
Supplementary Note

1 Secondary analyses
Simulation:
We simulated 61,000 disease diagnoses spanning 20 diseases in 10,000 individuals, using the
ATM generative model; we aimed to choose simulation parameters that resemble real data. In
detail, the average number of disease diagnoses per individual (6.1), ratio of
#individuals/#diseases (500), topic loadings, and standard deviation in age at diagnosis (8.5
years for each disease) were chosen to match empirical UK Biobank data; we varied the
number of topics, number of individuals, and number of diseases in secondary analyses (see
below). We note that AUPRC is larger when classifying the minority subtype; results using
the second subtype as the classification target are also provided (Supplementary Fig. 2).

We performed three additional secondary analyses. First, we varied the number of
individuals, number of diseases, or number of disease diagnoses per individual. ATM
continued to outperform LDA in each case, although increasing the number of individuals or
the number of disease diagnoses per individual did not always increase AUPRC
(Supplementary Fig. 4B). Second, we performed simulations in which we increased the
number of subtypes from two to five and changed the number of diseases to 50, and
compared ATM models trained using different numbers of topics (in 80% training data) by
computing the prediction odds ratio; we used the prediction odds ratio (instead of AUPRC) in
this analysis both because it is a better metric to evaluate the overall model fit to the data, and
because it is unclear how to compare AUPRC across scenarios of varying topic numbers (see
Supplementary Table 1). We confirmed that the prediction odds ratio was maximised using
five topics, validating the use of the prediction odds ratio for model selection (Supplementary
Fig. 5A). Third, we computed the accuracy of inferred topic loadings, topic weights, and
grouping accuracy (defined as proportion of pairs of diseases truly belonging to the same
topic that ATM correctly assigned to the same topic), varying the number of individuals and
number of diseases diagnoses per individual. We determined that ATM also performed well
under these metrics (Supplementary Fig. 5B-E).

Age-dependent comorbidity profiles in the UK Biobank
We performed three additional secondary analyses to validate the integrity and reproducibility
of inferred comorbidity topics. First, we reached similar conclusions on model selection using
evidence lower bounds1 (ELBO; see Supplementary Table 1) as prediction odds ratios; ATM
with 10 topics fits the data optimally (Supplementary Fig. 6. Second, we confirmed that
collapsed variational inference 2 outperformed mean-field variational inference 3

(Supplementary Fig. 7). Third, we computed a co-occurrence odds ratio evaluating whether
diseases grouped into the same topic by ATM in the training data have higher than random
probability of co-occurring in the testing data (Supplementary Table 1). The co-occurrence
odds ratio is consistently above one and increases with the number of comorbid diseases, for
each inferred topic (Supplementary Fig. 8).
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Age-dependent comorbidity profiles in All of Us
We note 3 key differences between All of Us and UK Biobank data: (i) All of Us contains
primary care and hospital data encoded using SNOMED clinical terms, whereas UK Biobank
uses hospitalization episode statistics (HES; encoded using ICD-10 clinical terms); (ii) All of
Us is based on the U.S. population and U.S. health care system whereas UK Biobank is based
on the UK population and UK health care system, which impacts diagnostic criteria and age
at diagnosis; and (iii) All of Us individuals have different ancestries and socioeconomic
backgrounds (including 26% African and 17% Latino; 78% of All of Us represents groups
historically underrepresented in biomedical research based on race, ethnicity, age, gender
identity, disability status, medical care access, income, and educational attainment) than UK
Biobank individuals (94% European ancestry with higher than average income and
educational attainment). We consider the cross-cohort prediction odds ratio of 1.32 to be an
encouraging result given these key differences.

Comorbidity-based subtypes are genetically heterogeneous
We sought to verify that genetic differences between subtypes were not due to partitions of
the cohort that are unrelated to disease (e.g. we expect a nonzero genetic correlation between
tall vs. short type 2 diabetes cases, even if height is not genetically correlated to type 2
diabetes). Thus, we assessed whether the excess genetic correlation could be explained by
non-disease-specific differences in the underlying topics (which are weakly heritable;
Supplementary Table 3) by repeating the analysis using disease cases and controls with
matched topic weights (i.e. case and controls have matched topic weights distributions within
each disease or disease subtypes) (Methods). We determined that the excess genetic
correlations could not be explained by non-disease-specific differences (Supplementary Fig.
20). We also estimated subtype-specific SNP-heritability and identified some instances of
differences between subtypes, albeit with limited power (Supplementary Table 15).

Disease-associated SNPs have subtype-dependent effects
The third and fourth examples in Extended Data Fig. 8 are described here. Third, the
hypertension-associated SNP rs3735533 within the HOTTIP long non-coding RNA has a
lower odds ratio in the top quartile of CVD topic weight (1.07±0.02) than in the bottom
quartile (1.13±0.02) (P = 0.0015 for interaction test (FDR = 0.09 < 0.1); P= for0. 1
top/bottom quartile test (FDR = 0.55)). HOTTIP is associated with blood pressure4,5 and
conotruncal heart malformations6. Fourth, the hypothyroidism-associated SNP rs9404989 in
the HCG26 long non-coding RNA has a higher odds ratio in the top quartile of FGND topic

weight (1.90±0.24) than in the bottom quartile (1.19±0.13) (P = for interaction test1×10−4

(FDR = 0.02 < 0.1); P= for top/bottom quartile test (FDR = 0.15)). Hypothyroidism3×10−3

associations have been reported in the HLA region4, but not to our knowledge in relation to
the HCG26.
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2 Additional discussion
Our findings reflect a growing understanding of the importance of context, such as age, sex,
socioeconomic status and previous medical history, in genetic risk 7–9. To maximise power
and ensure accurate calibration, context information needs to be integrated into clinical risk
prediction tools that combine genetic information (such as polygenic risk scores 10,11) and
non-genetic risk factors. Our work focuses on age, but motivates further investigation of
other contexts. We note that aspects of context are themselves influenced by genetic risk
factors, hence there is an open and important challenge in determining how best to combine
medical history and/or causal biomarker measurements with genetic risk to predict future
events12.

We note several additional limitations. First, the genetic correlation and FST analyses were
based on discrete subtypes, but discretizing continuous data loses information and may
compromise power. However, definitions of disease often discretize continuous variables13. In
addition, our PRS analysis (Fig. 6) and SNP x topic interaction analysis (Extended Data Fig.
8) leveraged continuous-valued topic weights. Second, interpretability can be a potential
downside of data reduction approaches. The interpretation of a particular disease topic is that
it consists of diseases that tend to co-occur with a specified set of diseases as a function of
age. Identifying the functional biology underlying these co-occurrences remains a direction
for future research, but there is immediate utility in performing disease subtype-specific
GWAS and downstream analyses using the subtypes that we have identified.
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3 Full Methods
Age-dependent topic model (ATM)
Our Age-dependent topic model (ATM) is a Bayesian hierarchical model to infer latent risk
profiles for common diseases. The model assumes that each individual possesses several
age-evolving disease profiles (topic loadings), which summarise the risk over age for
multiple diseases that tend to co-occur within an individual's lifetime, namely the age specific
multi-morbidity profiles. At each disease diagnosis, one of the disease profiles is first chosen
based on individual weights of profile composition (topic weights), the disease is then
sampled from this profile conditional on the age of the incidence.

We constructed a Bayesian hierarchical model to infer K latent risk profiles for D distinct
common diseases. Each latent risk profile (comorbidity topics) is age-evolving and contains
risk trajectories for all D diseases considered. Each individual might have a different number
of diseases, while the disease risk is determined by the weighted combination of latent risk
topics. The indices in this note are as follows:

● ;𝑠 =  1,..., 𝑀
● ;𝑛 =  1,..., 𝑁

𝑠

● ;𝑖 =  1,..., 𝐾
● ;𝑗 =  1,..., 𝐷

where M is the number of subjects, Ns is the number of records within sth subject, K is the
number of topics, and D is the total number of diseases we are interested in. The plate
notation of the generative model is summarised in Extended Data Fig. 1:

● is the topic weight for all individuals (referred to as patient topicθ ∈  𝑅 𝑀 × 𝐾 

weights), each row of which ( ) is assumed to be sampled from a Dirichlet∈ 𝑅𝐾 
distribution with parameter . is set as a hyper parameter: . We usedα α θ

𝑠
 ∼ 𝐷𝑖𝑟(α)

topic weights to assign continuous values for disease subtypes in PRS and SNP x
Topic analyses.

● (referred to as diagnosis-specific topic probability) is the topic𝑧 ∈ {1, 2,..., 𝐾} 𝑆

 

∑ 𝑁
𝑆
 

assignment for each diagnosis . Note the total number of diagnoses𝑤 ∈ {1, 2,..., 𝐷} 𝑆

 

∑ 𝑁
𝑆
 

across all patients are . The topic assignment for each diagnosis is generated
𝑆

 

∑  𝑁
𝑆

from a categorical distribution with parameters equal to individual topic weight:𝑠𝑡ℎ

. We used diagnosis-specific topic probability to define discrete𝑧
𝑠𝑛

 ∼ 𝑀𝑢𝑙𝑡𝑖(θ
𝑠
) 

disease subtypes in excess genetic correlation and excess FST analyses.

