
Reviews

Disruption of the Postsynaptic Density
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Neurodegenerative Dementias
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Abstract
The most common causes of neurodegenerative dementia include Alzheimer’s disease (AD), dementia with Lewy bodies (DLB),
and frontotemporal dementia (FTD). We believe that, in all 3, aggregates of pathogenic proteins are pathological substrates which
are associated with a loss of synaptic function/plasticity. The synaptic plasticity relies on the normal integration of glutamate
receptors at the postsynaptic density (PSD). The PSD organizes synaptic proteins to mediate the functional and structural
plasticity of the excitatory synapse and to maintain synaptic homeostasis. Here, we will discuss the relevant disruption of the
protein network at the PSD in these dementias and the accumulation of the pathological changes at the PSD years before
clinical symptoms. We suggest that the functional and structural plasticity changes of the PSD may contribute to the loss of
molecular homeostasis within the synapse (and contribute to early symptoms) in these dementias.
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Introduction

Dementia involves progressive impairment of memory,

cognition, language, and behavior. Common neurodegenera-

tive diseases include Alzheimer’s disease (AD), dementia with

Lewy bodies (DLB), and frontotemporal dementia (FTD).

Alzheimer’s disease is the most frequent cause of neurodegenera-

tive dementia, accounting for approximately 60% of patients with

dementia. Dementia with Lewy bodies is arguably the second

most common type of neurodegenerative dementia, which

accounts for 10% to 20% of dementia cases. Frontotemporal

dementia is another common type of neurodegenerative demen-

tia, dominated by frontal lobe degeneration of the non-AD type.1

Frontotemporal dementia includes Pick’s disease, primary

progressive aphasia, and dementia in motor neuron disease.2,3

The pathological characterizations of AD, DLB, and FTD

are complicated and overlap. b-Amyloid (Ab) plaques and

hyperphosphorylated tau-containing neurofibrillary tangles are

the pathological hallmarks of AD. Most of a-synuclein inclu-

sions, called Lewy bodies (LB), are demonstrated in the cortex

and subcortical regions in DLB. However, aggregates of a-

synuclein are also present in the Lewy body variant of AD.

Also, Ab plaques and hyperphosphorylated tau are frequent

in DLB cases. Tau is a microtubule-associated protein stabiliz-

ing microtubules as tracks for axonal transport.4 The pathologi-

cal hyperphosphorylation of tau is also linked to FTD

development. Although these aggregates of misfolded proteins

overlap, evidence suggests that dysfunction and loss of the

synapse might be a common pathological mechanism

underlying the cognitive decline and memory loss in these

neurodegenerative diseases.5-11

Most excitatory synapses terminate on dendritic spines for

memory formation.12 Spine size is directly related to synaptic

strength, and this size is proportional to the area of the postsy-

naptic density (PSD).12-14 The PSD is an electron-dense thick-

ening of membrane comprised of a proteinaceous network

including glutamate receptors, adhesion molecules, scaffolding

proteins, cytoskeletal proteins and associated signaling

molecules. It is involved in a number of signaling pathways

controlling synaptic plasticity and maintaining synaptic home-

ostasis. Synapses are continuously formed, eliminated, and

remodeled throughout adulthood including synaptic protein

synthesis, degradation, and modification. The stabilization of

a new synaptic protrusion is associated with an increase in the

size of the spine head and correlates with activity-driven PSD

proteinaceous network formation. At this proteinaceous net-

work, postsynaptic density protein 95 (PSD-95) is believed to

play a role in synapse maturation, as it is one of the earliest

detectable proteins in the PSD.15 PSD-95 induces clustering
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of a number of neurotransmitter receptors and scaffolding

proteins.15,16 PSD-95 is coupled to Shank by guanylate

kinase-associated protein (GKAP). Shank proteins directly

regulate the formation and morphology changes of spine.17 The

formation of PSD95-GKAP-Shank complex is the earliest

event at the formation of the new postsynaptic site.18 The elim-

ination of synapse is associated with a decrease in the size of

the spine head and correlates with activity-driven PSD protei-

naceous network degradation.19

In AD, preferential loss of postsynaptic compared with

presynaptic elements has been suggested based on decreases

in drebrin, a postsynaptic actin-binding protein.20,21 Here, the

pathological changes of the postsynaptic region, PSD, are

discussed in the brains of patients with AD, DLB, and FTD.

