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1 Supplementary Note 1

In the following, we provide details on the numerical simulations to create the the-
oretical curves in Fig. 2b, Fig. 2c and Fig. 3 of the main article. The fundamental
theoretical model and a thorough interpretation of the physical phenomena can be
found in [1]. The simulations have been performed with the open-source Julia package
QuantumCumulants.jl [2]. The supplementary information additionally includes two
code examples: cavity sub-to-superradiance simulations to reproduce the sim-
ulation results and cavity sub-to-superradiance equations to show the generic
second-order cumulant equations for our system.

1.1 Details of the model

To model the experimental system we consider N two-level atoms coupled to a single-
mode cavity. The atoms are coherently driven, described by a time-dependent Rabi
frequency Ω(t). The Hamiltonian of this system in the rotating frame of the drive laser
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is [1]
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with the cavity photon creation (annihilation) operator a† (a) and the atomic tran-
sition operator σkl

j = |k⟩j ⟨l|j for the j-th atom. In Eq. (1), δa = ωl − ωa is the
detuning between the drive laser and the atomic transition frequency, δc = ωl − ωc

describes the detuning between the laser and the cavity resonance frequency and gj
is the atom-cavity coupling of the j-th atom.

The dissipative processes, namely cavity photon decay and individual atomic decay,
are described by the Liouvillian L[ρ] in the master equation ρ̇ = i [ρ,H]+L [ρ]. In the
Born-Markov approximation [3] we can write the Liouvillian in Lindblad form as

L [ρ] =
∑
i

Ri

(
2JiρJ

†
i − J†

i Jiρ− ρJ†
i Ji

)
, (2)

with the jump operators {Ji} and their corresponding rates {Ri}. Cavity photon
losses are described with the jump operator a and corresponding rate κ, the individual
atomic decay of the j-th atom is described by the jump operator σ12

j and corresponding
atomic decay rate γ.

To simulate the large open quantum system, involving several million atoms and
a cavity mode, we use a second-order cumulant expansion [2, 4]. Furthermore, we
approximate the atomic positions in the following way: First, since the temperature of
the atomic cloud is around 2µK, we assume the atomic position to be stationary for
the duration of the experiment. Moreover, we sample the atomic distribution along
the cavity axis with eight different equally populated positions along the sine-shaped
cavity mode function. The explicit eight positions xj , corresponding to a coupling
gj = g sin(2πxj/λ), are spaced equidistant at xj = [±1/8,±3/8,±5/8,±7/8]λ/4. The
distribution of the atomic cloud perpendicular to the cavity axis is not modeled, due
to its relatively small extension compared to the cavity mode volume. Note that we
consider the same laser excitation phase for all atoms. In principle, atoms located
along the drive laser axis will pick up different phases. However, the physically relevant
feature, namely an overall vanishing relative phase, is already incorporated with the
positive and negative cavity coupling [1]. This makes sampling of the drive laser phase
unnecessary. The drive laser intensity is assumed to be equal for all atoms since the
laser beam waist is much larger than the atomic cloud. Direct atom-atom interaction
is not included. For the initial state of the system, we assume all atoms in the ground
state and no photons in the cavity.

The general second-order equations (without sampling the positions) are
derived with QuantumCumulants.jl [2] and are shown in the file cavity sub-to-
superradiance equations.

2



1.2 Numerical parameters

The natural frequency unit equal to one in our simulations is 1 kHz, meaning e.g. that
the spontaneous emission rate of 2π × 7.5 kHz is described by γ = 2π × 7.5 in the
numerical simulation. For all simulations we use γ = 2π × 7.5 kHz, κ = 2π × 780
kHz and Ω = 2π × 833 kHz (corresponding to a π/2-pulse duration of 300 ns). For
the atom-cavity coupling, we use an effective maximal strength of g0 = 2π × 610 Hz,
corresponding to the normal mode splitting measurement.

For the threshold and delay time results shown in Fig. 2b and Fig. 2c we use
N = 2× 107. To simulate the pulsed excitation we use a step function for Ω(t) which
is always 0 except for 0 ≤ t ≥ tP where it is equal to Ω = 2π × 833 kHz.

For the Ramsey results in Fig. 3 we use N = 4 × 107 atoms. The Ramsey pulse
sequence is simulated with two rectangular step functions for Ω(t) with duration tP =
π/2Ω separated (end-to-end) by the free evolution time T = 5 × 10−6 s. In the file
cavity sub-to-superradiance simulations we provide the full code to reproduce
the simulation results. Note, that we reduced the resolution of the scans to decrease
the computation time.

2 Supplementary Note 2

Supplementary Fig. 1 | FL discriminator. Conversion slope for various frequency
step sizes. The red curve corresponds to interrogating at the kinks of the collectively
enhanced lineshape and leads to a very steep discrimator slope with a very little
dynamic range. As we decrease the step size the slope decreases and dynamic range
increases.
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We define a frequency locator, FL = ⟨Pi+1−Pi

Pi+1+Pi
⟩, where Pi is the peak intensity

of the ith pulse within a cycle. We also define the frequency spacing of the Ramsey
fringes the free Ramsey range (FRR), which is given by the inverse of the interpulsar
free evolution time.

In Supplementary Fig. 1 we calculate the discriminator shape from the simulated
Ramsey fringes for various frequency step sizes ranging from 0.01 FRR to 0.5 FRR.
For a step size of 0.5 FRR, which corresponds to interrogating at the kinks, there is
a very steep slope but a very small dynamic range. As we decrease the step size the
slope decreases and dynamic range increases.

Optimizing the technique involves choosing frequency steps to obtain a suitable
balance between the FL slope and the signal-to-noise ratio (SNR) to form a determin-
istic measurement of the frequency deviation. With an improved SNR, the frequency
steps can be tuned to obtain the steepest slope by probing close to the FL kinks. A
realistic possibility would be to incorporate a series of measurements with different
step sizes, or different free evolution periods, T.

The new lineshape warrants further investigation of optimal phase/frequency step-
ping and increasing the SNR of the spectroscopic lineshape before qualified judgment
can be made on how to optimally gain the feedback signal.
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