● is the topic loading which is functions of age . is theβ(𝑡) ∈ 𝐹(𝑡)𝐾 × 𝐷 𝐾 × 𝐷 𝑡 𝐹(𝑡)

class of functions of . At each plausible , the following is satisfied: .𝑡 𝑡
𝑗

 

∑  β
𝑖𝑗

(𝑡) =  1

In practice we ensure above is true and add smoothness by constrain to be a𝐹(𝑡)
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softmax of spline or polynomial functions: whereβ
𝑖𝑗

(𝑡) =  
exp(𝑝

𝑖𝑗
𝑇 ϕ (𝑡))

{
𝑗=1

𝐷

∑  exp(𝑝
𝑖𝑗

𝑇 ϕ (𝑡))
,

is polynomial and spline functions of ; ; is𝑝
𝑖𝑗

𝑇 ϕ (𝑡) 𝑡 𝑝
𝑖𝑗

 =  { 𝑝
𝑖𝑗𝑑

};  𝑑 =  1, 2,..., 𝑃 𝑃

the degree of freedom that controls the smoothness; is polynomial and splineϕ (𝑡)
basis for age .𝑡

● are observed diagnoses. The diagnosis of individual is𝑤 ∈{1, 2,..., 𝐷} 𝑆

 

∑  𝑁
𝑆

𝑛𝑡ℎ 𝑠𝑡ℎ 𝑤
𝑠𝑛

sampled from the topic chosen by : , here is theβ
𝑧

𝑠𝑛

(𝑡) 𝑧
𝑠𝑛

 𝑤
𝑠𝑛

 ∼ 𝑀𝑢𝑙𝑡𝑖(β
𝑧

𝑠𝑛

(𝑡
𝑠𝑛

)) 𝑡
𝑠𝑛

age of the observed age at diagnosis of the observed diagnosis .𝑤
𝑠𝑛

The values of interest in this model are global topic parameter , individual (patient) levelβ
topic weight , and diagnosis-specific topic probability . Based on the generative processθ 𝑧
above, we notice that each patient is independent conditional on . Therefore, the inferenceα
of and (discussed below) is performed by looping each individual in turn.θ 𝑧

The key element in our model is age-evolving risk profiles, which is achieved by model the

comorbidity trajectories as functions of age. The functionals areβ(𝑡) ∈ 𝐹(𝑡)𝐾 × 𝐷 𝐹(𝑡)
parameterized as linear, quadratic, cubic polynomials, and cubic splines with one, two and
three knots. We use prediction odds ratio to decide the optimal model structure including the
function forms and the number of topics; we use ELBO to choose the optimal inference
results (with random parameter initialization) for the same model structure(Supplementary
Table 1).

Inference of ATM
The variables of interest are global topic parameter , individual (patient) level topicβ(𝑡)
weight , and diagnosis-specific topic probability of each diagnosis. We could adopt an EMθ 𝑧
strategy, where in the E-step we first estimate posterior distribution of and , then in theθ 𝑧
M-step we estimate which maximises the evidence lower bound (ELBO).β

The details of the inference is explained in the Analytic Note. In summary, in a Bayesian
setting, We used the evidence function to evaluate how well the model fits the𝑝(𝑤|α,  β)
data. The best is found by maximise the evidence function, while for and we aim toβ(𝑡) θ 𝑧
find or approximate their posterior distribution . Given that the posterior𝑝(𝑧,  θ | 𝑤,  α,  β) 
distribution is intractable, we use variational distribution to approximate them. Now𝑞(𝑧,  θ)
we could write the evidence function as:

𝑝(𝑤| α,  β) = 𝐿(𝑧,  θ,  β,  α) +  𝐾𝐿(𝑞||𝑝),

here is the KL divergence. Since KL divergence𝐾𝐿(𝑞||𝑝) =−
𝑧, θ

 

∫  𝑞(𝑧,  θ) ln 𝑝(𝑧, θ | 𝑤, α, β )
𝑞(𝑧, θ)

is always positive, is a lower bound of the evidence function:𝐿(𝑧,  θ,  β,  α)
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.𝐿(𝑧,  θ,  β,  α) = 𝐸
𝑞
{ ln 𝑝(𝑤,  𝑧,  θ | α,  β) −  ln 𝑞(𝑧,  θ )}

When finding the posterior of and , we want to be as close to the posteriorθ 𝑧 ln 𝑞(𝑧,  θ )
as possible. Since when , this𝑝(𝑧,  θ | 𝑤,  α,  β ) 𝐾𝐿(𝑞||𝑝) =  0 𝑞(𝑧,  θ ) = 𝑝(𝑧,  θ | 𝑤,  α,  β )

is achieved by minimising or maximise . The most commonly used𝐾𝐿(𝑞||𝑝) 𝐿(𝑧,  θ,  β,  α)
form of assumes the distribution is factorised, which might cause instability when𝑞(𝑧,  θ )
signal-to-noise ratio is low14. Therefore, more accurate inference methods such as collapsed
variational inference is considered2. Comparison of the evidence lower bound 𝐿(𝑧,  θ,  β,  α)
shows collapsed variational inference (CVB) is consistently more accurate than mean-field
variational inference (VB) (Supplementary Fig. 7). Therefore we chose the collapsed
variational inference2. The collapsed variational inference is achieved by integrate out fromθ
the likelihood function and find the approximated posterior distribution𝑝(𝑤,  𝑧,  θ | α,  β)

. For detailed derivation, the comparison between collapsed variational inference and𝑞(𝑧)
mean-field variational inference, and update algorithms, see the Analytic Note.

When finding the that maximises the evidence function, we again maximiseβ(𝑡)
. Maximising with respect to does not have an analytical𝐿(𝑧,  θ,  β,  α) 𝐿(𝑧,  θ,  β,  α) β(𝑡)

solution due to its softmax structure. We use local variational methods and numeric
optimisation to find the distribution of . In summary, L(z, θ, β, α) is not tractable withβ(𝑡)
respect to as it contains a log of softmax function (Section 3.2 of Analytic Note). Weβ(𝑡)
introduced a local variational variable to obtain a tractable lower bound of L(z, θ, β, α)
(equation 11 in Supplementary Note) and use gradient descent to approximate the lower
bound. Details are provided in the Analytic Note.

We extract topic weights at patient-level and diagnosis-level from the posterior distribution
inferred from the data. Our model has the desired property that each patient and
patient-diagnosis are assigned to comorbidity topics. The model estimates the posterior
distribution , which is a categorical distribution (equation 8 of Analytic Note). We listed𝑞(𝑧)
following definitions in this paper that are derived from the :𝑞(𝑧)

● Each patient-diagnosis (incident disease) has a diagnosis-specific topic probability,
which is computed as .𝐸

𝑞
{𝑧

𝑛
} 

● Each patient has a posterior topic weights , which is a dirichlet distributionθ
𝑠

. The topic weights of each patient is defined as theθ
𝑠
∼ 𝐷𝑖𝑟( α +  

𝑛=1

𝑁
𝑆

∑   𝐸
𝑞
{𝑧

𝑛
} ) 

mode of this Dirichlet distribution (we used , which puts an𝑛=1

𝑁
𝑆

∑   𝐸
𝑞
{𝑧

𝑛
} 

𝑖=1

𝐾

∑  
𝑛=1

𝑁
𝑆

∑   𝐸
𝑞
{𝑧

𝑛𝑖
} 

α = 1 

noninformative prior on the topic weights). Topic weight is the low-rank
representation of disease history, for analyses including PRS association with
comorbidity topics and SNP x Topic interaction analysis.
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● The average topic assignments of disease is the mean over all incidences𝑗
. This metric is used to measure which comorbidity topic a disease is𝐸

𝑞
{ 𝑧

𝑠𝑛 ∈ {𝑤
𝑠𝑛

=𝑗}
}

associated with (Fig. 4B), and it is equivalent to a weighted average of topic loadings
(Supplementary Note equation 5 shows the link between diagnosis-specific topic
probability and topic loading). A disease assigned to multiple topics is considered to
have comorbidity subtypes.

● A hard assignment of a patient-diagnosis to a comorbidity-derived subtype is based on
the max value of the vector . The incident disease is assigned to topic𝐸

𝑞
{𝑧

𝑛
} 

.𝑎𝑟𝑔𝑚𝑎𝑥
𝑖
 (𝐸

𝑞
{𝑧

𝑛𝑖
}) 

Metrics for evaluating ATM
ATM is evaluated for different purposes, which requires different metrics (Supplementary
Table 1). Here we list the details of the four metrics considered: Prediction odds ratio,
Evidence Lower Bound (ELBO), the Area under the Precision-Recall curve (AUPRC)15, and
Co-occurrence odds ratio.

Prediction odds ratio:We used prediction odds ratio to compare models of different topic
numbers and configuration of age profiles. Briefly, prediction odds ratio is defined on 20%
held-out test data as the odds that the true diseases are within the top 1% diseases predicted
by ATM (trained on 80% of the training set and uses earlier diagnoses as input), divided by
the odds that the true diseases are within the top 1% of diseases ranked by prevalence.

Specifically, we separate UK Biobank patients into a training set (80%) and a testing set
(20%). On the training set, we estimate the comorbidity topic loadings. On the testing set, we
fix the topic loadings and infer the patient topic weights to predict the next disease in
chronological order. The topic loadings are estimated using the diseases and compute the𝑛
risk rank of diseases at the age of the +1 disease. The odds ratio is computed by the odds of𝑛
the +1 disease being in the top 1% of diseases versus being in the top 1% most prevalent𝑛
diseases. We use the top 1% most prevalent diseases instead of randomly chosen diseases as
it represents a naive prediction model that predicts disease based on prevalence. The patient
topic weights computation is in section Inference of ATM and the risk is computed as the
linear combination of topics using topic weights as coefficients. We also compute the
prediction odds ratio using the LDA model. We repeat the procedure for 10 times for each
model configuration.

We compared the prediction odds ratio for fitting UK Biobank with ATM of varying topic
numbers (5 to 20) and age-dependent functions (linear, quadratic polynomial, cubic
polynomial, and splines with one, two and three knots). We also compare the ATM model
with the LDA model of topic number between 5 to 20.

Evidence Lower Bound (ELBO): ELBO evaluated the accuracy of the variational inference
method on a specific data set 1. The mathematical expression of ELBO for ATM is presented
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in equation 9 in the Analytic Note. To find the best model that fits the entire dataset, we
evaluate the ELBO for models with 19 choices of the number of topics: 5-20, 25, 30, and 50;
6 choices of age profiles configuration: linear, quadratic polynomial, cubic polynomial, and
splines with one, two and three knots. Each model is run for 10 times with random
initialisations. We choose the model that has the highest ELBO after converging.

AURPC: To evaluate whether a model could capture the comorbidity subtypes in simulation
analysis, we compute the precision, recall, and area under precision-recall curve (AUPRC) to
correctly classify disease diagnosis to be from the topic that it is generated from. The topic of
each diagnosis is determined by diagnosis-specific topic probability. Note we could only
evaluate AUPRC in simulations where the truth is known.

Co-occurrence odds ratio: To verify that the comorbidity profiles that the model captured are
capturing diseases that are more likely to present within the same individual, we estimate the
odds ratio of the disease duo, trio, quartet, and quintet that are captured by the topic versus
that of random combinations. We divide the population into an 80% training set and a 20%
testing set. We trained the ATM model with five random initialisations and kept the model
with the highest ELBO. Each disease is assigned to a topic by the highest average topic
assignments. (section Inference of ATM) We focus on the top 100 diseases ranked by
prevalence to avoid the combination being too rare to appear in the population. In the testing
set, we computed the odds of individuals who have all diseases in the comorbidities versus
the odds implied if all diseases are independent (computed as the product of disease
prevalence). The odds ratio is computed for all combinations of duo, trio, quartet, and quintet
that are assigned to the same topics. We perform the same analysis using PCA for
comparison.