The dynamic rearrangement of PSD could be the structural

basis for the synaptic plasticity, the assembling and elimination

of PSD components might lead to a fast alteration of synaptic

structures underlying normal function or pathological changes

of synapse.22-24 It is possible that the destruction of PSD is

common mechanism at selective brain regions for these neuro-

degenerative diseases. Currently, the soluble oligomers of Ab
have been considered the initiator of synaptic dysfunction in

AD.25,26 The pathogenic soluble oligomers of Ab exist at

damaged synapses in AD27 and associate with PSD in vivo.28

After PSDs were isolated and were analyzed by proteomics,

glutamate receptors, PSD-95, Shank3, and synGap were shown

to be dramatically altered in the frontal cortical tissues of

patients with AD.11 The pathological changes of these proteins

might directly or indirectly affect the dendritic spine and

synapse function and homeostasis.

The proteins at PSD can be subdivided into classes of (1)

membrane-bound receptors and channels, (2) scaffolding and

adaptor proteins, (3) cytoskeletal proteins, (4) cell-adhesion

proteins, (5) modulatory enzymes including kinases/phospha-

tases, and others.29-31 Here, we focus to discuss the pathologi-

cal changes of structure-relevant proteins at PSD in these

neurodegenerative dementias.

Synaptic Receptors and Channels

Glutamate Receptors

Glutamate receptors predominantly control synaptic plasticity

and memory function. The various subtypes of glutamate

receptors, ionotropic glutamate receptors (N-methyl D-aspartate

[NMDA] and alpha-amino-3-hydroxy-5-methyl-4- isoxazole-

propionic acid [AMPA]), and metabotropic glutamate receptors

(mGluR) are integrated at the PSD in dendritic spines.

N-methyl D-aspartate receptor. The alterations of glutamater-

gicsynapses have been shown to be one of the earliest events

and have long been considered the best pathological corre-

late of cognitive decline in AD.32 The evidence accumu-

lated from the cellular to the clinical level demonstrated

the glutamate receptors are dysfunctional in the initial

stages of AD. In vitro, the oligomers of Ab suppress NMDA

receptor-mediated long-term potentiation (LTP), a synaptic

mechanism underlying memory and cognitive processing.33

Interestingly, the NMDA receptor not only plays a critical role

to regulate synaptic function but also has effects on amyloid

precursor protein (APP) processing to release Ab. Sublethal

NMDA receptor activation increases the production and secre-

tion of Ab42.34 The oligomers of Ab may reduce NMDAR-

dependent Ca influx into the spine head.33 The decrease of

calcium influx through the synaptic NMDA receptors may inhibit

nonamyloidogenic alpha-secretase-mediated APP processing

and increase the production of Ab.35 Therefore, the deregulation

of the glutamatergic neurotransmission may change the expres-

sion of APP and increase Ab production at synapse. Deregulation

of APP metabolism may exaggerate the dysfunction of glutama-

tergic receptors in early AD development.

Alpha-amino-3-hydroxy-5-methyl-4- isoxazole-propionic acid
receptor. The oligomers of Ab also disrupt the function of the

AMPA receptor and reduce its expression on the synapse by

Ca2þ/calmodulin-dependent protein kinase II (CaMKII). This

kinase is also altered in AD.36 In vivo, the early reports show

a decrease of AMPA binding sites in AD brain.37 Recently,

reports show NMDA receptor and AMPA receptor dramati-

cally reduced at the PSD,11,38 which suggests the AMPA recep-

tor (at the PSD) could also be an effective target along with the

NMDA receptor for AD intervention. Interestingly, the AMPA

receptor is also significantly reduced in the FTD brain, indicat-

ing that the AMPA receptor could also play an important role in

synaptic dysfunction in FTD.39

Metabotropic glutamate receptor. mGluRs are G-protein-

coupled receptors, which are classified into 3 groups on the

basis of signal transduction pathways and their pharmacologi-

cal profiles. Group I mGluRs comprise mGluR1 and mGluR5.

