as such my 

critiques will focus on those aspects of this manuscript.  

Given that this manuscript reflects the first application of the burden of proof methodology to chewing 

tobacco, we appreciate the additional care taken to review the statistical strengths of the novel 

approach. We thank the reviewer for their kind words and hope we responded satisfactorily to their 

questions below. 

1. Greater justification is needed for the authors’ choice of how they inflated standard errors of 

effect size estimates from the same study by multiplying by the square root of shared sample 

size. While I agree some adjustment must be made for correlated effects (as is common in 

multivariate meta-analyses), the authors’ approach to this appears overly punitive and 

introduces unnecessary noise in their analysis, potentially by an order of magnitude (see 



example below). I highly suggest the authors either incorporate multivariate meta-analysis 

methods and estimate estimation error covariances (which can be done from 2x2 tables), or find 

a more reasonable approach to adjusting for this correlation. 

a. As an example, consider two effect size estimates from the same study that are 

perfectly correlated (i.e., they use identical participants and their outcomes; basically 

the same effect size used twice) computed on 100 total observations (shared between 

both effects) and denote their common estimation error variance as ν. If both effects 

were incorporated into a fixed-effects meta-analysis (i.e., if you include an effect twice), 

then that one effect (which is included twice) would receive twice the weight it should; 

the weight given to this one effect (which is included twice) would be 2/ν. The solution, 

then, would be to multiply the standard errors by √2, which would effectively halve the 

weight each of the effects received (i.e., both effects would receive a weight 

proportional to 1/2ν, and hence overall the one effect that is repeated would get weight 

proportional to 1/ν, rather than 2/ν). However, under the authors’ approach, one would 

multiply the standard errors by 10 in this example, which would give each effect a 

weight proportional to 1/100ν and would give the overall effect a weight proportional to 

1/50ν. Further, since standard errors in meta-analyses are inverse functions of the 

weights, not only does this approach give too little weight to the study in this example, 

it also inflates uncertainty in estimated parameters to an unnecessary degree 

We believe there may have been some miscommunication regarding our process for inflating the 

standard errors, and we have updated the main manuscript text (lines 547/548 and figure captions) to 

prevent such miscommunication in the future. We do not inflate the standard error by leveraging the 

shared sample size because, as the reviewer highlights, this would result in a dramatic under-weighting 

of the effect sizes. Rather, we utilize the number of included effect sizes from the same study with 

overlapping samples. In this, we align with the solution proposed by the reviewer of multiplying the 

standard errors of two effect estimates from the same study sample by the square root of two. In our 

submitted manuscript, we referred to this process as multiplying the standard errors by the square root 

of the number of observations, with observations referring to the included effect sizes, but this language 

is imprecise, so we have updated the text to refer to number of included effect sizes to prevent further 

confusion. 

2. Zheng et al. argue for trimming outliers in the context of estimating exposure-risk curves via 

spline models. However, given that does not appear to be a step in the present analysis, why do 

the authors opt for outlier exclusion in their primary analysis? I would think that their inclusion 

of all studies in their “sensitivity analysis” would be more reflective of the data. If my 

understanding of the methods used in this manuscript is correct (see below), the models 

presented are ostensibly mixed effects meta-regressions, and seldom are outliers trimmed in 

the fitting of those models (without the identification of scientific or analytic flaws in the studies 

excluded). As well, some of the trimmed effects displayed in forest plots do not visually appear 

to be striking outliers. 

While the focus of Zheng et al. was on the application of the burden of proof analysis to continuous risk 

exposures, the rationale for incorporating trimming in models with sufficient data points is consistent in 

our dichotomous models. Trimming with MR-BRT, our analytical tool, is an approach that has been 



presented in prior burden of proof studies for both continuous and dichotomous risks by detecting 

observations that substantially deviate from the patterns reflected in the data given their reported 

uncertainty. In testing the removal of such data points with simulated data, Zheng et al. found that 

algorithmic likelihood-based trimming improved the stability and reliability of resulting risk estimates. 