Simulations of ATM method
To test whether the algorithm could assign diagnoses to correct comorbidity profiles, we
simulated diagnoses from two comorbidity profiles (topics) in a population of 10,000, using
following parameters:

● ;𝑀 =  10, 000
● ;𝑁

𝑆
 =  6. 1

● ;𝑁
𝑆
 ∼ exp{𝑁

𝑆
}

● ;𝐷 =  20
● ;𝐾 =  2

Here is the number of individuals in the population, is the average number of diseases𝑀 𝑁
𝑆
 

for each individual, is the total number of diseases, is the number of comorbidity topics.𝐷 𝐾
The distribution of disease number per-individual is sampled from an exponential𝑁

𝑆

distribution, which matches those from UK Biobank data (Supplementary Fig. 25).
According to equation 3.1 in Ghorbani et al.14, whether the topic model could capture the true
latent structure is determined by the information signal-to-noise ratio and could be evaluated
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with limits , where is a constant. Therefore we choose and𝑀 → ∞;  𝐷 → ∞;  𝐷
𝑀  → δ δ 𝐷 𝑀

that make similar to those of the UK Biobank dataset (Samples size = 282,957; distinct𝐷
𝑀

disease number = 349).

The simulated topics loadings are constructed as follows:
● All but diseases are simulated to be associated with comorbidity profiles. Each of𝐾

them has a risk period of 30 years and overlaps for 10 years with the next disease. For
example, if disease 1 has a risk period from 30 to 59 years of age, disease 2 will have
a risk period between 50 to 79 years of age. When the risk period reaches the maximal
age, the truncated part will be carried to the next disease to create diseases with
shorter risk period. All risk periods are assigned a value 1. The overlapping structure
of topic loadings is chosen so that average standard deviation in age-at-diagnosis (8.5
years) and the age window under consideration (30-80 years of age) matches UK
Biobank data.

● diseases that are not associated with comorbidity are simulated to span all topics.𝐾
The values of these diseases are sampled from for each topic. Here𝑈𝑛𝑖𝑓(0,  0.1

𝐾 ) 𝐾

is the number of topics.

● The age profiles are then normalised at each age point to ensure for
𝑗=1

𝐷

∑  β
𝑗
(𝑡) =  1

all . With this constraint we could sample a disease at each age using a multinomial𝑡 𝑡
probability with the topic loading as the parameter. The age range of the simulated
topics is 30 to 81 years of age, which is the minimal and maximal age at diagnosis of
incident disease in the UK Biobank population. An example of a simulated topic is
shown in Supplementary Fig. 26.

For each individual, we sampled the Dirichlet parameter from a gamma distribution (shapeα
= 50, rate = 50 ). Topic loadings are sampled from the Dirichlet distribution for each patient
as the generative process. For each patient, we first sample the number of diseases . For𝑁

𝑆

each incident disease, we sample the disease age from uniform distribution between age 30 to
81 and a topic from the topic loading. We then choose the incident disease based on the age at
diagnosis from the chosen topic. The procedure follows the generative process described
above.

Since in real data we only use the first age at diagnosis for recurrent diseases within the same
patient, we filter the simulated diseases accordingly. The filtered data are fed into the
inference functions to infer the latent topics and disease assignments. The inferred topics
compared with the true topics used to simulate diseases are shown in Supplementary Fig. 26.
For the initialisation of each inference, we first sample and from the Dirichletβ θ
distribution of non-informative hyperparameters, then initialised other variables parameters
following the generative process. The variational inference converged where the relative

increase of ELBO is below .10−6
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We simulated diseases with distinct comorbidity subtypes by combining diseases from
distinct topics and labelling them as a single disease, using parameters described above. We
consider two scenarios: (1) the subtype of diseases have the same age at diagnosis
distribution. (2) the subtypes of disease have distinct age at diagnosis distribution. We first
chose one disease (disease A) then sampled a proportion of a second disease (disease B) to
label as disease A. The proportion is varied to create a different sample size ratio of the two
subtypes. In scenario one, disease B is a disease that has the exact same age distribution as
disease A but from the other topic. In scenario two, disease B is from the other topic and has
a different age distribution (age at diagnosis moves up for 20 years, 10 years, or 5 years,
respectively) than disease A. After changing the labels of disease B to be the same as disease
A, we used the inference procedure described as above to get the posterior distribution.

To evaluate whether a model could capture the comorbidity subtypes, we compute the
precision, recall, and area under precision-recall curve (AUPRC) of correctly classifying
incident disease B to be from the topic that it is generated from. The topic of each diagnosis
is determined by diagnosis-specific topic probability. We use other diseases from the topic of
disease B to benchmark the topic label. Topic modelling on the simulated data is performed
with both ATM and LDA (both implemented using collapsed variational inference for fair
comparison) to compare the performances.

We evaluate the subtype classification with varying values for four simulation parameters:
● ratio of sample sizes between the two subtypes. We change the ratio of the two

subtypes by a grid between 0 to 0.9 with a step size 0.1. The default value of sample
size ratio is set as 0.1 in other simulations to test for other parameters that have
impacts on the precision and recall.

● Simulated population size. We simulated population sizes equal to 200, 500, 1000,
2000, 5000, and 10,000. The default population size is 10,000 in other simulations.

● Number of distinct diseases. We simulated datasets with 20, 30, 40, and 50 distinct
diseases, with 2, 3, 4 and 5 underlying disease topics respectively. The default number
of distinct diseases is 20 in other simulations.

● Difference of age distribution. We considered three scenarios of subtype age
distribution, with 0, 10, and 20 years of difference in the average age at diagnosis.

UK Biobank comorbidity data
We analysed comorbidity data from 282,957 UK Biobank samples with diagnoses for at least
two of the 348 focal diseases that we studied (see below). We use the hospital episode
statistics (HES) data within the UK Biobank dataset, which records diseases using the
ICD-10/ICD-10CM coding system; the average record span of HES data is 28.6 years. Codes
started with letters from A to N are kept as they correspond to disease code (opposed to
procedure codes). The disease records were mapped from ICD-10/ICD-10CM codes to
PheCodes using a three-step procedure: First, we mapped the first four letters of each ICD-10
records to the phecodes, using the map file downloaded from phewascatalog.org; second, we
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mapped the remaining records using ICD-10CM map file downloaded from
phewascatalog.org; last, we mapped remaining records using the same ICD-10CM map
system but only use the first four character of each ICD-10CM codes. We also noticed
(ICD-10/ICD-10CM)-Phecode pairs are not always one-to-one; when a single
ICD-10/ICD-10CM code is mapped to more than one PheCodes, we chose the Phecode with
the largest number of links to ICD-10/ICD-10CM codes to reduce redundancy of the
mapping result. Using the procedure above, we mapped 99.7% ICD-10/ICD-10CM code to
PheCodes, with 4,637,127 records in total.

The mapped Phecodes are filtered to keep only the first age at diagnosis for the same diseases
within a patient. The age at diagnosis for each record is computed as the difference between
month of birth to the episode starting date. We then computed the occurrence of each disease
in the UK Biobank and kept 348 that have more than 1,000 occurrences (Supplementary
Table 4). Starting with all 488,377 UK Biobank patients (including both European and
non-European ancestries), we filtered the patients to keep only those who have at least two
distinct diseases from the 348 focal diseases, as we are most interested in the comorbidity
information. We treated the death as an additional disease (8,666 records) to evaluate if
certain comorbidities are more likely to lead to fatal events. After these procedures, there are
in total 1,726,144 distinct records across 282,957 patients.

To name the topics inferred from the UK Biobank, we take the sum of average topic
assignments (section Inference of ATM) over diseases for each Phecode system and extract
the three most common Phecode disease systems. Six topics are named using the three most
common Phecod disease systems: NRI “neoplasms, respiratory, infectious diseases”, CER
“cardiovascular, endocrine/metabolic, respiratory”, SRD “sense organs, respiratory,
dermatologic”, FGND “female genitourinary, neoplasms, digestive”, MGND “male
genitourinary, digestive, neoplasms”, MDS “musculoskeletal, digestive, symptoms”. For four
topics that are predominantly associated with one system, we name them based on their top
associated Phecode system: LGI “lower gastrointestinal”, UGI “upper gastrointestinal”, CVD
“cardiovascular”, and ARP “arthropathy”.

We present topic loadings of a few focal diseases in two ways. Firstly, we filter each topic
using the profile mean value between age 30 to 81 to keep the top seven diseases. We chose
seven for visualisation, as we found more diseases would be harder to read on a plot.
Secondly, we also show seven diseases that have the highest average topic assignment to
each topic. This will give a picture of diseases that are not the most prevalent in the
population but are predominantly associated with the target topic.

To compare the comorbidity heterogeneity between age groups, we group the incidences for
each disease to two age groups: young group (<60 years of age) and old group (≥60 years of
age). We compute the average topic assignment of each group as described in section
Inference of ATM. Additionally, we inferred topics for male (984,554 records in 156,366
individuals) and female (741,590 records in 126,591 individuals) populations respectively
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using a model with 10 topics and spline function with one knot. We extract the average topic
assignment for each disease, and use Pearson's correlation to match the topics for both sexes
to the topics inferred on the entire population.

We assigned diagnoses to discrete subtype using max diagnosis-specific topic probability. We
focus our genetic heterogeneity analysis on 52 diseases that have at least 500 incidences
assigned to a secondary topic.

All of Us comorbidity data.
We analysed EHR data collected in the EHR domain of All of Us samples, which includes
both primary care and secondary care data. The average distance between first and last
diagnoses is 7.9 years (vs. 7.0 years in UK Biobank); the average record span period is
unknown, but we hypothesized that it is likely to be considerably larger than 7.9 years (vs.
28.6 years in UK Biobank). Disease codes in the All of Us EHR domain are coded in
SNOMED CT. We first mapped All of Us disease codes from SNOMED CT to ICD-10CM
code using map version 20220901 downloaded from
https://www.nlm.nih.gov/research/umls/mapping_projects/snomedct_to_icd10cm.html. When
a single SNOMED CT code was mapped to multiple ICD-10CM codes, we choose the code
with the highest UK Biobank prevalence from these ICD-10CM codes. We then mapped
ICD-10CM codes to Phecodes, using the same procedure described in the section above. We
kept 233 Phecodes that overlap with the 348 diseases analysed in the UK Biobank. We kept
the first diagnosis for recurrent diseases in each patient. After mapping, we are left with
3,098,771 diagnoses spanning 211,908 All of Us samples. We run ATM with topic number
from 5 to 20 and spline with two knots (degree of freedom = 5) on the All of Us comorbidity
data and computed prediction odds ratio (using five-fold cross validation) and ELBO (on all
211,908 samples).

