Supporting Information

Photo-thermal coupling to enhance CO² hydrogenation toward CH⁴ over Ru/MnO/Mn3O⁴

Jianxin Zhai^{1,2}, Zhanghui Xia^{1,2}, Baowen Zhou^{3*}, Haihong Wu^{1,2*}, Teng Xue^{1,2}, Xiao Chen^{1,2}, Jiapeng Jiao^{1,2}, Shuaiqiang Jia^{1,2}, Mingyuan He^{1,2*}, and Buxing Han^{1,2,4*}

1. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China 2. Institute of Eco-Chongming, Shanghai 202162, China

3. Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

4. Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China

Supplementary Fig. 1 SEM image of (a) Ru/MnOx; (b) The elemental mapping of \sum_{r} \sum_{r}

Supplementary Fig. 2 The high angle annular dark-field scanning transmission electron microscope (HAADF-STEM) image of the Ru/MnO^x catalyst.

Supplementary Fig. 3 Rietveld refinement result of XRD patterns: (a) MnO_x; (b) Ru/MnOx.

Supplementary Fig. 4 FT-IR spectra of MnO_x and Ru/MnO_x.

Supplementary Fig. 5 Raman spectra of MnO_x and Ru/MnO_x.

Supplementary Fig. 6 CO₂ adsorption isotherms of MnO_x and Ru/MnO_x .

Supplementary Fig. 7 N₂ adsorption-desorption isotherms of (a) MnO_x ; (b) Ru/MnO_x.

Supplementary Fig. 8 (a-b) High-resolution Mn 2*p* XPS spectra of MnO^x and Ru/MnOx; (c) High-resolution Ru 3*p* XPS spectra of Ru/MnOx; (d) XPS survey spectrum of Ru/MnOx.

Supplementary Fig. 9 (a) Photograph of the apparatus setup for photo-thermal CO₂ experiments in the batch reactor; (b) Schematic illustration of the photo-thermal reactor; (c) and (d) Schematic illustration of the heating system.

Supplementary Fig. 10 (a) Infrared thermal images captured for the catalyst surface temperature under 2.5 W $cm⁻²$ irradiation, 0.1 MPa and external heating (Set temperature: 200 °C); (b)The temperature at the bottom of the catalyst, measured using a commercially available thermochromic temperature indicator.

Supplementary Fig. 11 Influence of total pressure on CH₄ evolution rate over Ru/MnOx; Reaction conditions: 15 mg of catalyst, full-arc 300 W UV-xenon lamp, 2.5 W cm⁻², 200 °C, irradiation time 4 hours, H_2/CO_2 =4/1.

Supplementary Fig. 12 Control experiments for Ru/MnO_x under various conditions. Reaction conditions: 15 mg of catalyst, full-arc 300 W UV-xenon lamp, 2.5 W $cm⁻²$, 200 °C, irradiation time 4 hours, initial pressure 1 MPa ($H_2/CO_2 = 4/1$).

Supplementary Fig. 13 The images of (a) the photo-thermal catalytic performance evaluation process carried out in the flow reaction system and (b) the fixed-bed quartz tube reactor. (c) Dimensions of the fixed-bed quartz tube reactor.

Supplementary Fig. 14 Temperature-dependent space time yield of CH⁴ over Ru/MnO^x under photothermal (a) and thermal (b) conditions. Reaction conditions: 150 mg of catalyst, full-arc 300 W UV-xenon lamp, 2.5 W cm⁻², initial pressure 0.1 MPa, CO_2/H_2 mixture flow $(10 \text{ mL min}^{-1}/40 \text{ mL min}^{-1})$.

Supplementary Fig. 15 The photothermal catalytic performance of Ru/MnO^x catalyst in a fixed-bed reactor. Reaction conditions: 150 mg of catalyst, full-arc 300 W UVxenon lamp, 2.5 W cm⁻², 200 °C, initial pressure 0.1 MPa, CO_2/H_2 mixture flow (20 $mL \text{ min}^{-1}/80 \text{ mL min}^{-1}$).

Supplementary Fig. 16 TEM image of Ru/MnO^x after reaction of 20 h at 200 ℃ under photothermal condition in the fixed-bed reactor.

Supplementary Fig. 17 TG-MS analysis of Ru/MnO^x after reaction of 20 h at 200 ℃ under photothermal condition in the fixed-bed reactor.

Supplementary Fig. 18 XPS spectra of Ru/MnO^x after reaction in 4 h at 200 ℃ in the batch reactor: (a) High-resolution of Mn 2*p* XPS spectra; (b) High-resolution of Ru 3*p* XPS spectra.

Supplementary Fig. 19 Infrared thermal images captured for (a) MnO_x and (b) Ru/MnO_x under 2.5 W cm⁻² illumination.

Supplementary Fig. 20 TRPL spectra of MnO_x and Ru/MnO_x.

Supplementary Fig. 21 The periodic on/off photocurrent response spectra of MnO_x and Ru/MnOx.

