
Nonlinear Rydberg exciton-polaritons in

Cu2O microcavities

Maxim Makhonin1, Anthonin Delphan1, Kok Wee Song2, Paul
Walker1, Tommi Isoniemi1, Peter Claronino1, Konstantinos
Orfanakis3, Sai Kiran Rajendran3, Hamid Ohadi3, Julian
Heckötter4, Marc Assmann4, Manfred Bayer4, Alexander
Tartakovskii1, Maurice Skolnick1, Oleksandr Kyriienko2

and Dmitry Krizhanovskii1

1Department of Physics and Astronomy, University of Sheffield,
Sheffield, S3 7RH, United Kingdom.

2Department of Physics and Astronomy, University of Exeter,
Stocker Rd, Exeter, EX4 4PY, United Kingdom.

3School of Physics & Astronomy, University of St Andrews, St
Andrews, KY16 9AJ, United Kingdom.

4Fakultät Physik, TU Dortmund, August-Schmidt-Straße 4,
Dortmund, 44227, Germany.

1



2 SUPPLEMENTARY INFORMATION

Supplementary Information

1 Transmission spectra fitting procedure 3

2 Measurement of excitonic and cavity linewidths 3

3 The effect of temperature on the exciton resonances 5

4 Strong coupling in broadband excitation regime up to n = 7 6

5 Calculation of the density 7

6 Comparison of nonlinearities 10

7 Theoretical analysis 10
7.1 Rabi splitting and light-matter coupling . . . . . . . . . . . . . 11
7.2 Rydberg and Pauli blockade . . . . . . . . . . . . . . . . . . . . 12
7.3 n2 parameter from Rabi frequency measurement . . . . . . . . 15

8 Non-resonant pumping and quenching of Rabi Splitting 16

9 Pump-probe zero delay point 18



SUPPLEMENTARY INFORMATION 3

1 Transmission spectra fitting procedure

To fit the transmission spectra we used the model of cavity transmission from
Ref. [1], multiplied by a Gaussian function which accounts for the spectrum of
the pulse incident on the cavity. This reads

Tn ≈
A exp

(
−2

(
∆n

σ

)2 )
(κ2 +G2

n
γn/2+2Qn∆n

γ2
n/4+∆2

n
)2 + (∆n −G2

n
∆n−Qnγn

γ2
n/4+∆2

n
)2
, (S1)

where A is the peak amplitude, ∆n is the laser frequency detuning from the
excitonic resonance with principal quantum number n, γn is the excitonic
linewidth for corresponding n, κ is the cavity linewidth, Gn is the coupling
strength, Qn is the Fano asymmetry parameter, and σ is the pulse spectral
width. In all cases the subscript n refers to the exciton with index n. We use
Eq. (S1) to fit the transmission spectra at each n by fixing the parameters
γn, κ and Qn corresponding to each excitonic resonance taken from separate
measurements (see Section 2 below). For each excitonic resonance we perform
a global fit over all excitation powers, with only the coupling strength Gn

and the amplitude A varying as a function of power. Thus we obtain power
dependence of Gn.

2 Measurement of excitonic and cavity
linewidths

In Fig. S1, we extract the photonic cavity linewidth κ of several modes at
different energies. The data are taken from angle-resolved transmission (also
called Fourier imaging or k-space imaging) of a broadband super-continuum
laser. A section of the angle-resolved data at zero incidence angle to the sample
normal (k = 0) is presented in the figure. As we want to extract an uncoupled
and unperturbed “purely photonic” cavity mode, the spectra are taken from a
spatial region of the sample where the cavity modes are detuned far away from
the excitonic resonances. This occurs due to a small wedge in the thickness of
the sample.
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Fig. S1: Normal incidence transmission spectrum of a Cu2O microcavity
under broadband excitation, showing uncoupled Fabry–Pérot cavity modes.
Points are experimental data. Solid curves show Lorentzian lineshape fits to
the modes.

From the Lorentzian fits in Fig. S1, we can extract the cavity linewidth
as a function of energy, which we plot in Fig. S2. The trend can then be
extrapolated to find appropriate κ values for energy levels matching exciton
resonances.
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Fig. S2: Cavity linewidth extracted from Fig. S1 as a function of energy.
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From white light transmission spectra of a bare Cu2O flake with exci-
tonic resonances fitted as an asymmetrical Fano resonances we extract exciton
linewidth γn and Fano asymmetry parameter Qn (see Fig. S3).
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Fig. S3: Transmission spectra of a bare Cu2O flake. Points are experimental
data. Solid curves are Fano lineshape fits for each resonance.

