
Deep Learning-based Diffusion Tensor Image Generation Model: A 

Proof-of-Concept Study 

Hiroyuki Tatekawa1*, Daiju Ueda1, Hirotaka Takita1, Toshimasa Matsumoto1, Shannon 

L Walston1, Yasuhito Mitsuyama1, Daisuke Horiuchi1, Shu Matsushita1, Tatsushi Oura1, 

Yuichiro Tomita1, Taro Tsukamoto1, Taro Shimono1, Yukio Miki1 

 

1Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, 

Osaka Metropolitan University, Osaka, Japan 

 

 

Supplementary Appendix 

 

Table of Contents: 

Supplementary data 

S1) Acquisition parameters of MRI 

S2) Deep learning model overview 

     S3) Machine environment 

S4) ROI creation 

S5) Visual inspection of noise of maps 



S1) Acquisition parameters of MRI 

All magnetic resonance imaging (MRI) examinations were performed using a 3.0-T 

scanner with a 32-channel head coil (Magnetom Vida; Siemens, Erlangen, Germany). Three-

dimensional T1-magnetization prepared rapid acquisition with gradient echo images (repetition 

time [TR], 1800 ms; echo time [TE], 2.92 ms; inversion time, 900 ms; field of view [FOV], 240 

× 240 mm; imaging matrix, 256 × 256; slice thickness, 0.9 mm without intersection gap) as 

anatomical images. Whole-brain diffusion tensor imaging (DTI) was performed using a 2-

dimensional single-shot echo planar imaging sequence with the following parameters: TR, 4500 

ms; TE, 81 ms; b value, 1000 s/mm2 with six directions of motion probing gradient (MPG) 

along with a single b0 image (anterior-posterior phase encoding); FOV, 220 × 220 mm; matrix, 

128 × 128; and axial imaging plane on the anterior commissure-posterior commissure line. A 

total of 76 sections (slice thickness: 2 mm without intersection gap) were obtained. The order 

and directions of the MPG were same relative to the MR gantry in the MR machine provided by 

Siemens. Before the subsequent procedure, DTI was denoised and corrected for Gibbs ringing 

artifacts, motion and eddy currents, susceptibility-induced distortions, and bias field 

inhomogeneities using the MRtrix3 software (http://www.mrtrix.org/). Diffusion-weighted 

imaging (DWI) in the three directions of the MPG was also performed with the same parameters 

and imaging planes. 



S2) Deep learning model overview 

A deep learning model was developed based on pix2pix, a generative adversarial 

network, which is an image-to-image translation model that uses paired images in training and 

validation datasets [1]. In this model, the generator adopts a U-Net-based architecture [2] and 

the discriminator adopts a convolutional PatchGAN classifier [3]. The model was trained on the 

training dataset, adjusted to the validation dataset, and evaluated on a test dataset. 

The model-development phase includes 3 steps. Step 1 is the image generation phase. 

The generator generates one slice of synthetic diffusion tensor images (DTI) in one motion 

probing gradient (MPG) direction from one slice of diffusion-weighted images (DWI). The 

original DWI is then concatenated with the synthetic DTI. Step 2 is the learning phase of the 

discriminator. The concatenated image of one slice of the original DWI and synthetic DTI from 

step 1, or a concatenated image of one slice of the original DWI and original DTI from the 

training data are input to the discriminator. The purpose of the discriminator is to correctly 

distinguish the synthetic and original DTI. Therefore, the loss value is set to be small or large if 

the discriminator is correct or wrong, respectively. The resulting loss value is backpropagated to 

the discriminator and the parameters are updated. Step 3 is the learning phase of the generator. 

The generator generates synthetic DTI with such a high similarity to the original DTI that they 

can be mistakenly recognized by the discriminator. Hence, the loss value is set to be large if the 

discriminator is correct, whereas it is set to be small if the discriminator is wrong. In addition, 

the L1 loss values from the original and synthetic DTI are obtained. These loss values are 

combined to form the loss value of the generator, and the parameters of the generator are 

updated. Steps 1–3 are repeated as the learning progresses of one MPG direction, with an epoch 

number of 100. These processes were performed six times, and six AI models were created for 

each MPG direction. 

 The hyperparameters were tuned for the optimizer, learning rate, and batch size. As 

optimizers, stochastic gradient descent, Adam, and Nadam were evaluated; for the learning rate, 



the searching range was 0.001–0.05; for the batch size, the search range was 32–256. Upon 

completion of the hyperparameter tuning, the final hyperparameters were as follows: (a) 

optimizer, Adam; (b) learning ratio, 0.0002; (c) momentum parameters, β1 = 0.5 and β2 = 

0.999; and (d) batch size, 128. 



S3) Machine environment 

To create the image-to-image translation model, Ubuntu 20.04 (Canonical, London, 

England) with the PyTorch [4] deep learning framework was used. The machine contains an 

Intel i5 3570k 3.4-gHz processor (Intel, Santa Clara, CA), 32 GB of RAM, and a 12 GB Nvidia 

Titan V graphics processing unit (Nvidia Corporation, Santa Clara, CA). 

 



S4) Detailed ROI placement 

To obtain representative gray matter regions of interest (ROIs), the ROIs of the 

lentiform nucleus (LN) and thalamus were segmented from the anatomical images using the 

FIRST function of the FSL software. To obtain representative white matter ROIs, the ROIs of 

the posterior limb of the internal capsule (PLIC), posterior thalamic radiation (PTR), and 

splenium of the corpus callosum (SCC) of ICBM DTI-81 Atlas were selected. The nerve fibers 

of the PLIC, PTR, and SCC mainly run in the superior-inferior, anterior-posterior, and left-right 

directions in the brain, respectively. First, the anatomical image was nonlinearly registered to 

the ICBM T1 Atlas, and the transform and inverse-transform matrices were calculated using the 

FLIRT and FNIRT functions of the FSL software. Second, the inverse-transform matrices 

(created in the first step) were applied to the ROIs on the ICBM DTI-81 Atlas to create white 

matter ROIs in each anatomical space. Third, b0 image of the DTI was aligned to the anatomical 

image, and the transform and inverse-transform matrices were calculated with a 6-degree 

freedom rigid transformation using the FLIRT function. Finally, inverse-transform matrices 

(created in the third step) were applied to the representative gray and white matter ROIs in each 

anatomical space to create ROIs of the LN, thalamus, PLIC, PTR, and SCC in each DTI space. 

All ROIs were validated by checking whether the registration succeeded on the b0 image and 

color-coded map by a radiologist (H.T., with 15 years of experience). 



S5) Visual inspection of noise of maps 

Three radiologists who were blinded to the original and synthetic DTI reviewed the 

color-coded, FA, MD, AD, and RD maps and selected the noisier images for each map. 

The noisier maps were correctly selected by all raters. As shown in the example slice 

of the maps below, the synthetic maps were noisier than the original maps. 
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