Comparing disease topics between UK Biobank and All of Us
We compared the optimal models from UK Biobank (10 topics, degree of freedom = 5) and
All of Us (13 topics, degree of freedom = 5). We constrained our analyses on 233 of the 348
diseases that are shared between the two data sets. We performed three analyses to compare
the comorbidity patterns from the two data sets.

First, we computed the correlation of topic loadings from two data sets. Since the topic
loadings are functions of age, we computed their correlations using four different ways to
summarise age information: topic loadings averaged across age; topic loadings at age 50, 60,
and 70. For each UK Biobank topic, we found its most similar All of Us topic that has max
correlation of topic loadings (averaged across age).

Second, we computed the cross-population prediction odds ratio, using the All of Us topics to
predict on UK Biobank comorbidity data. We divided the UK Biobank samples into 10
jackknife blocks and computed prediction odds ratios on each leave-one-out sample.
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Third, we compared the correlation of comorbidity profiles (measured by average topic
assignments; see Methods for definition) for 233 diseases that are shared between the two
populations. We define correlations between topic assignments as the correlation between
UK Biobank average topic assignments and All of Us average topic assignments after
mapped to UK Biobank topic space (see below).

Comparing disease topics inferred from different data sets is challenging due to the
exchangeability of topics (i.e. distinct topic configurations have the same likelihood for a
given data set). To compute correlations between topic assignments from ATM inference on
different populations, we first mapped the topics to the same topic space. Suppose there are

two topic spaces and . We create a map from and by computing the{𝑇1} {𝑇2} 𝑠(.) {𝑇1} {𝑇2}

normalised between topic loadings:𝑅2
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correlations between topic assignments within the same topic, is an identical𝑠({𝑇1},  {𝑇1})
matrix.

UK Biobank genotype data.
For genetic correlation analysis, FST, and SNP x Topic interaction analyses, we used genetic
data from 488,377 UK Biobank participants (prior to restricting to 282,957 samples with at
least two of the 348 diseases studied). For PRS and heritability estimation of the 10 topics,
we constrained our analysis to 409,694 British Isle ancestry individuals to adjust for
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population structure; we used the mixed-effect association model implemented in
BOLT-LMM software16,17 to adjust for population structure. For FST analysis with PLINK we
used 805,426 genotyped SNPs; for BOLT-LMM PRS analysis we used 727,882 genotyped
SNPs with MAF>0.1%. For genetic correlation analysis using LDSC, we used 157,756
Genotyped SNPs mapped to HapMap3 SNPs. For computing heritability, we used the
mixed-effect association in BOLT-LMM 16,17 to generate summary statistics, and used LDSC18

to estimate heritability, where we used 1,201,838 imputed SNPs mapped to HapMap3 SNPs
SNPs.

Polygenic risk scores (PRS) analysis.
Despite population stratification cannot be excluded19, to adjusted for and minimize the
impact of population stratification, we applied mixed-effect association model to samples of
British Isle ancestry group (N = 409,694) to compute PRS, for 10 heritable diseases that have
the highest heritability z-scores. We used a mixed model to estimate effect size implemented
by BOLT-LMM and constructed genome-wide PRS 17. We sample controls to keep a balanced
ratio of case and controls. For four diseases with more than 20,485 case (essential
hypertension, arthropathy, asthma, and hypercholesterolemia), we downsampled controls to
make the total sample size half of that of British isle ancestry population (N = 204,847) for
computation efficiency; for other diseases, we sampled 9 controls for each case to ensure case
proportion at or above 10% as recommended by BOLT-LMM (type 2 diabetes, varicose veins
of lower extremity, hypothyroidism, other peripheral nerve disorders, major depressive
disorder, and GRED). We used PLINK to select genotyped SNPs with MAF > 0.1% as
recommended in BOLT-LMM. For each disease, we used 5-fold cross validation to estimate
effect sizes using BOLT-LMM and computed predictive PRS on the held-out testing set. We
used linear regression between continuous-valued topic weights and the predictive PRS to
compute the excess PRS over different topics, where PRS is the response variable and topic
weights is the predictor.

We compute the subtype-specific relative risk for each percentile of PRS using the following
formula:

𝑅𝑅
𝑝𝑡,𝑠

=  
𝑛

𝑝𝑡,𝑠
× 100

𝑛
𝑆

,

where is the relative risk of subtype for the PRS percentile (computed for the𝑅𝑅
𝑝𝑡,𝑠

𝑠 𝑝𝑡𝑡ℎ

entire population); is the number of cases in subtype that has PRS within the𝑛
𝑝𝑡,𝑠

𝑠 𝑝𝑡𝑡ℎ

percentile; is the number of cases in the subtype.𝑛
𝑆

𝑠

Genetic correlation analysis.
We used discrete subtypes in genetic correlation analysis (different from the PRS analysis
above). For each disease and disease subtype, we use a case-control matching strategy to
construct data to estimate coefficients for genetic correlation analysis. For each case in the
disease group, we pick four nearest neighbors (without replacement) from the control group,
matching sex, BMI, year of birth and 40 genetic principal components. The covariates are
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available within the UK Biobank data set, over which we computed the principal
components. We then compute the Euclidean distance of the principal components to find the
nearest neighbours in the population. All cases are matched with four controls except for
401.1 essential hypertension which has a sample size larger than 20% of the population. We
match only one control for each hypertension case.

We perform logistic regression with sex and top 10 principal components as covariates to
estimate the main variant effect of the 805,426 variants that are genotyped. We used PLINK
1.9 for association analysis20. With the summary statistics from the association analysis, we
use LDSC to map the summary statistics to HapMap3 SNPs and match the effect and
non-effect alleles18,21. Since UK Biobank is mostly of British Isle ancestry, we use the
pre-computed LD score from the LDSC website. We estimated the heritability for each
disease or disease subtype which has more than 1000 incidences (378 = 30 diseases subtypes
+ 348 diseases). We use 1000 incidence threshold as LDSC are more accurate with larger
sample size. We focus on 71 disease and 18 disease subtypes of the 378 diseases subtypes and
diseases that have heritability z-score above 4 for genetic correlation analysis.

The genetic correlation is computed for each pair of disease-disease, disease-subtype, and
subtype-subtype using the logistic regression summary statistics and LD score regression. We
report the estimate of genetic correlation and z-scores. Additionally, for pairs that involve
subtypes (disease-subtype or subtype-subtype), we compute the excess genetic correlation,
defined as the difference between the genetic correlation involving subtypes (disease-subtype
and subtype-subtype) and the genetic correlation involving all disease diagnoses
(disease-disease). For example, the genetic correlation between T2D-CER and
hypertension-CVD is compared to the genetic correlation between all T2D and all
hypertension. The z-score and p-value of the genetic correlation differences are reported. We
note that genetic correlations between subtypes of the same disease are compared to 1. We
only reported p-values of excess genetic correlation when both genetic correlation estimation
has standard error <0.1 and at least one of the genetic correlation has |z-score|>4.

To avoid potential collider effects where subtypes are defined by topic components that are
independent of the diseases, we performed the same genetic correlation analyses but match
cases in each subtype with controls with similar topic loadings. We computed PCs from 23
variables (10 topic loadings, 10 PCs, year of birth, sex, and BMI) and used the nearest
neighbour procedure (by Euclidean Distance) to find controls for each case. Here controls are
chosen from individuals without the targeting disease, i.e. an individual with one subtype of
the target disease could not be a control for the other subtypes. We performed the same
analysis using this case-control matching procedure and compared the genetic correlation
with the case-control procedure described above. We perform the analysis for four diseases
that have evidence for genetic subtypes: asthma, type 2 diabetes, hypercholesterolemia, and
hypertension. For one subtype (hypertension-CVD), the heritability (0.0313, s.e. = 0.0289) is
below threshold after matching the topic, which was excluded in genetic correlation analysis.

FST analysis.
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We used discrete subtypes in genetic correlation analysis (same as genetic correlation
analysis above; different from the PRS analysis). To evaluate the genetic heterogeneity
between disease subtypes, we estimated the FST for 52 diseases that have at least 500
incidences assigned to a secondary topic. To test the statistical significance of Fst, we adopted
a permutation strategy by sampling controls with matched topic weights and sample size for
each disease subtype, and computed FST across the subtype-matched control groups. For each
disease subtype, we match the topic weights of permutation samples by sampling (without
replacement) the same number of controls as the cases for each quartile of topic weight that
defines the subtype, which ensures the permutation null samples have the same topic weight
stratification as the disease subtypes. We then compute the FST across the control groups (each
group is matched with one disease subtype) for each disease. We excluded three diseases,
“hypertension”, “hypercholesterolemia”, and “arthropathy”, from FST analysis as we do not
have enough controls that match topic weight distribution. The FSTs are computed using
PLINK 1.9's weighted mean across all genotyped SNPs, which report F statistics across all
subtypes.

We obtained 1,000 permutation samples and reported the permutation p-value. Under the
assumption that causal and non-causal variants have similar allele frequency differences
across the subtypes, FST is a measure of causal genetic effect heterogeneity across subtypes.

SNP x topic interaction test.
We used continuous-valued topic weights in the SNP x topic interaction analysis (same as the
PRS analysis; different from the genetic correlation and FST analyses). For the diseases that
have heritability z-score above 4 in the UK Biobank, we further investigated whether there
are interactions between genetic risk factors with the topic loadings. We used a fit a logistic
regression model using following model:

𝑙𝑜𝑔𝑖𝑡(𝑝) =  β
0
 +  β

1
 *  𝑇 +  β

2
* 𝑇2 +  β

3
 *  𝐺 +  β

4
 *  𝐺 *  𝑇,  

where is individual topic weights for a specified topic, is the genotype, and is the𝑇 𝐺 𝑝
probability of getting the disease. We computed the test statistics under the null that .β

4
= 0

Since the simulation shows the interaction test is underpowered when the variant effects are
small, we focus on the set of SNP that reaches genome-wide significance level to increase

power to detect interaction effects. We performed LD-clumping using to remove𝑟2 >  0. 6
variants that are in strong LD with the lead variants. We computed the test statistics using the
model above (for testing ) and computed study-wise FDR across 2530 disease-topicβ

4
= 0

pairs.We used QQ plots to check that interaction test statistics computed using all
non-subtype topics for each disease (which are expected to be null) were well-calibrated.
(Supplementary Fig. 24B).