3 The effect of temperature on the exciton
resonances

We believe the laser induced heating effects are negligible in our exper-
iment. To verify this we performed an additional measurement where the
exciton resonances were monitored in transmission in a bare Cu2O crystal
using white light for different temperatures. With the increase of temperature
of the sample from 4 to 20 K we observed a significant red shift of the exciton
resonances by about 0.6 meV as shown in the Fig. S4, whereas the exciton
linewidth and the dip of the exciton resonance stay almost the same, indi-
cating no reduction of the exciton oscillator strength with temperature. By
contrast, our measurements of the polariton resonances for different powers in
Fig. 2 of the main text do not show any red shift of the bare exciton reso-
nances within the spectrometer resolution ∼ 0.1 meV: the energy positions of
the dip between the polariton resonances corresponding to the exciton levels
do not change. This indicates that the sample temperature does not change
with increase of pump power and the reduction of the exciton-photon coupling
can not be explained by heating.
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Fig. S4: White light transmission spectra of a bare Cu2O flake at different
temperatures.

4 Strong coupling in broadband excitation
regime up to n = 7

In Fig. 1 of the main text we demonstrated strong coupling in the broadband
excitation regime using angle-resolved transmission spectra, by showing the
anti-crossing of the cavity modes around the excitonic lines for n = 3, n = 4,
and n = 5. In this section, we show that such anti-crossing can be observed for
up to n = 7 in the broadband excitation regime, similarly to the narrowband
excitation scheme demonstrated in the main text of the article.

While Fig. 1 of the main text was obtained using k-space imaging, it was
not possible to use this technique for higher n. Indeed, the cavity modes become
noisy and harder to resolve at higher energy, which makes the identification of
such modes challenging. Instead, the anti-crossing is obtained by scanning the
excitation position on the sample, which results in the cavity modes shifting
due to the slight wedge in sample thickness and thus changing their detuning
with respect to the excitons. This is similar to the technique used in Ref. [1].
When the modes cross the exciton resonance, a doublet and splitting charac-
teristic of strong coupling are observed. This scan across different positions on
the sample is shown in Fig. S5.
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Fig. S5: Broadband excitation and position scan across the sample showing
anticrossing for excitonic resonances from n = 3 to n = 7. Brown dash-dot
lines are a guide to the eye showing positions of upper and lower polariton
modes. Grey lines are showing positions of exciton resonances.

5 Calculation of the density

The density of photons inside a cavity can be calculated from the power emitted
by the cavity together with the rate of escape through the mirrors, which have
a finite transmission coefficient. A detailed explanation of the principle can
be found in the supplementary information of Ref. [2]. In the present work,
the power emitted by the cavity was measured directly, while the transmission
of the mirrors was calculated using a transfer matrix model of the sample
with calibrated parameters. Transfer matrix modelling is a standard technique
which exactly solves Maxwell’s equations for planar layer structures of the
type we use in this work. In our work we deduce the size of the nonlinearity at
the lowest powers, in the limit where the interaction energy compared to the
the other energy scales in the system, such as losses, are tending towards zero.
We therefore use the reasonable approximation that in this limit the density
of particles in the cavity can be deduced using a linear model of the cavity
electromagnetic response.

The first step in the model was to calibrate the reflection, transmission
and absorption of the silver mirrors. In the same deposition runs in which
the mirrors were deposited onto the Cu2O to form the cavity the same sil-
ver films were also deposited onto a glass substrate. We then measured the
transmission and reflection of these silver films using the same laser as in
the main experiments, and a commercial laser power meter. We measured
reflection of R = 92 ± 3% and transmission of T = 2.0 ± 0.3%. The silver
thickness of 51.5 nm was known from the deposition rate and time. We then
used the transfer matrix method to model the reflection and transmission of
the structure and found the silver refractive index that gave the measured
transmission and reflection. We find real and imaginary parts of the refractive
index n = 0.24 ± 0.11 and k = 3.78 ± 0.10 respectively. Here the errors were
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obtained by propagating the errors in R and T using the numerically calcu-
lated gradients ∂n/∂T , ∂n/∂R, ∂k/∂T , and ∂k/∂R. For the error ∆n in n we
used the formula ∆n = |∂n/∂T |∆T + |∂n/∂R|∆R, and similar for the error
∆k in k. We note that our refractive index is also consistent with values from
the literature [3]. We checked that our deduced values of density do not vary
by more than a few percent with the real part of the refractive index of the
silver mirrors.