These subtypes are localized at the PSD area. The antagonists

of group I mGluRs are neuroprotective. mGluR1 and mGluR5

antagonists also protect neuron in response to the administra-

tion of NMDA.40,41 However, the neurotoxicity of Ab is

exacerbated by application of the mGluR1 antagonist (RS)-1-

aminoindan-1,5-dicarboxylic acid (AIDA),42 which implies the

oligomers of Ab might affect multiple targets. The dysfunction

of group I mGluR has been hypothesized to be similar between

AD and DLB. 43 Unfortunately, after the synapse was fractio-

nated, the protein level of mGluR1 is not reduced in AD.11

Acetylcholine Receptors

In addition to dysfunction of glutamate receptors, the early

symptoms of AD and DLB also appear to correlate with dys-

function of cholinergic synapses.44,45 Acetylcholine receptors

are classified as muscarinic acetylcholine receptors (mAChR)

and nicotinic acetylcholine receptors (nAChR). Nicotinic acet-

ylcholine receptors are known as ‘‘ionotropic’’ acetylcholine

receptors. The nAChRs are ligand-gated ion channels. The

clustering of a7nAChR at PSD is retained through interactions

with PSD components. Acetylcholine receptors can aid in
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activating glutamatergic synapses and work together with

AMPA receptors to mediate postsynaptic excitation throughout

life.46 In the AD brain, oligomers of Abmay block the activity of

a7nAChR effecting on the endocytosis of NMDA receptors.47

Dopamine Receptor

Dopamine is an important neurotransmitter in cognitive

function, and the multiple dopamine receptor subtypes contrib-

ute to different aspects of learning and memory.48 The D2R-

NR2B interaction effects on the association of CaMKII with

NR2B at PSD.49 In AD, the loss of the D2 receptor-enriched

modules contributes to disturbances in information processing

in these high-order association cortices and in the hippocampus

and may promote the cognitive and noncognitive impair-

ments.50,51 Striatal D2/D3 receptors are increased in patients

with AD having delusions.52 In DLB, D2 receptors may alter

regulation of the striatal projection neurons,44 and the reduction

of D2 receptors are correlated with cognitive decline of DLB.53

Serotonin receptor

Serotonin (5-hydroxytryptamine; 5-HT) regulates spine density

in the hippocampus in both developing and adult animals.54

5-HT2A receptors target spines of pyramidal neurons,55 and

5-HT2A receptors are colocalized with the NMDA and AMPA

receptor subunits: NR1 and GluR2 in the hippocampal dentate

gyrus and are colocalized with PSD-95 and with multiple PDZ

protein-1 (MUPP1) in PSD.56 PSD-95 profoundly modulates

5-HT2A and 5-HT2C receptor function.57 Activation of

5-HT2A/C receptors involves in the functional regulation of

NMDA receptors at pyramidal neurons of prefrontal cortex to

control cognitive and emotion.58 The activation of 5-HT2A

receptors can induce a transient increase in dendritic spine size

and phosphorylation of p21-activated kinase (PAK). p21-

Activated kinase show pathological relocation at synapse in

AD brain.55 The protein level of 5-HT2A receptors is also pro-

foundly reduced in patients with AD,59 in patients with mild

cognitive impairment (MCI),60 and in patients with FTD.61 The

reduction of 5-HT2A receptors may be correlated with the cog-

nitive decline among these diseases.62

Insulin Receptor

Insulin receptor is a tyrosine kinase, many of its actions require

accessory molecules known as insulin receptor substrates (eg,

IRS-1, IRS-2, and IRS-3).63 Insulin receptor is concentrated at

synapses and is a component of the PSD. The insulin signaling

plays an important role in synaptic function.64 The insulin recep-

tor tyrosine kinase substrate p53 (IRSp53) is highly enriched in

PSD fraction in brain. Although the soluble oligomers of Ab
caused major downregulation of plasma membrane insulin

receptors (IRs), via a mechanism sensitive to CaMKII and

casein kinase II (CK2) inhibition,65 however, the protein level

of IRSp53 did not show pathological change at PSD in AD.11

Lipoprotein Receptors

Apolipoprotein E (apoE) is a cholesterol transport protein.

Apolipoprotein E is a genetic risk factor for late-onset

AD.66,67 Apolipoprotein E receptors have recently been recog-

nized as pivotal components of the neuronal signalling machin-

ery.68 Apolipoprotein E receptors effect on intraneuronal

signaling cascades through NMDA-type glutamate receptors.69

The effects of apoE receptors on NMDA receptor signaling

may be mediated by the interaction between apoE receptors

(LRP1 or apoER2) and PSD-95.70 At the postsynaptic membrane,

LRP1 interacts with the PSD-9571 and might be part of a large

postsynaptic density protein complex where LRP1 would

modulate the conductance of neuronal ion channels.72

The receptors of apoE, very-low-density lipoprotein

(VLDL) receptor and apoE receptor 2 (apoER2), are also

receptors for reelin. The location of reelin in spines, PSD, and

terminals suggests that reelin has a role in synaptic remodeling

and in LTP formation.73 Reelin is upregulated in the brain and

cerebrospinal fluid (CSF) in several neurodegenerative dis-

eases.74 Reelin-mediated signaling may contribute to neuronal

dysfunction associated with AD.75 Reelin interacts with APP,

potentially having important effects on neurite development.76

Interestingly, many of APP-interacting proteins also interact

with the family proteins of apoE receptors. Both APP and apoE

receptor affect neuronal migration and synapse formation in

brain.77 Apolipoprotein E receptor may play important roles

in the dysfunction of the synapse and in b-amyloid formation

in AD development.