As an alternative way to verify the interactions, we divided cases into quartiles based on topic
weights (which defines disease subtypes continuously) for each disease-topic pair, and
randomly sampled two controls that match the topic weights for each case. We estimated the
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main effect sizes for all GWAS SNPs within each quartile of topic weight and compared the
effects between the top and bottom quartiles of topic weights. For visualisation, we use
GWAS SNPs that have no interaction effect (above, P>0.05) as background SNPs.

Simulations of SNP x topic interaction
We simulate comorbidity with genetics to test interaction between genetic and comorbidity
topics. We simulated 100 independent variants with MAF randomly sampled from the MAF
of 888 independent disease associated SNPs. We assumed an additive model and simulated
genotypes for the population using Hardy-Weinberg equilibrium. We simulated three types of
genetic effects on topic and diseases on topic of the simulation framework described in
Simulations of ATM method section:

● Genetics-topic effect: each variant is simulated to have an linear effect of 0.04 on the
topic loading. We choose this value as after normalising the topic, a regression of
causal variant to topic would have an effect size approximately 0.01 which is similar
to our observation in the UK Biobank. The number of variants that are causal to the
topic varies between 2 to 20. We simulated the effect on one topic by adding additive
SNP effects and normalise the topic loadings of each patient. The topic-disease
causality is a natural consequence following the generative process of sampling data.

● Genetic-disease-topic effect: we simulated a heritable disease that is causal to the
topic. The disease is simulated with 20 causal variants each of effect size 0.15. We
vary the disease-to-topic causal effect from 0.05 to 0.5, with a default value of 0.1 in
other analyses (similar to the correlation we found in UK Biobank analysis). We
simulated the effect on one topic by adding additive causal disease effects and
normalise the topic loadings of each patient.

● The genetic effect could interact with the topic when contributing to disease risk. We
simulated four additional diseases to represent different structures (Supplementary
Fig. 21).

○ Genetic effects interact with topic loading on altering disease risk. The
interaction term is added to the mean of disease liability, which is sampled
from a Gaussian distribution. The disease is then sampled by a threshold on
the liability, where the incidence rate is by default 0.5. The interaction effect is
varied from 0.4 to 4, with default value equal to 2.

○ Pleiotropy effects are simulated with a variant that have both genetic-disease
and genetic-topic-disease effects. Both genetic and topic effects are added to
the mean of disease liability. A disease is sampled by a threshold with default
incidence rate equal to 0.5. The topic-disease effect is varied from 0.4 to 4,
with default value equal to 2.

○ Pleiotropy effect with nonlinear topic-disease effect. A quadratic term of
topic-disease effect added to the second model.

○ Pleiotropy effect with nonlinear genetic-disease effect. A quadratic term of
genetic-disease effect added to the second model.

We simulated with varying disease-topic or topic-disease causal effects with 50 repetition at
each causal effect size to obtain uncertainty quantification. The simulated data are fed to the
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ATM to infer the topic weights for interaction testing. The test statistics are for a the
interaction (null in Supplementary Fig. 21-22) between topic weights and genotypes.𝑏

3
= 0
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4 Analytical Notes

4.1 Usage instruction for the analytical notes

The purpose of this supplementary note is to provide a self-contained explanation
of the mathematical basis underlying our topic based model. Therefore, the mate-
rials are not meant to provide new discoveries but to help readers to derive all of
our inference methods without referring to external materials (though we do listed
references to text wherever appropriate). As a consequence, we made no efforts to
condense steps, and opt to expand with more details when we feel it is necessary.

4.2 Generative process of a curve topic model

Supplementary Figure 1: Plate notation of ATM generative model. M is the
number of subjects, Ns is the number of records within sth subject. All plates
(circles) are variables in the generative process, where the plates with shade w is the
observed variable and plates without shade are unobserved variables to be inferred.
θ is the topic weight for all individuals; z is diagnosis-specific topic probability; t
is the age at onset for each diagnosis; β is the topic loadings which are functions
of age t; α is the (non-informative) hyperparameter of the prior distribution of θ.
The generative process is described in the Methods and Supplementary Note.

We constructed a Bayesian hierarchical model to infer latent risk profiles for
common diseases. In summary, the model assumes there exist a few disease topics
that underlie many common diseases. Each topic is age-evolving and contain risk
trajectories for all diseases considered. An individual’s risk for each diseases is
determined by the weights of all topics. The indices in this note are as follows:

s = 1, ...,M ;
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n = 1, ..., Ns;

i = 1, ..., K;

j = 1, ..., D;

where M is the number of subjects, Ns is the number of records within sth subject,
K is number of topics, and D is the total number of diseases we are interested in.
The generative process (Supplementary Figure 1) is as follows:

• θ ∈ RM×K is the topic weight for all individuals, each row of which (∈ RK)
is assumed to be sampled from a Dirichlet distribution with parameter α. α
is set as a hyper parameter.

θs ∼ Dir(α).

• z ∈ {1, 2, ..., K}
∑

s Ns is the topic assignment for each diagnosisw ∈ {1, 2, ..., D}
∑

s Ns .
Note the total number of diagnoses across all patients are

∑
sNs. The topic

assignment for each diagnosis is generated from a multinoulli distribution
with parameter equal to sth individual topic weight.

zsn ∼Multi(θs).

• β(t) ∈ F(t)K×D is the topic which is K ×D functions of age t. F(t) is the
class of functions of t. At each plausible t, the following is satisfied:∑

j

βij(t) = 1.

In practice we use softmax function to ensure above is true and add smooth-
ness by constrain F(t) to be spline or polynomial functions:

βij(t) =
exp(pT

ijϕ(t))∑D
j=1 exp(p

T
ijϕ(t))

,

where pij = {pijd}, d = 1, 2, ..., P ; P is the degree of freedom than controls
the smoothness; ϕ(t) is polynomial and spline basis for age t.

• w ∈ {1, 2, ..., D}
∑

s Ns are observed diagnoses. The nth diagnosis of sth indi-
vidual wsn is sampled from the topic βzsn(t) chosen by zsn:

wsn ∼Multi(βzsn(tsn)),

here tsn is the age of the observed age-at-onset of the observed diagnosis wsn.
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The value of interest in this model are global topic parameter β, individual
(patient) level topic value θ, and topic value z of each diagnosis. Based on the
generative process above, we notice each patient is independent conditional on α
and β. Therefore, we could adopt an EM strategy, where we first estimate θ and
z, then estimate β which maximise the evidence lower bound.

In the first step we could work on the likelihood function fore each patient to
estimate posterior distributions of patient specific variables θ and z. The likelihood
function for sth individual is as follows:

lnp(w, z, θ|α, β) = ln p(θ|α) +
Ns∑
n=1

{ln p(zn|θ) + ln p(wn|zn, β)},

p(θ|α) = Γ(
∑K

i=1 αi)∏K
i Γ(αi)

K∏
i=1

θαi−1
i ,

p(zn|θ) = θ1(i=zn),

p(wn|zn, β(tn)) = β1(i=zn),1(j=wn)(tn).

(1)

Due to the computational cost of simultaneously modelling hundreds of diseases
in the biobank and the inference accuracy consideration (which we will explain in
section 4.4), we adopted a collapsed variational methods for this step. The method
is motivated by [22]. Detailed explanation on why we chose this rather sophisti-
cated methods rather than the commonly used mean filed methods is discussed in
section 4.4, for those interested.

In the second step, we treated the β as parameter of the model and seek to
maximise the evidence function p(w|α, β) (obtained by integrate out θ and z from
the likelihood function). Directly working on the evidence function is implausible,
therefore we work on the evidence lower bound, where we made use of the posterior
distribution q(z, θ) estimated in previous step.

L(z, θ, β, α) = Eq{ln p(w, z, θ|α, β)− ln q(z, θ)}. (2)

We will see this is still not easily achieved, therefore we applied a local variational
method to find an approximate solution. For an easy introduction to local varia-
tional inference, see chapter 10.5 of [23]. Details of the inference will be explained
in section 4.3.

4.3 Inference of model posterior distribution and parame-
ters

The model inference will be performed by alternation an E-step and a M-step. The
EM algorithm will guarantee good convergence properties. For both steps, varia-

22



tional methods will be used to approximate the distribution, though the techniques
are very different. We have tested under realistic parameters, these approximated
distribution are close to the true distribution.

4.3.1 Collapsed variational inference to estimate patient-level poste-
rior distribution q(z, θ)

In this section, we explained how we found the detailed expression of the lower
bound function in equation 2. Details below lay out how we found a variational
distribution of z (equation 8) and use this distribution to compute the evidence
lower bound in equation 9 and equation 10. For those who are not interested
in the detailed derivation and rationale behind multiple choices of approximation
methods, these two equations are all you need to know.

The variational inference aims to approximate posterior p(z, θ|w, α, β) using
variational distributions q(z, θ) that has structure assumptions, which makes them
easier to estimate. The most widely used form of variational distribution is the
factorised ones, where we assume target posterior distributions are independently
distributed, i.e. q(z, θ) = q(z)q(θ). We will derive the inference using this assump-
tion and compare it with the collapsed variational inference in section 4.4.