Next we calibrated the Cu2O layer properties. The background refractive
index 2.7386 was taken from the literature [4]. We then modelled transmission
through the cavity using the transfer matrix method and varied the thickness
of the Cu2O until the free spectral range between adjacent photonic modes
matched that in the experiment. In this manner we found a cuprous oxide
thickness of 26.0 micrometers. The imaginary part of the cuprous oxide refrac-
tive index, 0.000483, was then found so that the quality factor of the calculated
modes was 2000 away from the excitonic resonances, in agreement with the
experimental results. We checked that our deduced values of density do not
depend (by more than a few percent) on the refractive index of the cuprous
oxide provided that the free spectral range matched the experimental value.

Having calibrated both mirror and cavity properties we then used the trans-
fer matrix model to calculate both the energy density inside the cavity and the
Poynting flux (power per unit area) outside the cavity for a monochromatic
incident laser, as in Ref. [2]. Integrating the energy density over the cavity
length and dividing by the flux gives τ ′, the inverse of the rate of tunnelling
of photons through the mirror. We then have Pout = Ecav/τ

′ where Pout is
the measured power coming out of the cavity and Ecav is the energy stored as
photons inside the cavity.

We calculated τ ′ as a function of photon wavelength and found variation
of only 0.4% over the 1.75 meV (0.467 nm) energy range corresponding to the
bandwidth of the spectra shown in the experiments. Since in the linear regime
the time-varying fields inside the cavity may be viewed as a superposition of
different frequency waves (by the Fourier transform) we can therefore assume
that the ratio of stored energy to output power is the same for the pulsed
case as for the monochromatic case. We arrive at τ ′ = 14 ± 2 ps. Here the
uncertainty ∆τ ′ in τ ′ was obtained by propagating the errors ∆n and ∆k in
the silver mirror real and imaginary refractive indices respectively using ∆τ ′ =
|∂τ ′/∂n|∆n+|∂τ ′/∂k|∆k. The gradients ∂τ ′/∂n = 3.27 ps and ∂τ

′
/∂k = 19.48

ps were obtained numerically by running the transfer matrix simulation over
a range of different refractive indices.

The number of particles in the cavity is related to the energy by N =
Ecav/ (ℏω) where ω is the central angular frequency of the pulses. The areal
density of photons ρphotons = N/A can then be obtained using the effective area
A for the nonlinear interaction. This is given by [5] 1/A =

∫ ∫∞
−∞ I2(x, y)dxdy

where I(x, y) is the normalised spatial intensity distribution inside the cavity,
which in our case has a Gaussian shape. This takes account of the fact that the
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density varies over the Gaussian spot and so we measure a weighted average
of more and less strongly interacting regions.

In a similar way our time-averaged measurement of the ∼ 1 ps pulses
coming from the cavity is an average over the time-varying interaction energy
in the cavity weighted by the occupancy of the cavity. Both the interaction
energy and occupancy are proportional to the temporal shape of the cavity
occupancy I(t). Taking this weighted average gives the effective pulse length τp
using 1/τp =

∫∞
−∞ I2(t)dt. Transform limited Gaussian pulses with 1.75 meV

spectral width have a temporal width of 1.0 ps. This is then a lower bound
for the possible temporal width of the density in the cavity, which provides
an upper bound for the density and hence a lower bound for the nonlinearity.
However, the real temporal width is likely to be longer due to partial cavity
filtering of the incident spectrum and/or chirp in the incident pulses. Using
the lower bound of a 1 ps Gaussian we obtain τp = 1.57 ps.