Trimming outliers is particularly important for Burden of Proof analyses given that our results speak to 

the degree of consistency in published literature, which would be quite affected by the inclusion of data 

points that substantially deviate from an otherwise consistent field. As with the rest of our 

methodology, we aligned our approach with the guidance provided by Zheng et al. However, for the 

purpose of transparency, we also ran all our models with more than 10 observations with and without 

trimming and described these in both the main text (Figure 3) and the Supplementary Information. 

3. I appreciate that this is a complex estimation procedure in general and that describing it step-

by-step can be useful to the non-statistical readers, but as a statistician, I had a hard time 

figuring out exactly what the final model was. My understanding is that you ultimately fit a 

meta-regression model with random study effects and included variables selected from a 

stepwise LASSO procedure. Is this correct? 

Yes, this is exactly right. The final model is a linear mixed effects model with random effects by study 

(with gamma denoting their variance), that uses bias covariates that encode study design and were 

selected by the LASSO stepwise procedure. Our focus while writing the manuscript was to ensure that all 

readers, particularly policy makers who may find our results actionable, are able to follow, however, we 

appreciate that having a clear statement pointing to what the final model is in technical terms is also 

very useful for fellow researchers. As such, we have clarified this point by adding a sentence akin to our 

explanation in this response in the Methods (lines 437-439).  

4. In the context of the present manuscript, the exposure is binary and hence the spline portion of 

the methods described by Zheng et al. appear not to be included in the present analysis, is this 

correct? 

Yes. While the methods proposed by Zheng et al. can be (and have been) applied to binary and 

continuous exposures, the exposure definition used in the present manuscript is binary. As a result, the 

spline portion of the methodology is not relevant nor described in our main text because it is only used 

to better inform the shape of continuous dose-response relationships.  

5. The step-by-step description (both here and in the article by Zheng et al.) also makes it a little 

unclear if fixed and random effects in the final models are estimated jointly or if the method 

uses a plug-in estimate for the variance component.  

The fixed and random effects in the final linear mixed effects model are estimated jointly. We have 

added clarification to this regard in the Methods (lines 440-441). 

6. I have some confusion regarding how the BPRF is calculated: are relevant quantiles determined 

from a full a posterior predictive distribution of effect parameters? Or is there a different type of 

calculation using the conservative 95th percentile of the estimated between-study variance 

component? If it is the latter, I suggest reporting a similar quantity using the posterior predictive 

distribution of effect parameters as that reflects a more conventional Bayesian statement 



regarding updated beliefs about the impact of chewing tobacco given the data. 

The Burden of Proof Risk Function (BPRF) is a new quantity introduced by the Burden of Proof 

methodology that is calculated as described in the manuscript (lines 581-584) and in Zheng et al. As a 

result, BPRF is a measure that incorporates both between-study heterogeneity and its uncertainty 

obtained using the Fisher Information Matrix, rather than a standard Bayesian sampling approach. This 

aspect of the methodology makes it robust to cases with low study numbers, like a handful of the risk-

outcome pairs described in the present manuscript, as shown in simulations described by Zheng et al. As 

reported in previous published Burden of Proof analyses for other risk factors, the BPRF is interpreted in 

conjunction with other measures reported in Table 2 to reflect our comprehensive understanding of the 

impact of chewing tobacco on these health risks and the current breadth of available literature. 

7. The inclusion of a random study effect in the final model allows for heterogeneity between 

effects in different studies, as well as a correlation between effects in the same study. However, 

I wonder if the authors considered within-study variation as an important source of effect 

heterogeneity, and if so, the methods outlined in the present manuscript and by Zheng et al. do 

not appear to include parameters for that type of variation.  

Since there are only a handful of studies with multiple effect sizes reported, we do not consider it as an 

important source of heterogeneity for the present analysis and do not include parameters for this 

variation. Instead, we go beyond traditional approaches to meta-analyses by fully incorporating 

estimates of between-study heterogeneity and the uncertainty of said estimates. Getting at within-study 

variation is more challenging since authors typically report results for the entire study, particularly for 

dichotomous risk-outcome pairs. With increasing coordination between research groups, it may become 

possible to address this additional challenge and look forward to doing so in future research efforts.  