Neurotrophic Factor Receptor

Neurotrophins regulate the survival and differentiation of

afferent neurons. The neurotrophic factors, including BDNF,

NGF, bFGF, and IGF1, activate receptors that possess intrinsic

tyrosine kinase activity. Among these receptors, trkB, a high-

affinity receptor for BDNF, is identified at PSD. The presence

of trkB at the PSD is consistent with a role for neurotrophins in

the regulation of synaptic activity via direct postsynaptic

mechanisms.78 Synaptic actions of BDNF are ‘‘gated’’ by cyc-

lic AMP (cAMP). Cyclic AMP regulates BDNF function in

mature hippocampal neurons by modulating the trafficking of

TrkB to dendritic spines, possibly by promoting its interaction

with PSD-95.79 In amyloid-transgenic mice, BDNF can reverse

synapse loss, and improve cell signaling and restore learning

and memory, which implies the BDNF may have potential to

reverse neuronal atrophy (and cognitive impairment) in

AD.80,81 The interesting question is whether BDNF normalizes

protein synthesis at the spine and repairs the function and

structure of the proteinaceous network at the PSD in neurode-

generative dementias.

Synaptic Scaffolding and Adaptor Proteins

Scaffold proteins assemble neurotransmitter receptors, signal

transduction components, actin-based cytoskeleton, adhesion
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molecules, and modulatory enzymes at PSD. The major

scaffolding molecules are membrane-associated guanylate

kinase (MAGUK) protein PSD-95 and ‘‘master organizing’’

molecule Shank protein. The pathological changes of these

scaffold proteins may be involved in the synaptic dysfunction

in neurodegenerative dementias.

Membrane-Associated Guanylate Kinase Proteins

Membrane-associated guanylate kinase proteins belong to a

family of synaptic proteins homologous to the product of the

Drosophila gene Disc Large and include PSD-95, SAP97,

chapsyn-110/PSD-93, and SAP102. Modifications of MAGUK

proteins in the glutamatergic synapse are common events in

several neurodegenerative disorders.82 PSD-95 is a critical

component in the family of MAGUK proteins. PSD-95 orga-

nizes ionotropic glutamate receptors and their associated sig-

naling proteins to regulate the strength of synaptic activity.

Although the level of PSD-95 protein is sometimes changed

in the brains of patients with AD, results have been inconsistent

among various laboratories. An increase of PSD-95 protein lev-

els occurs in the brain tissues of learning-impaired rats83 and

human frontal cortex, both at the synapse84 and in the PSD

fraction.11 However, a decrease of PSD-95 protein levels

occurs in the AD temporal cortex,85 which suggests that the

synaptic proteins could show different changes at selective

regions in the brains of patients with neurodegenerative

disease.

PSD-95 regulates protein trafficking and clustering of cell

surface receptors and ion channels.86 PSD-95 has been shown

to influence surface expression of NMDA receptors and to reg-

ulate AMPA receptor insertion and retention at the synapse.87

Mice lacking PSD-95 show normal NMDA receptor clustering

and function but reduced AMPA receptor function.88 The

pathological distribution of PSD-95 could alter function of

NMDA receptor and AMPA receptor at PSD in AD,11 which

may provide a possible means to alter synaptic strength.