We then use Ecav = Poutτ
′ from above and insert the effective output pulse

power Pout = Pavg,T/ (fτp). Here Pavg,T is the average power of the transmitted
beam, f = 1 kHz is the laser repetition rate and τp is the effective pulse length
defined above. We finally make the substitution Pavg,T = TPavg where Pavg is
the average incident beam power and T = 1/180 is the measured transmission
through the cavity. This accounts for the reflection of spectral components of
the incident pulse which are not resonant with the cavity modes. Recalling that
ρphotons = N/A = Ecav/ (Aℏω) finally leads to an expression for the photon
density in cavity:

ρphotons =
TPavgτ

′

fτpAℏω
. (S2)

So far our discussion has concerned a purely photonic cavity with no strong
exciton-photon coupling. When strong coupling is included the fundamental
eigenstates of the system, the polaritons, are part photon and part exciton.
The fractions of photon and exciton content are |C|2 and |X|2 respectively
with |C|2 + |X|2 = 1. Since our measurements of nonlinearity are made at
zero exciton-photon detuning we have |C|2 = |X|2 = 0.5. Only the photonic
component of the polaritons leads to tunnelling through the mirror into free
space modes outside the cavity. Thus Eqn. S2 still holds and the output power
from the cavity gives the density of photons inside the cavity, where we are
careful to remember that this is really the density of the photonic component of
the polaritons. The density of the photonic component is related to the density
of polaritons by ρphotons = ρpolaritons|C|2. We can then write the density of
polaritons as

ρpolariton =
TPavgτ

′

fτpAℏω|C|2
. (S3)

Finally, to obtain the density of excitons (the excitonic component of the
polaritons) we multiply the polariton density by the excitonic fraction,

ρ =
TPavgτ

′|X|2

fτpAℏω|C|2
. (S4)
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6 Comparison of nonlinearities

We find that in our system the nonlinearity coefficient β, relevant for appli-
cations, ranges between 0.01 µeV µm3 for n = 3, to 0.4 µeV µm3 for n = 7
Rydberg exciton-polaritons (see Fig. 3 in the main text). It is important to
note that in a Cu2O cavity the excitons are delocalised within the cavity thick-
ness of 26 µm, and so the exciton density is expressed per unit volume of the
cavity region and the appropriate units for the nonlinear parameter are energy
shift divided by number of particles per unit volume, that is µeV µm3.

In other highly nonlinear polariton systems, such as for example micro-
cavities with embedded (In)GaAs quantum wells, the excitons are confined
within the thickness of the quantum wells (typically ∼ 10 nm per quantum
well in the device). A single quantum well thickness is comparable to the exci-
ton Bohr radius and hence the density is usually expressed per unit area of a
single quantum well. For GaAs polaritonic systems the reported strengths of
exciton-polariton nonlinearity (either β-values or g-values characterising the
collapse of strong exciton-photon coupling or the exciton energy shifts, respec-
tively) are in the range from 2 to 10 µeV µm2 [2, 6–9]. In order to compare
these to β-values of the bulk excitons we study, one has to transform the 2D
density to effective 3D density by dividing it by the thickness of the quantum
wells. This enables a unified characterisation of the strength of interactions
between two excitons separated by a certain distance irrespective of how they
are positioned within the cavity region, whether they are bulk or confined to
a single or multiple 2D layers.

Following this procedure the 2D values of 2–10 µeV µm2 in GaAs-based
systems are equivalent to 0.02–0.1 µeV µm3. These values are exceeded by
the β values in Cu2O microcavity already for n = 5 exciton-polaritons. Qual-
itatively, this is expected since the exciton Bohr radius for n = 5 is already
of the order of 30 nm, being three times larger than that in GaAs, leading
to stronger dipole-dipole interactions or Pauli blockade mechanism. Similarly,
nonlinearities in hybrid perovskites containing order 3000 layers have been
studied [10]. Each layer is of order 1.7 nm thick. The per-layer nonlinearity of
3 µeV µm2 is equivalent to a bulk-like nonlinearity of 0.005 µeV µm3. This 3D
value is then convenient to deduce the effective 2D nonlinearity of perovskite
structures with different numbers of layers.

7 Theoretical analysis

In this section we present the theoretical analysis of Rydberg excitons coupled
to photons in a microcavity. In the first part, we focus on the relation of the
Rabi splitting (Ωn) and the light-matter coupling constant (Gn). In particular,

we derive Ωn ≈ Ω
(0)
n −βnρ, where ρ is the exciton density, and Ω

(0)
n is the Rabi

splitting at vanishing density, ρ = 0. This gives the theoretical beta factor βn
used to characterise the strength of nonlinearity. In general, βn ∼ VB/V is
mostly determined by the ratio between blockade (VB) and the total volume
(V ). In the next part, we discuss the blockade VB due to Rydberg and Pauli
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blockade. These two different mechanisms lead to distinct scaling behavior.
Also, we discuss the estimates for βn in Cu2O (Fig. 3b in the main text). In
the final part, we deduce the nonlinear refractive index n2 for Cu2O using the
nonlinear polaritonic response.