The latent variable model using Dirichlet distribution is typically designed to
model text, where a document is equivalent as a patient in our model. A document
will have thousands of words (equivalent of our diagnoses), which provides strong
information to fit q(z, θ) with strong assumptions. When data has less diagnoses
per patient, a variational distributions with less stringent assumptions are pre-
ferred, which will increase approximation accuracy. Here we adopted a collapsed
variational method, which put less assumptions on the variational distribution and
is more accurate than the mean-field variational inference method. [22] The idea
is to only assume a factorization over q(z), but not between z and θ. Therefore
the assumptions and lower bound of evidence became (note we are considering
likelihood function for only the sth patient from now on, as all of patients are
independent conditional on α, β):

q(z, θ) = q(θ|z)
∏
n

q(zn),

L(z, θ, β, α) = Eq{ln p(w, z, θ|α, β)− ln q(z)− ln q(θ|z)}
= Eq(z){Eq(θ|z){ln p(w, z, θ|α, β)− ln q(θ|z)} − ln q(z)}

(3)

Maximise Eq(θ|z){ln p(w, z, θ|α, β) − ln q(θ|z)} with respect to q(θ|z) will give
us q(θ|z) = p(θ|w, z, α, β). The maximisation is achieved similarly to the mean-
field approximation where the evidence is decomposed into a lower bound and
KL divergence, where lower bound is maximised when KL divergence is 0. After
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minimising with respect to q(θ|z) [22], the lower bound could be simplified to:

L(z, θ, β, α) = Eq(z){ln p(w, z|α, β)− ln q(z)}

The optimisation of this lower bound is similar to collapsed Gibbs sampling,
where we first marginalise over θ.

p(w, z|α, β) =
∫
θ

Γ(
∑K

i=1 αi)∏K
i Γ(αi)

K∏
i=1

θ
αi+

∑
n zni−1

i ·
K∏
i=1

D∏
j=1

β
∑

n zniwnj

ij

=
Γ(
∑K

i=1 αi)∏K
i Γ(αi)

∏K
i Γ(αi +

∑
n zni)

Γ(
∑K

i=1 αi +Ns)
·

K∏
i=1

D∏
j=1

β
∑

n zniwnj

ij .

(4)

From this marginal complete data likelihood, we could derive the conditional dis-
tribution p(zn′ = k|z¬n′ ,w, α, β) (as in collapsed gibbs sampling) to evaluate the
dependency within z. Here ¬n′ refer to indices of all words excluding n′.

p(zn′ |z¬n′ ,w, α, β) =
p(zn′ , z¬n′ ,w|α, β)
p(z¬n,w|α, β)

=
p(z,w|α, β)

p(z¬n, w¬n|α, β)p(wn′ |α, β)

∝

∏K
i Γ(αi +

∑
n zni)

∏K
i=1

∏D
j=1 β

∑
n zniwnj

ij∏K
i Γ(αi +

∑
¬n′ zni)

∏K
i=1

∏D
j=1 β

∑
¬n′ zniwnj

ij

∝
K∏
i

(αi +
∑
n∈¬n′

zni)
zn′i

K∏
i=1

D∏
j=1

β
zn′iwn′j
ij .

(5)

For a large Ns, (αi+
∑

n∈¬n′ zni) will be approximately the same across n′, therefore
zn′ will be less dependent on z¬n′ .

lim
Ns→∞

p(zn′|z¬n′ ,w, α, β) ∝
K∏
i

[
(αi +Nsθi)

D∏
j=1

β
wn′j
ij

]zn′i
,

where distribution of z factorises over n within a single subjects. Therefore, the
q∗(z) in equation 17 which factorises over n (each q∗(zn′) is independent of other
diagnosis z¬n′) could approximate p(z|w, α, β) accurately. However, Ns is likely to
be small in the patient dataset, therefore the mean-field approximation in equation
17 would be less accurate as it does not include any dependency between zn and
z¬n′ . We therefore adopt the strategies proposed by Teh et al to use variatioanal
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distribution to approximate the marginal distribuion in equation 4:

ln q∗(zn′) = Eq(z¬n′ ){ln p(w, z|α, β)}

= Eq(z¬n′ ){
K∑
i=1

ln Γ(αi +
∑
n

zni) +
K∑
i=1

D∑
j=1

zn′iwn′j ln βij}+ const(zn′)

=
K∑
i=1

zn′i

(
Eq(z¬n′ ){ln(αi +

∑
n∈¬n′

zni)}+
D∑
j=1

wn′j ln βij

)
+ const(zn′)

(6)

We now have the form of multinomial distribution of zn′ . The key lies in how
to estimate Eq(z¬n′ ){ln(αi +

∑
n∈¬n′ zni)}. Teh et al [22] proposed a Gaussian ap-

proximation which could improve computation efficiency by magnitudes. We first
expand ln(αi +

∑
n∈¬n′ zni) as a function of

∑
n∈¬n′ zni at n0 by Taylor expansion:

ln(αi +
∑
n∈¬n′

zni) = ln(αi + n0) +

∑
n∈¬n′ zni − n0

(αi + n0)
−

(
∑

n∈¬n′ zni − n0)
2

2(αi + n0)2
,

where we included only first two terms. If setting n0 = Eq(z¬n′ ){
∑

n∈¬n′ zni} =∑
n∈¬n′ Eq{zni}, we get:

Eq(z¬n′ ){ln(αi +
∑
n∈¬n′

zni)} = ln(αi + n0)−
V arq[

∑
n∈¬n′ zni]

2(αi + n0)2
. (7)

where, V arq[
∑

n∈¬n′ zni] =
∑

n∈¬n′(1 − Eq{zni})Eq{zni} .Plugging this into equa-
tion 6 and notice the normalization of multinomial distribution, we get:

zn′i ∼ Cat
( (αi + n0) exp

(
− V arq [

∑
n∈¬n′ zni]

2(αi+n0)2
+
∑D

j=1wn′j ln βij

)
∑K

i=1(αi + n0) exp
(
− V arq [

∑
n∈¬n′ zni]

2(αi+n0)2
+
∑D

j=1 wn′j ln βij

)). (8)

For prediction tasks, the posterior θ could be evaluated using distribution of z.

θ ∼ Dir(α +
Ns∑
n=1

Eq{zn})

Once we have the variational distribution of z in equation 8, we could used the
distributio to compute the expectation in the evidence lower bound (the target
objective function to maximise).The evidence lower bound over all subjects is as
follows:
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L(z, θ, β, α) =Eq(z){ln p(w, z|α, β)− ln q(z)}

=
M∑
s=1

(
ln Γ(

K∑
i=1

αi)−
K∑
i

ln Γ(αi)− ln Γ(Ns +
K∑
i=1

αi)+

K∑
i=1

Eq(z){ln Γ(αi +
∑
n

zni)}+

Ns∑
n=1

K∑
i=1

E{zsni}
D∑
j=1

wsnj ln βij

)
−

M∑
s=1

( Ns∑
n=1

K∑
i=1

E{zni} lnE{zni}
)
,

(9)

where we need to approximate Eq(z){ln Γ(αi +
∑

n zni)}. Making use of the Stir-
ling’s approximation, we found ln Γ(z) = (z − 1

2
) ln(z) − z + 1

12z
+ 1

2
ln(2π) could

approximate ln Γ(z) accurately for z > 1. Therefore, by plugging in Stirling’s
approximation and reuse equation 7 we could approximate this expectation:

Eq(z){ln Γ(αi +
∑
n

zni)} =Eq(z){(αi +
∑
n

zni) ln(αi +
∑
n

zni)

− 1

2
ln(αi +

∑
n

zni)− (αi +
∑
n

zni) +
1

12(αi +
∑

n zni)
+

1

2
ln(2π)}

=Eq(z){(αi + n0) ln(αi + n0) +
(
∑

n zni − n0])
2

2(αi + n0)

− 1

2
ln(αi + n0) +

(
∑

n zni − n0])
2

4(αi + n0)2

− (αi +
∑
n

zni)

+
1

12(αi + n0)
+

(
∑

n zni − n0])
2

12(αi + n0)3
+

1

2
ln(2π)}

=(αi + n0) ln(αi + n0)−
1

2
ln(αi + n0)− (αi + n0) +

1

12(αi + n0)

+ V arq[
∑
n

zni]
( 1

2(αi + n0)
+

1

4(αi + n0)2
+

1

12(αi + n0)3
)

+
1

2
ln(2π),

(10)
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Note here the first order terms in Taylor expansion are cancelled after taking the
expectation and setting n0 =

∑
nEq{zsni}. The variance are computed by applying

the independent assumption over q(zn): V arq[
∑

n zni] =
∑

n(1−Eq{zni})Eq{zni}.

4.3.2 Estimate topic profiles β(t)

In the simple topic models[24], the topic values could be estimated by directly
maximising the evidence lower bound with a constraint

∑D
j=1 βij = 1, which is

described in section 4.4 for completeness and comparison. Here we estimate the
topic as functions of age by parameterising each βij as a function of age. The only
related term in likelihood function (equation 1) is:

ln p(wn|zn, β(tn)) =
K∑
i=1

zsni

D∑
j=1

wsnj lnπ(βij(tn)),

where we use softmax function to ensure topics are multinomial distributions:

π(βij(tn)) =
exp(βT

ijϕ(tn))∑D
j=1 exp(β

T
ijϕ(tn))

.

We used spline/polynomial functions to model age. The goal is to estimate
spline/polynomial coefficients βij = {βijd}, d = 1, 2, ..., P , where P is the de-
gree of freedom that controls the smoothness. ϕ(tn) is polynomial or spline basis.
Notice here the scale of βij = {βijd} does not matter, as we could subtract same
intercept from the exponential in both numerator and denominator to change in
the scale. However, in practice we put a prior N (βij|0, σ2

0I) on βij to regularise
the search space of the gradient descent optimization described below. Here we
choose a non-informative prior with large variance, σ2

0 = 100.
To maximise the evidence lower bound, we notice that ln(·) is a concave func-

tion and by Taylor expansion:

ln(
D∑
j=1

exp(βT
ijϕ(tsn))) ≤ ln ζ + ζ−1(

D∑
j=1

exp(βT
ijϕ(tsn))− ζ).

Therefore, by introducing a variational variable ζ, we find following lower bound
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of the ELBO function L with respect to βij:

L[β] =
M∑
s=1

Ns∑
n=1

Eq{ln p(wn|zn, β(tsn))}

=
M∑
s=1

Ns∑
n=1

K∑
i=1

D∑
j=1

(
βT

ijϕ(tsn)− ln(
D∑

j′=1

exp{βT
ij′ϕ(tsn)})

)
E{zsni}wsnj ≥

M∑
s=1

Ns∑
n=1

K∑
i=1

D∑
j=1

(
βT

ijϕ(tsn)− ζ−1
sni

D∑
j′=1

exp{βT
ij′ϕ(tsn)} − ln ζsni + 1

)
E{zsni}wsnj.

(11)

We could then apply a method called local variational inference to maximise the
right hand side of equation 11. We do this by updating β and ζ in turn. Take
derivative with respect to ζsni, we obtained following update:

ζsni =
D∑
j=1

exp{βT
ijϕ(tsn)} (12)

In order to update the lower bound with respect to β, we separate the terms
containing βij:

L[βij ] =
M∑
s=1

Ns∑
n=1

E{zsni}wsnjβ
T
ijϕ(tsn)−

M∑
s=1

Ns∑
n=1

E{zsni}ζ−1
sni exp{β

T
ijϕ(tsn)}.