In addition to modulating ion channel clustering and

function, PSD-95 interacts with GKAP and may influence the

recruitment of Shank, a molecule coupled to the actin-

binding protein cortactin and the metabotropic glutamate

receptor-interacting protein Homer to control spine morphol-

ogy. Shank multimers assemble in large, sheet-like structures

and may serve as a platform foundation for many PSD

structures.89

Shank

Shanks are the products of 3 genes, Shank1, Shank2, and

Shank3. Shank proteins form the postsynaptic platform in PSD

and organize NMDA receptor complex, AMPA receptor com-

plex, and mGlu receptor complex.29 Shanks play a critical role

in integrating the various postsynaptic membrane proteins,

cell-adhesion molecules, signal components, other scaffolding

proteins, and actin-based cytoskeleton at the PSD protein net-

work. These interactions place Shanks in the heart of the deeper

layer of PSD proteins.15 The dynamic rearrangement of PSD

seems to be the structural basis for the synaptic regulation and

synaptic plasticity that may be involved in memory forma-

tion.24 In AD brain, oligomers of Ab attack the postsynaptic

region26 and associate with PSD,28 leading to inappropriate

activity of NMDA-receptor at PSD90; NMDA receptor activity

is also dependent on integrity of its subunit composition and

activation of its downsignal pathway and adjacent non-

NMDA glutamate receptors. The total NMDA receptor

(NR1) and AMPA receptor (GluR2) are significantly lost at

PSD in AD cases.11 The complex of NR1 and/or GluR2-PSD

95 is linked to Shank proteins. Shanks show dramatic pathologi-

cal change in AD.11 Shanks interact with several actin-binding

proteins, including a-fodrin/spectrin, cortactin, actin-binding

protein 1 (Abp1), and IRSp53.29 The pathological changes of

Shank proteins may directly/indirectly effect on the dynamics

of actin in synaptic spine.

Cytoskeletal Proteins

The ability of globular actin (G-actin) to rapidly assemble and

disassemble into filaments (F-actin) is critical to many cell

behaviors. At the synapse, the dynamics of actin determine

spine architecture by the GTPase-activating protein SynGAP,

which has recently been shown to regulate both steady-state

and activity-dependent cofilin phosphorylation,91 and showed

loss at PSD in human AD brain.11 F-actin is particularly asso-

ciated by drebrin A at dendritic spines, postsynaptic sides of

excitatory glutamatergic synapses. Drebrin A regulates the

change of spine morphology, size, and density, presumably via

regulation of actin cytoskeleton remodeling and dynamics.92

The disappearance of drebrin may contribute to the spine loss

in AD.20 The actin-rich dendritic spine architecture is also

modulated by neuronal cofilin.93 The concentration of cofilin

at PSD may regulate the efficacy of synaptic NMDA receptor94

and dynamic reorganization of actin cytoskeleton in space and

time.95 Ab peptides can induce the AD-like pathological

change of ADF/cofilin–actin rods in vitro96 and tau phosphor-

ylation. Although, hyperphosphorylated tau is viewed as the

major cytoskeletal protein pathology in AD, the phosphory-

lated neurofilament is another constituent of aggregates in

AD brain.97 Similar phosphorylated neurofilaments also occur

in the neural inclusions, Lewy bodies, in DLB disease.97,98

Synaptic Cell-Adhesion Proteins

Synaptic adhesion proteins are not merely static structural

components but are often dynamic regulators of synaptic

function, participate in the formation, maturation, function, and

plasticity of synapse, and control the number, location, and

type of synapse. These cell-adhesion molecules (CAMs)

include neuroligin, integrin, cadherin, Ephrins-EPH receptor,

Nectin, NCAM, SynCAM, L1-CAM, and protocadherin. The

known AD-relevant CAMs are summarized below.
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Neuroligrin

Neurexin and neuroligin are synaptic cell-adhesion proteins.

The neurexin and neuroligin junction connects presynaptic and

postsynaptic neurons to form the synapse, mediates signaling

across the synapse, and shapes the properties of neural network

by specifying synaptic function. The neurexin and neuroligin

junction selects binding to postsynaptic proteins PSD-95,

GKAP, and Shank.99 The protein level of postsynaptic

neuroligin-1 is affected by apoE4, the major genetic risk factor

for AD and other neurodegenerative diseases. The lower level

of apoE4 protein could lead to the loss of postsynaptic

neuroligin-1 in mice model.100

Integrin

Integrin-mediated communication regulates many cell physio-

logical processes including cell cycles. The fibrils of Ab effect

on integrin/focal adhesion (FA) signaling pathways that med-

iate cell-cycle activation and cell death. The development of

AD includes an extremely complicated change at the synaptic

protein level. The pathological alteration of integrin/FAK/FA

signaling pathway induced by fibrils of Ab may alter neuronal

viability and synaptic plasticity during the course of AD.101

N-Cadherin

Cadherins are transmembrane cell adhesion proteins.