7.1 Rabi splitting and light-matter coupling

Transmission of the Cu2O microcavity system around n-th excitonic state can
be modeled as [1]

Tn ≈ 1

(κ2 +G2
n
γn/2+2Qn∆n

γ2
n/4+∆2

n
)2 + (∆n −G2

n
∆n−Qnγn

γ2
n/4+∆2

n
)2
, (S5)

where κ is the cavity line-width, Gn is the exciton-photon coupling con-
stant, ∆n is the detuning, γn is the excitonic linewidth, and Qn is the Fano
asymmetry parameter. In the weak light-matter coupling regime (Gn ≪ γn),
the system only responds to light with frequency near the exciton resonance
(∆n = 0). One can see from Eq. (S5) that in the strong coupling regime
(Gn ≫ γn) the optical response changes qualitatively [11]. Namely, in this
regime the resonance changes from ∆n = 0 to two resonances at ∆n = ± 1

2Ωn.
This comes from the hybridisation of photonic and excitonic modes. The result-
ing states – polaritons – are quasiparticles which energies are characterised by
the Rabi splitting Ωn.

The Rabi splitting can be analytically calculated from Eq. (S5) by identi-
fying the separation between points of maximum response in the transmission
spectrum. For instance, in the absence of asymmetry (Qn = 0), Rabi splitting
can be obtained from Eq. (S5) as [12]

Ωn = 2

√
Gn

√
1
2γn(κ+ γn) +G2

n − 1
4γ

2
n. (S6)

We can see that the Rabi splitting explicitly depends on the coupling constants
Gn and the linewidth γn. These quantities can be exciton density-dependent.
For instance, the exciton blockade can lead to the reduction of Gn, and the
scattering between excitons broadens the linewidth γn. These effects will even-
tually renormalise the Rabi splitting or the shift of polariton energy which
directly translates into optical nonlinearity. To see these effects, we expand
Eq. (S6) at low exciton density ρ as

Ωn = Ω(0)
n − βnρ+O(ρ2), (S7)

where the Rabi splitting in low density is

Ω(0)
n = 2

√
G

(0)
n Λn − 1

4 (γ
(0)
n )2, (S8)
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with G
(0)
n := Gn|ρ=0, γ

(0)
n := γn|ρ=0, and Λn :=

√
1
2γ

(0)
n (κ+ γ

(0)
n ) + (G

(0)
n )2.

Here, the β-factor then reads

βn = − 2

Ω
(0)
n Λn

[
(Λ2

n + (G(0)
n )2)

dGn

dρ
+G(0)

n ( 12κ+ γ(0)n )
dγn
dρ

]
. (S9)

This factor quantifies the rate of the Rabi splitting reduction. In the above, the
exciton blockade and the linewidth broadening effects are present in the first
and second terms. However, no strong inhomogeneous broadening has been
resolved in the measurement within the low-density regime. Therefore, in our
analysis, we focus on the blockade effect in the first term.

7.2 Rydberg and Pauli blockade

In this subsection, we discuss the possible blockade mechanism that leads to
reduction of Gn, and present the details for derivations. First, let us comment
on the case of Rydberg excitons outside of optical cavities. In the presence of
N Rydberg excitons, the absorption (α) of Cu2O follows the scaling relation
α ∝ V/VB−N , where V is the total volume of the system and VB is the Rydberg
blockade volume [13]. The N -dependent behavior in α can be well explained
by Rydberg blockade physics [14]. When placed inside an optical cavity, the
absorption is related to the light-matter coupling constant as α ∝ G2

n [1]. In
the low-density limit, the coupling constant may be written as

Gn ≈ G(0)
n (1− 1

2BnN), (S10)

where Bn = VB/V is the blockade coefficient for a single Rydberg exciton. In
the case of Rydberg blockade it is given by

Bn =
4π

3

r3C
V
. (Rydberg) (S11)

The Rydberg exciton blockade radius is modeled by rC = (Ck/γn)
1/k with Ck

being the dipole-dipole interacting constant [14, 15]. Here, k = 3 is the Förster-
type interaction and k = 6 is the van der Waals interaction. This parameter
plays a crucial role in determining blockade physics which has been estimated
theoretically in Ref. [15]. To calculate the β-factor, we substitute Eq. (S10)
into Eq. (S9), and get

