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Supplementary Fig. 1 SEM image of (a) Ru/MnOx; (b) The elemental mapping of 

Ru/MnOx. 

  



 

Supplementary Fig. 2 The high angle annular dark-field scanning transmission 

electron microscope (HAADF-STEM) image of the Ru/MnOx catalyst. 

  



 

Supplementary Fig. 3 Rietveld refinement result of XRD patterns: (a) MnOx; (b) 

Ru/MnOx. 

  



 

Supplementary Fig. 4 FT-IR spectra of MnOx and Ru/MnOx. 

  



 

Supplementary Fig. 5 Raman spectra of MnOx and Ru/MnOx. 

  



 

Supplementary Fig. 6 CO2 adsorption isotherms of MnOx and Ru/MnOx. 

  



 

Supplementary Fig. 7 N2 adsorption-desorption isotherms of (a) MnOx; (b) Ru/MnOx. 

  



 

Supplementary Fig. 8 (a-b) High-resolution Mn 2p XPS spectra of MnOx and 

Ru/MnOx; (c) High-resolution Ru 3p XPS spectra of Ru/MnOx; (d) XPS survey 

spectrum of Ru/MnOx. 

  



 

Supplementary Fig. 9 (a) Photograph of the apparatus setup for photo-thermal CO2 

experiments in the batch reactor; (b) Schematic illustration of the photo-thermal reactor; 

(c) and (d) Schematic illustration of the heating system. 

  



 

Supplementary Fig. 10 (a) Infrared thermal images captured for the catalyst surface 

temperature under 2.5 W cm-2 irradiation, 0.1 MPa and external heating (Set 

temperature: 200 °C); (b)The temperature at the bottom of the catalyst, measured using 

a commercially available thermochromic temperature indicator. 

  



 

Supplementary Fig. 11 Influence of total pressure on CH4 evolution rate over 

Ru/MnOx; Reaction conditions: 15 mg of catalyst, full-arc 300 W UV-xenon lamp, 2.5 

W cm-2, 200 °C, irradiation time 4 hours, H2/CO2 =4/1. 

  



 

Supplementary Fig. 12 Control experiments for Ru/MnOx under various conditions. 

Reaction conditions: 15 mg of catalyst, full-arc 300 W UV-xenon lamp, 2.5 W cm-2, 

200 ℃, irradiation time 4 hours, initial pressure 1 MPa (H2/CO2 =4/1). 

  



 

Supplementary Fig. 13 The images of (a) the photo-thermal catalytic performance 

evaluation process carried out in the flow reaction system and (b) the fixed-bed quartz 

tube reactor. (c) Dimensions of the fixed-bed quartz tube reactor. 

  



 

Supplementary Fig. 14 Temperature-dependent space time yield of CH4 over Ru/MnOx 

under photothermal (a) and thermal (b) conditions. Reaction conditions: 150 mg of 

catalyst, full-arc 300 W UV-xenon lamp, 2.5 W cm-2, initial pressure 0.1 MPa, CO2/H2 

mixture flow (10 mL min-1/40 mL min-1). 

  



 

Supplementary Fig. 15 The photothermal catalytic performance of Ru/MnOx catalyst 

in a fixed-bed reactor. Reaction conditions: 150 mg of catalyst, full-arc 300 W UV-

xenon lamp, 2.5 W cm-2, 200 °C, initial pressure 0.1 MPa, CO2/H2 mixture flow (20 

mL min-1/80 mL min-1).  

  



 

Supplementary Fig. 16 TEM image of Ru/MnOx after reaction of 20 h at 200 ℃ under 

photothermal condition in the fixed-bed reactor.  

  



 

Supplementary Fig. 17 TG-MS analysis of Ru/MnOx after reaction of 20 h at 200 ℃ 

under photothermal condition in the fixed-bed reactor.  