N-cadherin homophilic interactions connect pre- and postsynap-

tic membranes together.102,103 N-cadherin, NMDA receptor,

AMPA receptor GluR2/3, and PSD-95 and other synaptic pro-

teins are integrated at spine; the dynamic alteration of

N-cadherin modifies the plasticity of synaptic structure and

function.104-106 This dynamic change of N-cadherin is also

mediated by the activities of NMDA receptor and presenilin-

1(PS1).107,108 PS1 binds cadherins and stabilizes the cadherin/

catenin cell adhesion complexes at the plasma membrane.109

Ephrins-Eph Receptors

Ephrins and Eph receptors regulate excitatory neurotransmis-

sion and play a role in the morphological change of dendritic

spine remodeling. The pathological changes of Ephrins and

Eph receptors could be related to the AD development. EphA4

and EphB2 receptors were lost in the hippocampus at early

stage of APP mutation AD mouse. A similar pathological

change in Eph receptor levels was also observed in postmortem

hippocampal tissue from incipient AD patients.110

Modulatory Enzymes

The PSD consists of hundreds of proteins beside the above

reminded proteins. The PSD-associated protein kinase/

phosphatase and other modulatory enzymes play multiple roles

in the spine loss in AD development. These proteins include

nonreceptor protein tyrosine kinase, Fyn111; CaMKII33,112;

protein kinase C (PKC)113; mitogen activated kinase, Cdk5,

GSK3b, Rho kinase (ROCK)114; p21-activated kinase115;

calcineurin116,117; protein phosphatase I118; protein phospha-

tase 2A119; neuronal nitric oxide synthase120; ubiquitin protea-

some system11; O-GlcNAc modification relevant enzymes121;

and peptidyl-prolyl isomerase Pin1.122 Although relevant, the

current manuscript will not further discuss how these enzymes

might affect the PSD structure and function in AD

development.

Summary

The PSD is complicated and the current manuscript only

summarizes some key points. The spatial-temporal pathological

changes at the PSD protein network are likely to occur in early

AD. The accumulation of these pathological changes could

impact synaptic homeostasis leading to negative synaptic for-

mation and synaptic loss and dysfunction. Animal AD models

are limited because they do not show the full spectrum of patho-

logical change seen in human AD. Most current studies of AD

pathogenesis use human postmortem tissues and there is need

for studies of the PSD in cases who die with early stage disease.
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74. Botella-López A, Burgaya F, Gavı́n R, et al. Reelin expression

and glycosylation patterns are altered in Alzheimer’s disease.

Proc Natl Acad Sci U S A. 2006;103(14):5573-5578.

75. Knuesel I, Nyffeler M, Mormède C, et al. Age-related accumula-

tion of Reelin in amyloid-like deposits. Neurobiol Aging.

2009;30(5):697-716.

76. Hoe HS, Lee KJ, Carney RS, et al. Interaction of reelin with amy-

loid precursor protein promotes neurite outgrowth. J Neurosci.

2009;29(23):7459-7473.

77. Hoe HS, Rebeck GW. Functional interactions of APP with the

apoE receptor family. J Neurochem. 2008;106(6):2263-2271.

Gong and Lippa 553

553



78. Wu K, Xu JL, Suen PC, et al. Functional trkB neurotrophin

receptors are intrinsic components of the adult brain postsynaptic

density. Brain Res Mol Brain Res. 1996;43(1-2):286-290.

79. Ji Y, Pang PT, Feng L, Lu B. Cyclic AMP controls BDNF-

induced TrkB phosphorylation and dendritic spine formation in

mature hippocampal neurons. Nat Neurosci. 2005;8(2):164-172.

80. Nagahara AH, Merrill DA, Coppola G, et al. Neuroprotective

effects of brain-derived neurotrophic factor in rodent and pri-

mate models of Alzheimer’s disease. Nat Med. 2009;15(3):

331-337.

81. Simmons DA, Rex CS, Palmer L, et al. Up-regulating BDNF with

an ampakine rescues synaptic plasticity and memory in Hunting-

ton’s disease knockin mice. Proc Natl Acad Sci U S A.

2009;106(12):4906-4911.

82. Gardoni F. MAGUK proteins: new targets for pharmacological

intervention in the glutamatergic synapse. Eur J Pharmacol.

2008;585(1):147-152.

83. Nyffeler M, Zhang WN, Feldon J, Knuesel I. Differential expres-

sion of PSD proteins in age-related spatial learning impairments.

Neurobiol Aging. 2007;28(1):143-155.

84. Leuba G, Savioz A, Vernay A, et al. Differential changes in

synaptic proteins in the Alzheimer frontal cortex with marked

increase in PSD-95 postsynaptic protein. J Alzheimers Dis.

2008;15(1):139-151.