REVIEWER COMMENTS

Reviewer #3 (Remarks to the Author):

I would like to commend the authors on their prompt and clearly written responses to my 

previous review. Now that I understand the authors’ methods a little better, I have one 

remaining critique and one suggestion. 

1. Though the authors clarified that their adjustment to estimation error variances (or 

standard errors) of effect sizes from the same study pertains to the number of effect sizes in 

that study (as opposed to the number of individual participants), it still needs better 

justification. The hypothetical I provided in my previous review would be considered an 

extreme adjustment; multiplying the standard errors of two effect estimates from the same 

study (which provides only two effect estimates) would be appropriate if those estimates 

were perfectly correlated. In this sense, the authors are almost certainly overinflating 

estimation errors (or equivalently, they are appropriately inflating them if they assume 

estimation errors are perfectly correlated within studies, which is testable though likely 

untrue). 

As a simplified example, assume there is no between-study variance (gamma = 0), and that 

n effect estimates in the same study have estimation error correlation rho and the same 

estimation error variance (v). Then the weight each would receive should be 1/((n-1) * rho * 

v + v). Note that this simplifies to the authors’ proposed solution only if rho = 1. However, if 

the estimation correlation is smaller, say, 0.3, then for a study with n=2 effects, the authors' 

approach would assign a weight of 1/2v for each effect, but the optimal approach would be 

to assign 1/1.3v weight to each (i.e., the authors' approach would assign only 65% of the 

optimal weight to these effects). Two points are worth noting about this. First, the question 

of weights gets more complicated in the presence of between-study heterogeneity (gamma 

> 0). Second, the impact of using this extreme model for estimation correlations is that their 

resulting parameter estimates are potentially much noisier than they need to be. 

In a frequentist meta-analysis, robust variance estimation procedures, including sandwich 

estimators, can adjust analyses (specifically the uncertainty in estimated parameters) for the 

fact that estimation error covariances are typically not reported and thus unknown to the 

analyst. Because the authors use a Bayesian approach, there does not appear to be a 



standard analog for these methods. However, there are some options that remain open, 

even in a Bayesian paradigm. First, the authors could present the analysis as-is but caveat 

that it represents an extreme model for estimation errors unlikely to be true, but that is 

likely (potentially very) conservative in terms of uncertainty. Alternatively, they could use 

their fitted model to impute estimation covariances using principles outlined by Wei and 

Higgins. Finally, they could opt to specify various multivariate models for estimation error 

(i.e., varying the correlations from 0 to 1) in their Bayesian meta-regression and fit their 

models assuming those correlations were known. 

2. I understand and (mostly) accept the authors’ argument regarding trimming. I would note 

that trimming in this context has two implications. First, excluding (or substantially down-

weighting) the results of specific studies for parameter estimation because they are not 

consistent with other studies will on its face raise validity concerns with consumers of meta-

analyses, particularly if they are high-quality studies. Second, there are several potential 

models in the meta-analytic literature that have been used to explain why results may vary 

and adjust estimates accordingly (in some cases, quite efficiently), including a large 

literature on publication selection. I note this because while I find the methods they used 

promising and refreshing, this will remain a point of concern for methodologists and applied 

researchers alike as they figure out how the models used in BOP meta-analyses map onto 

some well-studied phenomena about published research. 

Reference: 

Wei, Y. and Higgins, J.P. (2013), Estimating within-study covariances in multivariate meta-

analysis with multiple outcomes. Statist. Med., 32: 1191-1205. 

https://doi.org/10.1002/sim.5679



REVIEWER COMMENTS

Reviewer #3 (Remarks to the Author): 

I would like to commend the authors on their prompt and clearly written responses to my previous 

review. Now that I understand the authors’ methods a little better, I have one remaining critique and 

one suggestion. 

We appreciate the reviewer’s continued focus on our methodology and are heartened to hear that our 

previous responses helped clarify our work further. We hope our response provided below and resulting 

revisions will appropriately address your remaining feedback. 