  



 

Supplementary Fig. 18 XPS spectra of Ru/MnOx after reaction in 4 h at 200 ℃ in the 

batch reactor: (a) High-resolution of Mn 2p XPS spectra; (b) High-resolution of Ru 3p 

XPS spectra. 

  



 

Supplementary Fig. 19 Infrared thermal images captured for (a) MnOx and (b) 

Ru/MnOx under 2.5 W cm-2 illumination. 

  



 

Supplementary Fig. 20 TRPL spectra of MnOx and Ru/MnOx. 

  



 

Supplementary Fig. 21 The periodic on/off photocurrent response spectra of MnOx 

and Ru/MnOx. 

  



 

Supplementary Fig. 22 (a) Mott–Schottky plots of the MnOx; (b) The bandgap value 

of the MnOx. 

  



 

Supplementary Fig. 23 The work function of Ru and band structures of MnOx. 

  



 
Supplementary Fig. 24 The different time of variable temperature XRD results in 20% 

CO2/H2 atmosphere at 200 ℃: (a) MnOx; (b) Ru/MnOx. 

  



 

Supplementary Fig. 25 Influence of various manganese oxide on CH4 evolution rate. 

Reaction conditions: 15 mg of catalyst, full-arc 300 W UV-xenon lamp, 2.5 W cm-2, 

200 °C, irradiation time 4 hours, initial pressure 1 MPa (H2/CO2 =1/1). 

  



 

Supplementary Fig. 26 Infrared thermal images captured for WO3 under 0.3 W cm-2 

illumination. 

  



 

Supplementary Fig. 27 XPS spectra of Ru/MnOx in 20% CO2/H2 atmosphere under 

variable time at 200 ℃: (a) High-resolution of Mn 2p XPS spectra; (b) High-resolution 

of Ru 3p XPS spectra. 

  



 

Supplementary Fig. 28 XPS spectra of Ru/MnOx after reacting at 200 ℃ for 4 h in a 

20% CO2/H2 atmosphere: (a) High-resolution of Mn 2p XPS spectra; (b) High-

resolution of Ru 3p XPS spectra. 

  



 

Supplementary Fig. 29 Spectra of FT-IR study of Ru/MnOx at different conditions: (a) 

Effect of different temperature under thermal condition; (b) Effect of different 

temperature under photothermal conditions. 

  



 
Supplementary Fig. 30 Spectra of FT-IR study of Ru/MnOx at different conditions: (a) 

Effect of different time at 200 ℃ under thermal condition; (b) Effect of different time 

at 200 ℃ under photothermal conditions. 

  



 

Supplementary Fig. 31 Calculation model of (a) Ru/Mn3O4 (321), (b) Ru/Mn3O4-x 

(321) and (c) Ru/MnO (200). 

  



 

Supplementary Fig. 32 Adsorption configurations of all the involved species on 

Ru/Mn3O4 (321). The blue, red, purple, yellow, and green spheres represent the Mn, O, 

Ru, C, and H atoms, respectively. 

  



 

Supplementary Fig. 33 Adsorption configurations of all the involved species on 

Ru/Mn3O4-x (321). The blue, red, purple, yellow, and green spheres represent the Mn, 

O, Ru, C, and H atoms, respectively. 

  



 

Supplementary Fig. 34 Adsorption configurations of all the involved species on 

Ru/MnO (200). The blue, red, purple, yellow, and green spheres represent the Mn, O, 

Ru, C, and H atoms, respectively. 

  



 

Supplementary Fig. 35 The calculated (a) densities of states and (b) projected densities 

of states for Ru/Mn3O4-x under dark and light conditions. Fermi levels are at 0 eV. 

  



Supplementary Table 1 ICP-OES analysis of Ru/MnOx. 