βn =
Λ2
n + (G

(0)
n )2

Ω
(0)
n Λn

G(0)
n BnV. (S12)

We then extract the light-matter coupling constant G
(0)
n from the measurement

in Fig. 3a of the main text by using Eq. (S8). This gives the best fit G
(0)
n =

2.29(n
2−1
n5 )1/2meV in the main text, see Fig. S6a. We obtain the β-factor
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Fig. S6: Scaling of Rydberg exciton. (a) Rabi splitting in low density. Closed
black circles are the point taking from Fig. 3a of the main text at ρ = 0. Dashed

curved is the fitted result by using G
(0)
n ∝

√
(n2 − 1)/n5 and Eq. (S6). (b)

Comparison between Rydberg (rC magenta) and Pauli (rn, light blue) blockade
radius. (c) Scaling of Pauli blockade coefficient. The factor fn in Eq. (S18)
gives the asymptotic scaling behavior for the blockade coefficient Bn ∼ n4

[Eq. (S17)]. Dashed curves are the fits by using fn = n4(b0 + b1n
−1 + b2n

−2).

plotted as the purple solid curve in Fig. 3b. In the large n-limit, the blockade
coefficient shows a power-law scaling with Bn ∼ n7[14]. Hence, Eq. (S12) gives
the asymptotic scaling for βn ∼ n5.5.

However, this scaling property which is very often used for identifying the
Rydberg blockade has only been established in the large quantum number
regimes (n ≥ 12) [14]. In our case, the exciton quantum number are in the
range from n = 3 to n = 7, where the scaling behavior may not be evident.
Therefore, the power-law scaling may not be a single argument supporting
the observation of the Rydberg blockade in our low-n measurement. Next, we
consider another potential contribution to the reduction of Rabi frequency.

As the exciton radius rn = 1
2a0(3n

2−2) [14] is comparable to the Rydberg
blockade radius rC (see Fig. S6b), we consider the effects of Pauli blockade.
This comes from the composite nature of excitons and fermionic statistics of
the electrons and holes. In order to identify the Rydberg physics in this low-n
regime, we analyse the Pauli blockade and investigate its contribution.

For the Pauli blockade, the coefficient in Eq. (S10) can be evaluated exactly
as

Bn =
∑
k

|ψn(k)|4, (Pauli), (S13)

where ψn(k) is the exciton wavefunction with quantum number n and wavevec-
tor k [16]. The p-wave hydrogen-like wavefunction [17] (l = 1,m = 0)
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is

ψn(k) =

√
(na0)3

V

n(n− l − 1)!

(n+ l)!

[
C

(l+1)
n−l−1(

ξ2−1
ξ2+1 )

22l+32πl!ξl

(ξ2 + 1)l+2

]
Υlm(θ, ϕ), (S14)

where ξ = nka0. Here, C
(α)
n (x) is the Gegenbauer functions and Υlm(θ, ϕ) is

the spherical harmonic function. We note that the momentum k is discrete,
defined by a finite sample size with volume V . The normalisation condition is∑

k |ψn(k)|2 = 1. In contrast to the Rydberg blockade, the shape of the exciton
wavefunction ψn(k) completely determines Bn or the Bohr radius a0. The
Bohr radius can be determined by the experiment’s Rydberg exciton energies,
ωn = Eg + Eb

n in Fig. S3 with bandgap energy Eg and the exciton binding
energy

Eb
n = −Ry∗

n2
. (S15)

The Rydberg constant Ry∗ = e2

4πϵ0ϵr
1

2a0
, which allows us to estimate a0. Using

the Cu2O dielectric constant ϵr = 7.5 [18], and

Ry∗ = − ωn−1 − ωn

(n− 1)−2 − n−2
, (S16)

we can deduce the Bohr radius a0 ≈ 0.83 nm. Therefore, in the Pauli blockade,
the experiment leaves no free adjustable parameter for the β-factor. We plot
βn from the contribution due to the Pauli blockade in Fig. 3 of the main text
(blue dashed curve). It is an order of magnitude smaller than the measured
values.