1. Though the authors clarified that their adjustment to estimation error variances (or standard errors) 

of effect sizes from the same study pertains to the number of effect sizes in that study (as opposed to 

the number of individual participants), it still needs better justification. The hypothetical I provided in 

my previous review would be considered an extreme adjustment; multiplying the standard errors of two 

effect estimates from the same study (which provides only two effect estimates) would be appropriate if 

those estimates were perfectly correlated. In this sense, the authors are almost certainly overinflating 

estimation errors (or equivalently, they are appropriately inflating them if they assume estimation errors 

are perfectly correlated within studies, which is testable though likely untrue).  

As a simplified example, assume there is no between-study variance (gamma = 0), and that n effect 

estimates in the same study have estimation error correlation rho and the same estimation error 

variance (v). Then the weight each would receive should be 1/((n-1) * rho * v + v). Note that this 

simplifies to the authors’ proposed solution only if rho = 1. However, if the estimation correlation is 

smaller, say, 0.3, then for a study with n=2 effects, the authors' approach would assign a weight of 1/2v 

for each effect, but the optimal approach would be to assign 1/1.3v weight to each (i.e., the authors' 

approach would assign only 65% of the optimal weight to these effects). Two points are worth noting 

about this. First, the question of weights gets more complicated in the presence of between-study 

heterogeneity (gamma > 0). Second, the impact of using this extreme model for estimation correlations 

is that their resulting parameter estimates are potentially much noisier than they need to be.  

In a frequentist meta-analysis, robust variance estimation procedures, including sandwich estimators, 

can adjust analyses (specifically the uncertainty in estimated parameters) for the fact that estimation 

error covariances are typically not reported and thus unknown to the analyst. Because the authors use a 

Bayesian approach, there does not appear to be a standard analog for these methods. However, there 

are some options that remain open, even in a Bayesian paradigm. First, the authors could present the 

analysis as-is but caveat that it represents an extreme model for estimation errors unlikely to be true, 

but that is likely (potentially very) conservative in terms of uncertainty. Alternatively, they could use 

their fitted model to impute estimation covariances using principles outlined by Wei and Higgins. Finally, 

they could opt to specify various multivariate models for estimation error (i.e., varying the correlations 

from 0 to 1) in their Bayesian meta-regression and fit their models assuming those correlations were 

known.  

While we understand and agree with the reviewer that our approach reflects a conservative approach to 

accounting for effect sizes derived from non-mutually exclusive study samples, we arrived at the present 

method upon reviewing the available data and finding that our included studies typically do not report 



the proportion of sample overlap (e.g. dual users of two different chewing tobacco sub-types) between 

included observations as a measure of estimate correlation. Without the consistent availability of such 

information and given the constraints of our modeling approach, we opted for a cautious approach in 

which we apply a conservative adjustment derived from the available data. It is worth noting that this 

adjustment is only applied to a handful of observations included in our models, so we do not expect the 

impact of this adjustment to be substantial on our overall results. 

In alignment with the reviewer’s first suggestion, we have further clarified the justification for our 

standard error inflation in our main manuscript (lines 546-548) and added an explicit acknowledgement 

that, although the limitations of the data make our approximation of estimation correlation necessary, 

this approach results in a very conservative adjustment (lines 548-849).  

2. I understand and (mostly) accept the authors’ argument regarding trimming. I would note that 

trimming in this context has two implications. First, excluding (or substantially down-weighting) the 

results of specific studies for parameter estimation because they are not consistent with other studies 

will on its face raise validity concerns with consumers of meta-analyses, particularly if they are high-

quality studies. Second, there are several potential models in the meta-analytic literature that have 

been used to explain why results may vary and adjust estimates accordingly (in some cases, quite 

efficiently), including a large literature on publication selection. I note this because while I find the 

methods they used promising and refreshing, this will remain a point of concern for methodologists and 

applied researchers alike as they figure out how the models used in BOP meta-analyses map onto some 

well-studied phenomena about published research. 