There is no analytical solution for βij, but the lower bound is convex so we could
maximize the lower bound using following gradient information:

∇βij
L[β] =

M∑
s=1

Ns∑
n=1

(
E{zsni}wsnj − E{zsni}ζ−1

sni exp{β
T
ijϕ(tsn)}

)
ϕ(tsn) (13)

The gradient information of L[βij ] allows efficient numeric estimation of βij. How-

ever, evaluating L[βij ] and∇βij
L[β] is computational expensive due to exp{βT

ijϕ(tsn)},
which require looping through s, n (all diagnosis records across all subjects!). The
gradient descent methods for estimating βij requires evaluatingL[βij ] and ∇βij

L[β]

at each gradient step, which prohibit scaling up the model to large data set. To
solve this problem in practice we discretise tsn into years which allows us to pre-
compute the sum of E{zsni}ζ−1

sni over all incidences that happened at each age year.
For each new βij, we could then sum over years instead of across all diagnoses,
which reuses the sums computed for each year. This trick significant reduced the
computation cost of evaluating L[βij ] and ∇βij

L[β] which makes the estimation of
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age topics over the entire UK Biobank HES possible (order of growth is multiplied
by O( 1∑M

s=1 Ns
), where

∑M
s=1Ns is the total number of diagnoses, which is 1,726,144

for UK Biobank). In conclusion, we could update β using following psuedo-code:

Algorithm 1: Maximize local variationl lower bound

initialization;
for i← 1 to K do

for j ← 1 to D do

Update ζsni =
∑D

j=1 exp{β
T
ijϕ(tsn)} ;

Update βij to maximize L[βij ] ;

end

end

Note here we need to update ζsni for each j, while in practice we only update
ζsni once for each optimization of β to allow parallel computation over j.

The above computation provides a point estimate for β, which we adopted
when applying our methods to empirical data. We also provide the mathematical
derivation for posterior distributions of β, though we do not present results on
empirical data and the full Bayesian method is not implemented in ATM software,
due to computational cost. We used a Gaussian prior for βijd ∼ N (0, σ2). A full
variational inference of β is performed by maximising following evidence lower
bound:

L[β] =
M∑
s=1

Ns∑
n=1

Eq{ln p(wn|zn, β(tsn))}+
K∑
i=1

D∑
j=1

P∑
d=1

(
Eq{ln p(βijd)} − Eq{ln q(βijd)}

)
=

M∑
s=1

Ns∑
n=1

K∑
i=1

D∑
j=1

(
Eq{βij}Tϕ(tsn)− Eq{ln(

D∑
j=1

exp(βT
ijϕ(tsn)))}

)
E{zsni}wsnj−

1

2σ2

K∑
i=1

D∑
j=1

P∑
d=1

Eq{β2
ijd} −

K∑
i=1

D∑
j=1

P∑
d=1

Eq{ln q(βijd)} ≥

M∑
s=1

Ns∑
n=1

K∑
i=1

D∑
j=1

(
Eq{βij}Tϕ(tsn)− ζ−1

sni

D∑
j=1

Eq{exp(βT
ijϕ(tsn))} − ln ζsni + 1

)
E{zsni}wsnj−

1

2σ2

K∑
i=1

D∑
j=1

P∑
d=1

Eq{β2
ijd} −

K∑
i=1

D∑
j=1

P∑
d=1

Eq{ln q(βijd)}.

(14)

Following [25], we assumed an independent variational Gaussian distribution for
each βijd:

q(βijd) = N (βijd|λijd, ν
2
ijd),
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and observe the moment-generating function of Guanssian distribution is:

Eq{exp(βijdϕd(tsn))} = exp
(
ϕd(tsn)λijd +

ϕ2
d(tsn)ν

2
ijd

2

)
,

we obtain a tractable lower bound with respect to the variational parameters
{ζsni, λijd, ν

2
ijd}:

Lζ,λ,ν2 =
M∑
s=1

Ns∑
n=1

K∑
i=1

D∑
j=1

(
λT
ijϕ(tsn)− ζ−1

sni

D∑
j=1

exp{
P∑

d=1

(
ϕd(tsn)λijd +

ϕ2
d(tsn)ν

2
ijd

2

)
}−

ln ζsni + 1
)
· E{zsni}wsnj −

K∑
i=1

D∑
j=1

P∑
d=1

( 1

2σ2
ν2
ijd +

1

2
ln ν2

ijd

)
.

(15)

Iteratively maximising above evidence lower bound with respect to {ζsni, λijd, ν
2
ijd}

estimates posterior distribution q(βijd) which provides uncertainty quantification
of βijd.

4.4 Comparison of collapsed variational inference and mean
field variational inference

A vast number of inference methods have been developed for models based on
original Latent Dirichlet Allocation. The most prominent of which are collapsed
Gibbs sampling and mean field variational inference. For inference of model with
exchangeable variables using extremely large and noisy data set, it is desirable to
have a deterministic method such as variational inference. Collapsed variational
inference makes less assumptions for approximation, therefore the inferred distri-
butions are strictly closer to the true posterior distributions than the mean-field
variational Bayesian methods. We will explain why accuracy is important for the
diagnosis data in section 4.4.2.

4.4.1 Mean field variational inference to estimate patient-level poste-
rior distribution q(z, θ)

Please note this section is just a replication of [24] using our notation, which is
provided to make the note self-contained. We assume that variational distribu-
tions for latent variables θ and z are independent of each other, then we get the
variational lower bound for the log likelihood of a single subject:

q(z, θ) = q(z)q(θ),

L(z, θ, β, α) = Eq{ln p(w, z, θ|α, β)− ln q(z, θ)}.
(16)

30



It is straightforward to estimate q(z) and q(θ) that maximise the lower bound
L(z, θ, β, α):

ln q∗(θ) = ln p(θ|α) + Eq(z){
Ns∑
n=1

ln p(zn|θ)}+ const

=
K∑
i=1

(αi +
Ns∑
n=1

E{zni} − 1) ln θi + const,

ln q∗(z) = Eq(θ){
Ns∑
n=1

ln p(zn|θ)}+
Ns∑
n=1

ln p(wn|zn, β) + const

=
Ns∑
n=1

K∑
i=1

zni

(
E{ln θi}+

D∑
j=1

wnj ln βij

)
+ const.

(17)

We see that q(θ) factorises over i and q(z) factorises over n, i. Therefore, we get
the variational distribution for z and θ:

θi ∼ Dir(αi +
Ns∑
n=1

E{zni})

zni ∼ Cat
( exp

(
E{ln θi}+

∑D
j=1wnj ln βij

)∑K
i=1 exp

(
E{ln θi}+

∑D
j=1 wnj ln βij

))
We then has the (m+ 1)th E-step as follows:

Em+1{ln θi} = Ψ(αi +
Ns∑
n=1

Em{zni})−Ψ(
K∑
i=1

(
αi +

Ns∑
n=1

Em{zni}
)
),

Em+1{zni} =
exp

(
Em+1{ln θi}+

∑D
j=1wnj ln β

m
ij

)∑K
i=1 exp

(
Em+1{ln θi}+

∑D
j=1wnj ln βm

ij

) , (18)

where Em and βm refers to the estimation of previous step (mth step); Ψ is the
digamma function.

To perform the M-step, we maximize the lower bound L in equation 2 for the
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entire population.

L(z, θ, β, α) =
M∑
s=1

(
ln Γ(

K∑
i=1

αi)−
K∑
i

ln Γ(αi) +
K∑
i=1

(αi − 1)E{ln θsi}+

Ns∑
n=1

K∑
i=1

(E{zsni}E{ln θsi})+

Ns∑
n=1

K∑
i=1

E{zsni}
D∑
j=1

wsnj ln βij

)
−

M∑
s=1

(
ln Γ(

K∑
i=1

(
αi +

Ns∑
n=1

E{zni}
)
)−

K∑
i=1

ln Γ(αi +
Ns∑
n=1

E{zni})+

K∑
i=1

(αi +
Ns∑
n=1

E{zni} − 1)E{ln θsi}+

Ns∑
n=1

K∑
i=1

E{zni} lnE{zni}
)

(19)

For β, we take terms in L and add Lagrange multipliers:

L[β] =
K∑
i=1

D∑
j=1

ln βij

M∑
s=1

Ns∑
n=1

E{zsni}wsnj +
K∑
i=1

λi(
D∑
j=1

βij − 1).

Set the derivative of L[β] with respect β to zero, we could get the (n+1)th update
for beta:

βn+1
ij =

∑M
s=1

∑Ns

n=1E
n+1{zsni}wsnj∑D

j=1

∑M
s=1

∑Ns

n=1E
n+1{zsni}wsnj

The terms in lower bound that contains α are:

L[αi] =
M∑
s=1

(
ln Γ(

K∑
i=1

αi)− ln Γ(αi) +
K∑
i=1

(αi − 1)En+1{ln θsi}
)
.

Take the derivatives with respect to α:

∂L[α]

∂αi

= M ·
(
Ψ(

K∑
i=1

αi)−Ψ(αi)
)
+

M∑
s=1

En+1{ln θsi}.

And the Hessian:

∇2
αL[α] = M · diag(−Ψ1(αi)

)
+M ·Ψ1(

K∑
i=1

αi),
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where Ψ1 is the Trigamma function. We use the Newton-Raphson method the
find the maximal of α as described in [24]. In practice, we used α = 1 to put an
uninformative prior robust optimization.