Supplementary Fig. 22 (a) Mott–Schottky plots of the MnOx; (b) The bandgap value of the MnOx.

Supplementary Fig. 23 The work function of Ru and band structures of MnOx.

Supplementary Fig. 24 The different time of variable temperature XRD results in 20% $CO₂/H₂$ atmosphere at 200 °C: (a) MnO_x; (b) Ru/MnO_x.

Supplementary Fig. 25 Influence of various manganese oxide on CH₄ evolution rate. Reaction conditions: 15 mg of catalyst, full-arc 300 W UV-xenon lamp, 2.5 W $cm⁻²$, 200 °C, irradiation time 4 hours, initial pressure 1 MPa ($H_2/CO_2 = 1/1$).

Supplementary Fig. 26 Infrared thermal images captured for WO_3 under 0.3 W cm^{-2} illumination.

Supplementary Fig. 27 XPS spectra of Ru/MnO_x in 20% CO₂/H₂ atmosphere under variable time at 200 ℃: (a) High-resolution of Mn 2*p* XPS spectra; (b) High-resolution of Ru 3*p* XPS spectra.

Supplementary Fig. 28 XPS spectra of Ru/MnO^x after reacting at 200 ℃ for 4 h in a 20% CO2/H² atmosphere: (a) High-resolution of Mn 2*p* XPS spectra; (b) Highresolution of Ru 3*p* XPS spectra.

Supplementary Fig. 29 Spectra of FT-IR study of Ru/MnO_x at different conditions: (a) Effect of different temperature under thermal condition; (b) Effect of different temperature under photothermal conditions.

Supplementary Fig. 30 Spectra of FT-IR study of Ru/MnO_x at different conditions: (a) Effect of different time at 200 ℃ under thermal condition; (b) Effect of different time at 200 ℃ under photothermal conditions.

Supplementary Fig. 31 Calculation model of (a) Ru/Mn₃O₄ (321), (b) Ru/Mn₃O_{4-x} (321) and (c) Ru/MnO (200).

Supplementary Fig. 32 Adsorption configurations of all the involved species on Ru/Mn3O⁴ (321). The blue, red, purple, yellow, and green spheres represent the Mn, O, Ru, C, and H atoms, respectively.

Supplementary Fig. 33 Adsorption configurations of all the involved species on Ru/Mn3O4-x (321). The blue, red, purple, yellow, and green spheres represent the Mn, O, Ru, C, and H atoms, respectively.

Supplementary Fig. 34 Adsorption configurations of all the involved species on Ru/MnO (200). The blue, red, purple, yellow, and green spheres represent the Mn, O, Ru, C, and H atoms, respectively.

Supplementary Fig. 35 The calculated (a) densities of states and (b) projected densities of states for Ru/Mn3O4-x under dark and light conditions. Fermi levels are at 0 eV.

Catalyst	$Ru(wt\%)$	$RuCl3·3H2O$ addition (mmol)
1.4% Ru/MnO _x	1.4	0.02
2.8% Ru/MnO _x	2.8	0.04
4.0% Ru/MnO _x	4.0	0.06
5.8% Ru/MnO _x	5.8	0.08
7.3% Ru/MnO _x	7.3	0.1
8.1% Ru/MnO _x	8.1	0.12

Supplementary Table 1 ICP-OES analysis of Ru/MnOx.

Sample		MnO _x		Ru/MnO _x			
Phase	Mn_3O_4	MnOOH	MnO ₂	MnOOH Mn_3O_4		MnO ₂	
Abundance $(\%)$	69.023	25.976	5.002	72.528	27.544	0.928	
Space group	I41/amd	$P-3m1$	C12/m1	I41/amd	$P-3m1$	C12/m1	
a(A)	5.7702(4)	3.2031(16)	5.1657(61)	5.7698(2)	3.2016(17)	5.1657(61)	
$b(\AA)$	5.7702(4)	3.2031(16)	2.8645(61)	5.7698(2)	3.2016(17)	2.8645(33)	
c(A)	9.4544(9)	4.6199(9)	7.0860(32)	9.4490(5)	4.6141(7)	7.0860(32)	
Volume (A^3)	314.796(62)	41.050(42)	104.17(18)	314.569(31)	40.959(44)	104.17(18)	
R_{wp}		1.62%		1.71%			
R_p		1.25%		1.33%			
GOF		1.34		1.33			

Supplementary Table 2 Crystal parameters and reliability factors of the refinement for MnO_x and Ru/MnO_x