We appreciate the reviewer flagging the novelty of our trimming methodology and are heartened that 

they agree in our stance that it presents a promising approach for systematically detecting outliers. This 

approach has been previously applied in several published and accepted Burden of Proof analyses, and it 

was derived from trimming methodology used in other types of statistical analyses.1-5 In its 

development, it was further tested in different data sparseness scenarios, and it was found to not affect 

the quality of the resulting estimates while decreasing the risk of publication or reporting bias.1 Given 

that it is likely one component of our analysis that will, as you mention, potentially raise further 

discussion, we also took the step of running our analyses with and without 10% trimming as additional 

sensitivity analyses (Figure 3; Supplementary Information Section 4), and we hope this degree of 

transparency with regard to the impact of trimming will aide in conceptualizing our findings within the 

context of other meta-analytic approaches.

Response references:   
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REVIEWER COMMENTS

Reviewer #3 (Remarks to the Author):

Thank you for the opportunity to review this manuscript. I see that the authors have placed 

the caveat that analyses are conservative since their approach to dependent effect sizes is 

conservative. This statement could be made more precise by conducting sensitivity analyses 

(e.g., making no adjustment to SEs, or assuming/imputing certain values for estimation 

correlations and fitting the resulting models) or by presenting information on the number of 

effect sizes and the impact of their adjustments on those effect size weights in analyses. 

More generally, while I appreciate the BOP methodology, I question the authors' adherence 

to it in the face of model misspecification. Clearly the covariance structure in their final 

model is not properly specified. The authors adjustment to standard errors, though 

conservative, is hardly necessary as there is a sizable literature on meta-analytic methods 

for estimation of meta-regression models in the face of unknown covariance structure, 

including Bayesian methods discussed in the article cited in my previous review.



REVIEWER COMMENTS

Reviewer #3 (Remarks to the Author): 

Thank you for the opportunity to review this manuscript. I see that the authors have placed the caveat 

that analyses are conservative since their approach to dependent effect sizes is conservative. This 

statement could be made more precise by conducting sensitivity analyses (e.g., making no adjustment 

to SEs, or assuming/imputing certain values for estimation correlations and fitting the resulting models) 

or by presenting information on the number of effect sizes and the impact of their adjustments on those 

effect size weights in analyses.  

We appreciate the reviewer’s continued focus on helping us improve the precision of our manuscript 

and strengthen our methodology. We have implemented both of the reviewer’s suggestions in the 

revised version of our manuscript. Specifically, we added the adjustment factors to the Supplementary 

Table S5 listing all the included effect sizes, and we also conducted a sensitivity analysis in which we do 

not adjust the standard errors of observations from overlapping samples. Furthermore, we re-evaluated 

all the adjustment factors to make sure they were appropriately applied and removed a handful of 

factors where their use was not clearly indicated due to unambiguously overlapping samples. We have 

updated our findings correspondingly (Main text lines 161-298) and included the findings of our new 

sensitivity analysis in an updated Figure 3 and the Supplementary Information Section 4 alongside the 

other sensitivity analyses conducted. Removing the standard error adjustment did not result in any 

substantial changes to the mean relative risk estimated across our outcomes of interest; the largest 

absolute change in the mean relative risk was for lip and oral cavity cancer which increased from 3.64 

(95% UI without between-study heterogeneity: 3.00-4.41; 95% UI with between-study heterogeneity: 

0.66-19.95) in our primary analysis to 3.73 (95% UI without between-study heterogeneity: 3.08-4.53; 

95% UI with between-study heterogeneity: 0.66-21.08) in the new sensitivity analysis (Figure 3; 

Supplementary Information Section 4). Similarly, the star ratings did not change for laryngeal cancer, 

nasopharyngeal cancer, other pharyngeal cancer, lip and oral cavity cancer, and stroke. Ischemic heart 

disease was persistently found to have insufficient evidence of an association with chewing tobacco use. 