Catalyst Ru (wt%) RuCl3·3H2O addition (mmol) 

1.4%Ru/MnOx 1.4 0.02 

2.8%Ru/MnOx 2.8 0.04 

4.0%Ru/MnOx 4.0 0.06 

5.8%Ru/MnOx 5.8 0.08 

7.3%Ru/MnOx 7.3 0.1 

8.1%Ru/MnOx 8.1 0.12 

  



Supplementary Table 2 Crystal parameters and reliability factors of the refinement for 

MnOx and Ru/MnOx.  

Sample MnOx Ru/MnOx 

Phase Mn3O4 MnOOH MnO2 Mn3O4 MnOOH MnO2 

Abundance (%) 69.023 25.976 5.002 72.528 27.544 0.928 

Space group I41/amd P-3m1 C12/m1 I41/amd P-3m1 C12/m1 

a (Å) 5.7702(4) 3.2031(16) 5.1657(61) 5.7698(2) 3.2016(17) 5.1657(61) 

b(Å) 5.7702(4) 3.2031(16) 2.8645(61) 5.7698(2) 3.2016(17) 2.8645(33) 

c(Å) 9.4544(9) 4.6199(9) 7.0860(32) 9.4490(5) 4.6141(7) 7.0860(32) 

Volume(Å3) 314.796(62) 41.050(42) 104.17(18) 314.569(31) 40.959(44) 104.17(18) 

Rwp 1.62% 1.71% 

Rp 1.25% 1.33% 

GOF 1.34 1.33 



Supplementary Table 3 The summarized CH4 yields for recently reported photo-thermo-catalysts. 

Catalysts 
Metal loading 

(wt%) 

H2:CO2 

ratio 

Pressure 

(Mpa) 
Light sources 

Light intensity 

(W cm-2) 

Temperature 

(℃) 

CH4 production rate 

(mmol g-1 h-1) 

CO2 conversion 

(%) 

CH4 selectivity 

(%) 

TOF 

(h-1) 
Ref 

Ru/MnOx 7.3 4:1 1 
300 W Xe lamp 

200-1100 nm  
2.5 

200  

(external heater) 
166.7 66.8 99.5 232 

This 

work 

Co7Cu1Mn1O

x(200) 
— 3:1 0.1 

300 W Xe lamp 

300-1100 nm  
0.234 

200 

(external heater) 
14.5 27.45 85.3 — 1 

Ru/Al2O3 2.4 4:1 0.08 1000 W Xe lamp — 396 115 0.95 99.2 484 2 

Cu2O/Graphe

ne 
 4:1 0.13 300 W Xe lamp 0.2 

250 

(external heater) 
14.93 (Cu) 2.84 99 0.256 3 

Ru@Ni2V2O7 0.35 4:1 0.067 300 W Xe lamp 2 350 114.9 96.3 99.3 3340 4 

Ru/Mg(OH)2 11.5 1:1 0.1 300 W Xe lamp 1.8 — 44.85 1.68 69.5 56.7 5 

Rh/Al 5 3:1 1.5 300 W Xe lamp 11.3 
200 

(external heater) 
550 — 99 1132 6 

21%Co/Al2O3 0.21 4:1 0.1 
300 W Xe lamp 

200-1100 nm 
1.3 292 6.04 — 97.7 1.74 7 

Ru-TiOx 1.77 4:1 — 300 W Xe lamp 2 276 22.35 — 99.99 12.76 8 

Ir@UiO66 0.14 4:1 0.1 300 W Xe lamp 2.3 
250 

(external heater) 

19.9 

(Flow reactor) 
9.3 95 2876 9 

8 % Ru/SiO2 0.8 6:1 — 300 W Xe lamp 0.063 
300 

(external heater) 

55.44 

(Flow reactor) 
51.8 99 70 10 

Ru-Al2O3-x-L 0.7 4:1 0.1 300 W Xe lamp 2.27 236 0.84 86.47 99 1248 11 

Ru/HxMoO3-y 4 1:1 — 
300 W Xe lamp 

Vis-IR 
0.75 

140 

(external heater) 

20.8 

(Flow reactor) 
— 99 52.6 12 
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