	Metal loading H_2 : CO_2	Pressure		Light intensity	Temperature	CH ₄ production rate	$CO2$ conversion	CH ₄ selectivity	TOF		
Catalysts	$(wt\%)$	ratio	(Mpa)	Light sources	$(W cm-2)$	$({}^{\circ}C)$	(mmol g^{-1} h ⁻¹)	$(\%)$	$(\%)$	(h^{-1})	Ref
Ru/MnO _x	7.3	4:1		300 W Xe lamp 200-1100 nm	2.5	200 (external heater)	166.7	66.8	99.5	232	This work
$Co7Cu1Mn1O$ $_{\rm x}(200)$		3:1	0.1	300 W Xe lamp 300-1100 nm	0.234	200 (external heater)	14.5	27.45	85.3		
Ru/Al ₂ O ₃	2.4	4:1	0.08	1000 W Xe lamp		396	115	0.95	99.2	484	$\overline{2}$
Cu ₂ O/Graphe ne		4:1	0.13	300 W Xe lamp	0.2	250 (external heater)	14.93 (Cu)	2.84	99	0.256	3
$Ru@Ni2V2O7$	0.35	4:1	0.067	300 W Xe lamp	$\mathfrak{2}$	350	114.9	96.3	99.3	3340	$\overline{4}$
Ru/Mg(OH) ₂	11.5	1:1	0.1	300 W Xe lamp	1.8		44.85	1.68	69.5	56.7	5
Rh/A1	5	3:1	1.5	300 W Xe lamp	11.3	200 (external heater)	550		99	1132	6
21% Co/Al ₂ O ₃	0.21	4:1	0.1	300 W Xe lamp 200-1100 nm	1.3	292	6.04		97.7	1.74	$\overline{7}$
$Ru-TiOx$	1.77	4:1	$\hspace{0.05cm}$	300 W Xe lamp	$\overline{2}$	276	22.35		99.99	12.76	8
Ir $@$ UiO66	0.14	4:1	0.1	300 W Xe lamp	2.3	250 (external heater)	19.9 (Flow reactor)	9.3	95	2876	9
8% Ru/SiO ₂	0.8	6:1	$\hspace{0.05cm}$	300 W Xe lamp	0.063	300 (external heater)	55.44 (Flow reactor)	51.8	99	70	10
$Ru-Al2O3-x-L$	0.7	4:1	0.1	300 W Xe lamp	2.27	236	0.84	86.47	99	1248	11
Ru/H_xMoO_{3-y}	4	1:1		300 W Xe lamp Vis-IR	0.75	140 (external heater)	20.8 (Flow reactor)		99	52.6	12

Supplementary Table 3 The summarized CH⁴ yields for recently reported photo-thermo-catalysts.

Supplementary References

- 1. He Z*, et al.* Photothermal CO² hydrogenation to hydrocarbons over trimetallic Co–Cu–Mn catalysts. *Green Chemistry* **23**, 5775-5785 (2021).
- 2. Grote R, *et al.* Collective photothermal effect of Al₂O₃-supported spheroidal plasmonic Ru nanoparticle catalysts in the sunlight-powered Sabatier reaction. *ChemCatChem* **12**, 5618- 5622 (2020).
- 3. Mateo D, Albero J, García H. Photoassisted methanation using Cu₂O nanoparticles supported on graphene as a photocatalyst. *Energy & Environmental Science* **10**, 2392-2400 (2017).
- 4. Chen Y*, et al.* Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity. *Joule* **5**, 3235-3251 (2021).
- 5. Kong N*, et al.* Ruthenium nanoparticles supported on Mg(OH)² microflowers as catalysts for photothermal carbon dioxide hydrogenation. *ACS Applied Nano Materials* **3**, 3028- 3033 (2020).
- 6. Fu G*, et al.* Rh/Al nanoantenna photothermal catalyst for wide-spectrum solar-driven CO² methanation with nearly 100% selectivity. *Nano Letters* **21**, 8824-8830 (2021).
- 7. Chen X, *et al.* MOF-templated preparation of highly dispersed Co/Al₂O₃ composite as the photothermal catalyst with high solar-to-fuel efficiency for CO₂ methanation. *ACS Applied Materials & Interfaces* **12**, 39304-39317 (2020).
- 8. Dong T, et al. Ru decorated TiO_x nanoparticles via laser bombardment for photothermal co-catalytic CO² hydrogenation to methane with high selectivity. *Applied Catalysis B: Environmental* **326**, 122176 (2023).
- 9. Tang Y*, et al.* Encapsulating Ir nanoparticles into UiO-66 for photo-thermal catalytic CO² methanation under ambient pressure. *Journal of Materials Chemistry A* **10**, 12157-12167 (2022).
- 10. Kim C*, et al.* Energy-efficient CO² hydrogenation with fast response using photoexcitation of CO² adsorbed on metal catalysts. *Nature Communications* **9**, 3027 (2018).
- 11. Liu X*, et al.* Strong interaction over Ru/defects-rich aluminium oxide boosts photothermal CO² methanation via microchannel llow-type system. *Advanced Energy Materials* **12**, 2201009 (2022).
- 12. Ge H, Kuwahara Y, Kusu K, Bian Z, Yamashita H. Ru/H_xMoO_{3-y} with plasmonic effect for boosting photothermal catalytic CO² methanation. *Applied Catalysis B: Environmental* **317**, 121734 (2022).