The one change we did find in star ratings was for esophageal cancer. Esophageal cancer was 

categorized as a two-star risk-outcome pair in our primary analysis and a one-star risk-outcome pair in 

the new sensitivity analysis. This finding aligns with our expectation, given that it had a risk-outcome 

score (ROS) near the threshold between one- and two-star risk-outcome pairs and removing the 

standard error adjustment increased the observed between-study heterogeneity that is incorporated in 

our ROS estimates.  

More generally, while I appreciate the BOP methodology, I question the authors' adherence to it in the 

face of model misspecification. Clearly the covariance structure in their final model is not properly 

specified. The authors adjustment to standard errors, though conservative, is hardly necessary as there 

is a sizable literature on meta-analytic methods for estimation of meta-regression models in the face of 

unknown covariance structure, including Bayesian methods discussed in the article cited in my previous 

review.

We take the reviewer’s comment about model specification as concern that there are correlations 

between outcomes that are unknown and unaccounted for. We appreciate the concern and have 



carefully reviewed and cited the reviewer’s suggested reference as a means to address the issue when 

the covariance between outcomes is in fact reported. However, we respectfully point out that potential 

correlation structure will be an issue to any meta-analysis – essentially every model that makes any or 

no assumptions on the correlation structure would be mis-specified. The key point is that the methods 

provided in the paper referenced by the reviewer are not directly applicable here, since within-study 

correlations between outcomes were not reported. We do not have access to within-study correlations 

of related outcomes that could defensibly be used nor do we have access to the individual participant 

data. We respectfully but firmly disagree with the reviewer that a Bayesian technique, where priors are 

used with no observed data, is an appropriate method to use in our case – given that the studies we use 

in our analyses do not report between-outcome correlations, posteriors for within-study between-

outcome observations will be equal to the priors, meaning that we would be dictating the between-

outcome correlations.  

The challenges articulated here and highlighted by the reviewer are not unique to chewing tobacco but 

well exemplified by it. Many risk factors for health are not well-studied, resulting in meta-analyses with 

studies that leverage small or unreported sample sizes and unknown covariance structures. Considering 

this constraint, even the authors of the cited article state that using a plausible value for the unknown 

covariance matrix is an acceptable means of addressing this challenge. Our approach leverages a 

conservative, yet plausible, approach that can be used consistently across risk-outcome pairs in Burden 

of Proof analyses including and beyond the seven described in the present manuscript. We believe using 

this cautious technique is preferrable in the absence of more information. We acknowledge that there 

are ways to improve the Burden of Proof methodology when within-study correlations are known or can 

be reasonably inferred, as described in Wei and Higgins, and we hope to make these methods available 

within the Burden of Proof framework during future development and applications. We have elaborated 

on this briefly in the limitation section of our Discussion (lines 379-382).  

While our adjustment technique represents our approach to address the issue, we ran the sensitivity 

analysis recommended by the reviewer, and described in more detail above, and found that the 

adjustment did not have a substantial impact on our final results.  We have also extended the section of 

our Methods describing the standard error adjustment to highlight the rationale for our chosen 

approach, potential alternatives, and our new sensitivity analysis (lines 549-555). We thank the reviewer 

for giving us the opportunity to continue to improve our present manuscript as well as highlight 

important directions of future methodological development for the Burden of Proof analytic approach 

as it is applied to different use cases. 
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REVIEWERS' COMMENTS

Reviewer #3 (Remarks to the Author):

I appreciate the authors' sensitivity analysis, which provides important insight into the 

robustness of their findings to the specification of within-study correlations. I recommend 

publication of the article and look forward to their future work tackling within-study 

correlation in BOP methodology.



REVIEWERS' COMMENTS

Reviewer #3 (Remarks to the Author): 

I appreciate the authors' sensitivity analysis, which provides important insight into the robustness of 

their findings to the specification of within-study correlations. I recommend publication of the article 

and look forward to their future work tackling within-study correlation in BOP methodology. 

We are thankful for the reviewer’s suggestion to conduct the sensitivity analysis because we agree that 

it strengthens our submission and provides important further context to our findings. We greatly 

appreciate the reviewer’s decision and the level of attention the reviewer provided to our methodology.  