85. Gylys KH, Fein JA, Yang F, Wiley DJ, Miller CA, Cole GM.

Synaptic changes in Alzheimer’s disease: increased amyloid-beta

and gliosis in surviving terminals is accompanied by decreased

PSD-95 fluorescence. Am J Pathol. 2004;165(5):1809-1817.

86. Christopherson KS, Hillier BJ, Lim WA, Bredt DS. PSD-95

assembles a ternary complex with the N-methyl-D-aspartic acid

receptor and a bivalent neuronal NO synthase PDZ domain. J Biol

Chem. 1999;274(39):27467-27473.

87. Lin Y, Jover-Mengual T, Wong J, Bennett MV, Zukin RS. PSD-95

and PKC converge in regulating NMDA receptor trafficking and

gating. Proc Natl Acad Sci U S A. 2006;103(52):19902-19907.

88. Ehrlich I, Klein M, Rumpel S, Malinow R. PSD-95 is required for

activity-driven synapse stabilization. Proc Natl Acad Sci U S A.

2007;104(10):4176-4181.

89. Baron MK, Boeckers TM, Vaida B, et al. An architectural frame-

work that may lie at the core of the postsynaptic density. Science.

2006;311(5760):531-535.

90. Roselli F, Tirard M, Lu J, et al. Soluble beta-amyloid1-40 induces

NMDA-dependent degradation of postsynaptic density-95 at glu-

tamatergic synapses. J Neurosci. 2005;25(48):11061-11070.

91. Carlisle HJ, Manzerra P, Marcora E, Kennedy MB. SynGAP reg-

ulates steady-state and activity-dependent phosphorylation of

cofilin. J Neurosci. 2008;28(50):13673-13683.

92. Ivanov A, Esclapez M, Ferhat L. Role of drebrin A in dendritic

spine plasticity and synaptic function: implications in neurologi-

cal disorders. Commun Integr Biol. 2009;2(3):268-270.

93. Hotulainen P, Llano O, Smirnov S, et al. Defining mechanisms of

actin polymerization and depolymerization during dendritic spine

morphogenesis. J Cell Biol. 2009;185(2):323-339.

94. Morishita W, Marie H, Malenka RC. Distinct triggering and

expression mechanisms underlie LTD of AMPA and NMDA

synaptic responses. Nat Neurosci. 2005;8(8):1043-1050.

95. Lee-Hoeflich ST, Causing CG, Podkowa M, Zhao X, Wrana JL,

Attisano L. Activation of LIMK1 by binding to the BMP recep-

tor, BMPRII, regulates BMP-dependent dendritogenesis. EMBO

J. 2004;23(24):4792-4801.

96. Davis RC, Maloney MT, Minamide LS, Flynn KC,

Stonebraker MA, Bamburg JR. Mapping cofilin-actin rods in

stressed hippocampal slices and the role of cdc42 in amyloid-

beta-induced rods. J Alzheimers Dis. 2009;18(1):35-50.

97. Shepherd CE, McCann H, Thiel E, Halliday GM. Neurofilament-

immunoreactive neurons in Alzheimer’s disease and dementia

with Lewy bodies. Neurobiol Dis. 2002;9(2):249-257.

98. Hansen LA, Samuel W. Criteria for Alzheimer’s disease and the

nosology of dementia with Lewy bodies. Neurology.

1997;48(1):126-132.

99. Futai K, Kim MJ, Hashikawa T, Scheiffele P, Sheng M,

Hayashi Y. Retrograde modulation of presynaptic release prob-

ability through signaling mediated by PSD-95-neuroligin. Nat

Neurosci. 2007;10(2):186-195.

100. Zhong N, Scearce-Levie K, Ramaswamy G, Weisgraber KH.

Apolipoprotein E4 domain interaction: synaptic and cognitive

deficits in mice. Alzheimers Dement. 2008;4(3):179-192.

101. Caltagarone J, Jing Z, Bowser R. Focal adhesions regulate Abeta

signaling and cell death in Alzheimer’s disease. Biochim

Biophys Acta. 2007;1772(4):438-445.

102. Togashi H, Abe K, Mizoguchi A, Takaoka K, Chisaka O,

Takeichi M. Cadherin regulates dendritic spine morphogenesis.

Neuron. 2002;35(1):77-89.

103. Okabe T, Nakamura T, Nishimura YN, et al. RICS, a novel

GTPase-activating protein for Cdc42 and Rac1, is involved in

the beta-catenin-N-cadherin and N-methyl-D-aspartate receptor

signaling. J Biol Chem. 2003;278(11):9920-9927.