In terms of power-law scaling, we let

Bn = fn
a30
V
. (Pauli) (S17)

The prefactor is

fn =
9× 220n3

10(n2 − 1)2

∫ ∞

0

dξ
ξ6[C

(2)
n−2(

ξ2−1
ξ2+1 )]

4

(1 + ξ2)12
, (S18)

where we used
∑

k
(2π)3

V →
∫
d3k for wavevector k in large V . This fn prefactor

determines the scaling behavior of Bn and we plot in Fig. S6c. As we can see,
the Pauli blockade coefficient (Bn) scales with a power law weaker than n4

for low n, and approaches an ∼ n3.5 scaling in the high-n range. Overall, it is
lower than the Rydberg blockade scaling with n7. Using Eq. (S12), this yields
a a scaling trend of βn ∼ n2.5 for small n, significantly different as compared
to experiment.
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7.3 n2 parameter from Rabi frequency measurement

To estimate the n2 nonlinear parameter, we begin with the definition of the
total refractive index and the optical susceptibility as follows [4]

nT
2 = ϵb + χ(ω). (S19)

The optical susceptibility in a cavity for each excitonic mode near the resonance
can be modeled by [1, 11]

χ(ω) ≈ hnG
2
n

ω − ωn + 1
2 iγn

, (ω ≃ ωn), (S20)

where ωn is the Rydberg exciton energy. We note that the constant of
proportionality hn can be determined from the Rabi splitting measurement.

The coupling constant Gn changes due to the Rydberg blockade as the
laser power increases [Eq. (S10)]. This leads to the nonlinear response in the
susceptibility

χ(ω) = χ(1)(ω) + χ(3)(ω)E2. (S21)

In the vicinity of ω ≃ ωn, the linear response of the above is χ(1)(ω) ≈
hn(G

(0)
n )2(ω − ωn + 1

2 iγn)
−1, and the Kerr nonlinear response is

χ(3)(ω) ≈
hn(G

(0)
n )2(−Bn)(

1
2ϵ0V/ω)

ω − ωn + 1
2 iγn

, (S22)

where we have converted the exciton number N into the electric field E by
using ωN/V ≈ 1

2ϵ0E
2 with V being the volume of the nonlinear medium. Also,

the blockade coefficient is given by Eq. (S11). The nonlinear refractive index
n2 is defined as

n2(ω) =
Re[χ(3)(ω)]

ϵ0cn20
, (S23)

where n20 = ϵb +Re[χ(1)(ω)]. Therefore, the n2-parameter (near ω ≃ ωn) from
the quench of Rabi frequency is

n2(ω) ≈ − hnβn
2cn20ω

G
(0)
n (ω − ωn)

(ω − ωn)2 +
1
4γ

2
n

, (S24)

where we have used Eq. (S12) by taking the strong-coupling limit (G
(0)
n ≫

γ
(0)
n ).

At the polaritonic peaks (ω = ωn ± 1
2Ω

(0)
n ), the total refractive index

satisfies [11]

nT(ωn ± 1
2Ω

(0)
n ) = nb

ωn

ωn ± 1
2Ω

(0)
n

(S25)
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where nb = nT(ωn) =
√
ϵb is the background refractive index (nb = 1 for

the device is vacuum). The condition in Eq. (S25) determines the constant of
proportionality hn. Therefore, we can deduce the nonlinear refractive index n2
from our Rabi splitting measurements.

Alternatively, we can also deduce the constant of proportionality hn from
the absorption data by following the method in Ref. [11]. First, the Rabi
splitting of a nonlinear medium with susceptibility in Eq. (S20) can also be
estimated as

Ω(0)
n =

√
2ωnhn(G

(0)
n )2/nb2 − (γ

(0)
n )2 (S26)

Substituting the experimental measurements into the above, we get hn which
has the same orders of magnitude as the hn obtained from Eq. (S25). Fur-

thermore, in Ref.[11], we have hn(G
(0)
n )2 ≈ (nbcα0γn)/(ωn/ℏ) where α0 is the

absorption. Using the absorption data in Ref. [13], we again obtain the hn with
the same order of magnitude.

8 Non-resonant pumping and quenching of
Rabi Splitting
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Fig. S7: Normalized Rabi splitting as a function of resonant peak laser power
(bottom axis) and/or photon density in the cavity (top axis). Normalization
is based on the case where smallest value of laser power is used.
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Fig. S8: Normalized Rabi splitting as a function of non-resonant CW laser
power (bottom axis) and/or photon density inside the cavity (top axis). Rabi
splitting values are normalized based on the case where no non-resonant laser
is used.