104. Fannon AM, Colman DR. A model for central synaptic

junctional complex formation based on the differential adhesive

specificities of the cadherins. Neuron. 1996;17(3):423-434.

105. Benson DL, Tanaka H. N-cadherin redistribution during

synaptogenesis in hippocampal neurons. J Neurosci.

1998;18(17):6892-6904.

106. SilvermanJB,RestituitoS,LuW,Lee-EdwardsL,KhatriL,ZiffEB.

Synaptic anchorage of AMPA receptors by cadherins through

neural plakophilin-related arm protein AMPA receptor-binding

protein complexes. J Neurosci. 2007;27(32):8505-8516.

107. MarambaudP,WenPH,DuttA,etal.ACBPbindingtranscriptional

repressor produced by the PS1/epsilon-cleavage of N-cadherin is

inhibited by PS1 FAD mutations. Cell. 2003;114(5):635-645.

108. Uemura K, Kihara T, Kuzuya A, et al. Characterization of

sequential N-cadherin cleavage by ADAM10 and PS1. Neurosci

Lett. 2006;402(3):278-283.

109. Serban G, Kouchi Z, Baki L, et al. Cadherins mediate both the

association between PS1 and beta-catenin and the effects of PS1

on beta-catenin stability. J Biol Chem. 2005;280(43):36007-36012.

110. Simón AM, de Maturana RL, Ricobaraza A, et al. Early changes

in hippocampal eph receptors precede the onset of memory

decline in mouse models of Alzheimer’s disease. J Alzheimers

Dis. 2009;17(4):773-786.

111. Shirazi SK, Wood JG. The protein tyrosine kinase, fyn, in

Alzheimer’s disease pathology. Neuroreport. 1993;4(4):435-437.

554 American Journal of Alzheimer’s Disease & Other Dementias® 25(7)

554



112. Singh TJ, Grundke-Iqbal I, Wu WQ, et al. Protein kinase C and

calcium/calmodulin-dependent protein kinase II phosphorylate

three-repeat and four-repeat tau isoforms at different rates. Mol

Cell Biochem. 1997;168(1-2):141-148.

113. Pascale A, Amadio M, Govoni S, Battaini F. The aging brain, a

key target for the future: the protein kinase C involvement. Phar-

macol Res. 2007;55(6):560-569.

114. Ma QL, Yang F, Calon F, et al. p21-activated kinase-aberrant

activation and translocation in Alzheimer disease pathogenesis.

J Biol Chem. 2008;283(20):14132-14143.

115. Salminen A, Suuronen T, Kaarniranta K. ROCK, PAK, and Toll

of synapses in Alzheimer’s disease. Biochem Biophys Res Com-

mun. 2008;371(4):587-590.

116. Wu HY, Hudry E, Hashimoto T, et al. Beta-Amyloid induces the

morphological neurodegenerative triad of spine loss, dendritic

simplification, and neuritic dystrophies through calcineurin acti-

vation. J Neurosci. 2010;30(7):2636-2649.

117. Zhao WQ, Santini F, Breese R, et al. Inhibition of calcineurin-

mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic Acid (AMPA) receptors prevents

beta-amyloid oligomer-induced synaptic disruption. J Biol

Chem. 2010;285(10):7619-7632.

118. Vintém AP, Henriques AG, da Cruz E, Silva OA, da Cruz E,

Silva EF. PP1 inhibition by Abeta peptide as a potential

pathological mechanism in Alzheimer’s disease. Neurotoxicol

Teratol. 2009;31(2):85-88.

119. Wang JZ, Grundke-Iqbal I, Iqbal K. Kinases and phosphatases

and tau sites involved in Alzheimer neurofibrillary degeneration.

Eur J Neurosci. 2007;25(1):59-68.

120. Galimberti D, Venturelli E, Gatti A, et al. Association of

neuronal nitric oxide synthase C276T polymorphism with

Alzheimer’s disease. J Neurol. 2005;252(8):985-986.

121. Liu F, Shi J, Tanimukai H, et al. Reduced O-GlcNAcylation

links lower brain glucose metabolism and tau pathology in

Alzheimer’s disease. Brain. 2009;132(pt 7):1820-1832.

122. Lu KP, Zhou XZ. The prolyl isomerase PIN1: a pivotal new twist

in phosphorylation signalling and disease. Nat Rev Mol Cell

Biol. 2007;8(11):904-916.

Gong and Lippa 555

555



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