In this section we compare two regimes of quenching of Rabi splitting. One
case is the resonant pulsed excitation presented in the main paper in Fig. 3.
Here we show these data as normalised Rabi splitting plotted as a function of
incident peak power and/or photon density created by the pulse in the active
cavity region (Fig. S7). The second case is non-resonant continuous wave (CW)
excitation with above band gap green laser at wavelength 520 nm (Fig. S8).
Varying the power of non-resonant laser and probing with weak broadband
super-continuum laser filtered from 568 to 582 nm in transmission geometry
the transmission spectra are recorded and then fitted to extract Rabi splitting.
Normalised Rabi splitting for this experiment is plotted as a function of CW
power of green laser or photon density in the cavity for excitons from n = 2 to
6 (see Fig. S8).The photon density in pulsed case is calculated using Eq. S2
whereas photon density in CW case is calculated using the following equation:

ρCW = TPinc

3Aℏω(c0/n0)
, (S27)

where T is the transmission through the mirror(2%), Pinc is the incident power,
A is the illuminated area (95 µm2), ℏω is the photon energy, c0 is the speed
of light in vacuum, n0 is Cu2O background refractive index, 1/3 is from the
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fact that propagation length of the excitation laser ≈ 10 µm in Cu2O with
thickness of ≈ 30 µm. The data for CW case are obtained on microcavity
Cu2O sample with distributed Bragg reflector mirrors reported in Ref. [1],
which is very similar in optical characteristics to the sample presented in the
main paper — cavity with silver mirrors. Note that the incident powers used
in CW excitation case are in tens of mW range for quenching of Rabi split-
ting whereas in resonant experiment with pulsed excitation quenching of Rabi
splitting is achieved at peak powers of tens of Watts. Even higher difference
can be noted in the photon density required for quenching the Rabi between
CW and pulsed regime (6 orders of magnitude). Such big difference of 6 orders
of magnitude in photon densities can be explained by population of free elec-
trons and holes and long lived states in the case of CW excitation contributing
to nonlinear behaviour and quenching of Rabi splitting. We also note that
in our experiments the photon densities in case of non-resonant CW pump-
ing are only 6 orders of magnitude less than in the case of pulsed excitation.
So our experiment with CW nonresonant pumping alone cannot explain why
there is 8 orders of magnitude difference in the n2 parameters measured in
the case of resonant pulsed and CW pumping in Ref. [4]. It is possible that
such a difference is sample dependent (for example, the density of long-lived
localised states, which could be associated with metallic impurities may vary
from sample to sample).

9 Pump-probe zero delay point

The interference between residual pump and probe pulses results in mod-
ulation of the spectra at small delays between pulses (see Fig. S9a). The
modulation frequency depends on separation of the pulses whereas its visibility
depends on the relative intensities of the two pulses. The analysis of modu-
lation at small delay times allow us to define the zero delay between pulses
with accuracy of ±0.25 ps (see Fig. S9). Fig. S9a shows pump-probe trans-
mission spectra on glass substrate without the Cu2O at different delay times
where pump signal after rejection with a polariser was ≈ 3 times bigger than
the probe signal. We extract free spectral range (FSR) of the modulated sig-
nal and plot it as a function delay stage position in Fig. S9b. Fitting the FSR
data allow us to define the zero delay position for the probe delay stage.

Although we have used much smaller pump powers in the experiment with
Cu2O in Fig. 5 and rejected the unwanted pump signal with polarisers on
detection small amount of pump still provides enough modulation for the probe
signal to interfere with polariton resonance. So we not plot data points in
Fig. 5 of the main text for the range of -30 to 37 ps apart from exact time 0
where the frequency of modulation is bigger than the polariton resonance and
it doesn’t influence the transmitted probe polariton spectrum.
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Fig. S9: Pump-probe signal on substrate without the sample. a trans-
mitted probe spectra for different delays displays interference with residual
pump beam not fully rejected by polarisers. Intensity of probe (pump) beam
is 20 µJ cm−2 (20 mJ cm−2). Period of modulation in energy or free spectral
range (FSR) increases closer to zero delay. b FSR plot (extracted from spectra
in a ) as a function of probe delay stage position (bottom axis) and/or time
delay (top axis). Time zero between arrival of two pulses is defined from the
fit of FSR with exponential function with accuracy of ±0.25 ps.
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