4.4.2 Patients with a few diseases versus documents with many words

In section 4.3.1, we briefly explained why we chose to use collapsed variational
inference over a simpler mean-filed variational inference method. We will focus on
the difference between equation 17 and equation 5. For the mean-field variational
distribution:

ln q∗(z) =
Ns∑
n=1

K∑
i=1

zni

(
E{ln θi}+

D∑
j=1

wnj ln βij

)
+ const,

which factorised over the Ns diagnoses. Therefore, the inferred distribution for
each zn is conditional i.i.d.

q(zn′|z¬n′ ,w, α, β, θ) = q(zn′|w, α, β, θ),

Here ¬n′ refer to indices of all diagnoses excluding n′. However, for collapsed VB,
conditional distribution depends on other diagnoses of the same patient:

q(zn′ |z¬n′ ,w, α, β) ∝
K∏
i

(αi +
∑
n∈¬n′

zni)
zn′i

K∏
i=1

D∏
j=1

β
zn′iwn′j
ij

The impact of the the dependency on the accuracy of posterior approxima-
tion depends on the data structure. Most of topic models were designed for text
modelling, where each document have a large word number Ns. In this case,
(αi +

∑
n∈¬n′ zni) will be approximately the same across n′:

lim
Ns→∞

p(zn′|z¬n′ ,w, α, β) ∝
K∏
i

[
(αi +Nsθi)

D∏
j=1

β
wn′j
ij

]zn′i
,

where θi is the topic weight for the sth document. We see z¬n′ no longer exists
and q∗(z) in equation 17 could approximate p(z|w, α, β) accurately. However, each
patient have an average 6.1 distinct diagnoses in UK Biobank HES data, making
Ns small for the mean-field approximation. Note, we do not need to assume
independence of zn across diagnoses, it is a consequence of assuming independence
between q(θ) and q(z), which is called induced factorisation in some cases (section
10.2.5 in [23]). In this case collapsed VB models the dependency between zn and
z¬n′ and is more accurate at approximating posterior distribution.
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Supplementary Table Captions

Supplementary Table 1. List of metrics for evaluating ATM performance. The name,
purpose, and implementation details of each metric are listed for comparison. For more
details of each metric, see Methods.

Supplementary Table 2. Simulation results for ATM on identifying disease subtypes.We
show the area under the precision-recall curve (AUPRC) for ATM in simulated data with two
subtypes that have 20/10/5 years of age at diagnosis differences. Results for LDA (fifth
column) are also shown for comparison. Rows show results for varying proportions of
samples that belong to the smaller subtype. The results correspond to Fig. 2.

Supplementary Table 3. Characteristics of disease topics inferred from the UK Biobank.
For each topic, we listed the top 10 representative diseases (by topic loadings), heritability
estimates, average topic weights (across all individuals), average age (weighted across all
disease diagnosis assigned to the topic), proportional of variance explained by BMI, sex,
Townsend deprivation index, and birth year.

Supplementary Table 4. Topic loadings of 10 inferred disease topics across 348 diseases
in the UK Biobank. For each disease we reported the topic loading across diagnoses before
60 years old and after 60 years old. The Phecode, number of incidences, ICD-10 code,
disease name, and Phecode systems are also listed for each disease. The values in this table
correspond to Fig. 3.

Supplementary Table 5. Topic loadings as functions of age for 10 inferred disease topics.
For each topic, we listed the topic loading of each disease from age 30 to 80 years old. At
each age point, the topic loadings add to one across diseases for each topic. The values
correspond to Fig. 4A and Supplementary Fig. 9.

Supplementary Table 6. Topic loadings as functions of age for 13 inferred disease topics
from the All of Us data. For each topic, we listed the topic loading of each disease between
age 20 to 85. At each age point, the topic loadings add to one across diseases for each topic.

Supplementary Table 7. Correlation of topic loadings between each pair of All of Us and
UK Biobank topics. Numeric values for Fig. 5B.

Supplementary Table 8. Prevalence in All of Us and UK Biobank for the 233 diseases
that are shared between the two data sets.

Supplementary Table 9. Correlations between topic assignments for pairs of All of Us
disease and UK Biobank disease across 233 diseases that are shared between the two
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data sets. Disease associations to topics are measured using average topic assignments (see
Methods for definition) for both UK Biobank and All of Us. Average topic assignments in All
of Us are mapped to UK Biobank using topic loading correlation; the correlation for each
disease pair in the UK Biobank topic space (Methods).

Supplementary Table 10. List of 52 diseases with comorbidity subtypes in UK Biobank.
For each disease with at least 500 diagnoses assigned to each of two discrete subtypes, we list
its Phecode, disease description, subtypes with at least 500 diagnoses, and correlations
between UK Biobank topic assignments and All of Us topic assignments that were mapped to
UK Biobank topics (Methods).

Supplementary Table 11. Number of diagnoses assigned to each subtypes for 52
diseases.We listed the number of diagnoses assigned to each disease subtypes by the
diagnosis-specific topic probability, for the 52 diseases that have at least two subtypes with
>500 diagnosis.

Supplementary Table 12. Average age at diagnosis for each subtypes of the 52 diseases.
We listed the age at diagnosis across all diagnoses within each disease subtype, for the 52
diseases that have at least two subtypes with >500 diagnosis.

Supplementary Table 13. Excess PRS in cases for all topics across 10 diseases (selected
by heritability z-score).We report the estimated changes in s.d. of PRS per unit changes in
the patient topic weight, which is estimated through regression across disease diagnoses. The
PRS was estimated using BOLT-LMM and all the cases of British Isle Ancestry. P-values are
for testing association between PRS and patient topic weight. Numbers correspond to Fig. 6B
and Extended Data Fig. 6.

Supplementary Table 14. Excess genetic correlations. Columns are: Phecode of the first
disease (trait1), Phecode of the second trait (trait2), subtype of the first trait (topic1), subtype
of the second trait (topic2), the z-score of genetic correlation between two disease subtypes
(subtype.rho.zscore), estimate of genetic correlation between two disease subtypes
(subtype.rho.est), standard error of genetic correlation between two disease subtypes
(subtyp.rho.err), the z-score of genetic correlation between two diseases (all.rho.zscore),
estimate of genetic correlation between two diseases (all.rho.est), standard error of genetic
correlation between two diseases (all.rho.err), z-score of excess genetic correlation
(diff.zscore), estimate of excess genetic correlation (diff.rg), absolute value of excess genetic
correlation (diff.rg.zscore.abs), p-values for z-score test of excess genetic correlation (P),
FDR for excess genetic correlation (FDR), name of the first disease (phenotype.1), and name
of the second disease (phenotype.2). We only reported p-values of excess genetic correlation
when both genetic correlation estimation has standard error <0.1 and at least one of the
genetic correlation has |z-score|>4. Numbers correspond to Fig. 7 and Supplementary Fig. 19.
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Supplementary Table 15. Heritability estimation for disease subtypes. For each disease
we list heritability estimates for two subtypes using LDSC. Topic.x refer to the subtype with
the highest heritability, topic.y refer to subtype with the lowest heritability. We report the
point estimate, standard error, z-scores of both disease subtypes. The z-score of heritability
differences between the two subtypes are also reported. Note we used a different sample
threshold 1000 (due to the power of LDSC), which includes 26 of the 52 diseases that have
subtypes.

Supplementary Table 16. Excess FST across disease subtypes.We report the estimate of
excess FST (computed as the FST across subtypes subtracted by the FST from controls with
matched topic weights). The p-values are for permutation tests of excess FST>0, which is
computed from 1000 randomly sampled control sets.

Supplementary Table 17. GxTopic interaction tests across independent GWAS SNPs.
Each row represents one SNP x topic weight pair (disease subtype). OR, SE, STAT, and P
represent the odds ratio, standard error, test statistics, and p-value of the main effects.
SNPxTopic OR, SNPxTopic STAT, SNPxTopic P, SNPxTopic FDR represent the odds ratio,
test statistics, p-value for testing interaction regression coefficients, and genome-wide FDR
of testing the interaction effect in model 2 of Supplementary Fig. 21. We use study-wise FDR
which adjusts for multiple testing across GWAS SNPs of all disease subtypes.

Supplementary Table 18. Significant SNP x topic interactions. Same table as
Supplementary Table 17, but filtered to SNP-topic pairs with interaction effect passing
FDR<0.1. Reported SNP-topic pairs were selected for topic weights specific effect estimation
in Extended Data Fig. 8 and Supplementary Fig. 23.

Supplementary Table 19. Effect size estimation across topic weight quartiles for
significant SNP x topic interactions. Quartile, mean_effect, se_effect, refer to the quartile of
topic weight, estimate of effect sizes of the SNP using case-controls from this quartile, and
standard error of the effect size estimation. We also reported the nearest genes reported by
GWAS Catalog. The last two columns report the P-value of effect size being different
between the top and bottom quartiles and the FDR (across 2530 tests), indicated by two-sided
t-tests.

Supplementary Table 20. Literature search of disease subtypes identified by ATM.We
searched on Pubmed using the description (ignoring conjunctions) AND “subtype” in
title/abstract and manually screened the top 10 relevant results between 2012 and 2022. The
studies that mentioned subtypes of the searched diseases are included in the “Published
references” column. If there is no reference of target disease subtypes among the top 10
search results, we use “NA”. We note our search is not exhaustive but nevertheless provides
information on whether subtypes of the target disease are described in studies involving target
disease and subtypes.
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Supplementary Table 21. ATM running time.We tested the running time on the UK
Biobank data using ATM of varying topic number and parametric form of topic loadings.
Degrees of freedom from 2 to 7 represent linear, quadratic polynomial, cubic polynomial,
spline with one knot, spline with two knots, and spline with three knots. Note a few models
with 50 topics did not converge.
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Supplementary Figures

Supplementary Fig. 1. Additional simulation studies established the power of the
method to identify comorbidity. The precision and recall rate to correctly assign incident
disease to correct comorbidity profiles using Latent Dirichlet Allocation (LDA) and our
method (ATM). X-axis refers to the proportion of cases that belong to the small subgroup;
precision and recall are computed for the label incidences in the small subgroup. Each dot
represents the mean of 100 simulations of 10,000 people, the bar shows the 95% confidence
intervals. Red refers to the ATM and green refers to the LDA model.(a) Scenario where two
subtypes are simulated with 20 years of difference in age at diagnosis. (b) Scenario where
two subtypes are simulated with 10 years of difference in age at diagnosis. (c) Scenario where
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two subtypes are simulated with 5 years of age difference.

Supplementary Fig. 2. Same analysis as in Fig. 2 but simulating the smaller subtype to
have older age at diagnosis. The area under precision and recall curve (AUPRC) to
correctly assign incident disease to correct comorbidity profiles using Latent Dirichlet
Allocation (LDA) and ATM. X-axis refers to the proportion of cases that belong to the older
subtype (the orange subtype); precision and recall are computed for classifying the incidences
in the older subgroup. Each dot represents the mean of 100 simulations of 10,000 people, the
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bar shows the 95% confidence intervals. In the right column red refers to the ATM and green
refers to the LDA model. Note AUPRC is only meaningful when precision and recall pertains
to classifying the smaller subtype, therefore we simulate with the smaller subtype taking up
to 50% of cases. (a) Scenario where two subtypes are simulated with 20 years of difference in
age at diagnosis. (b) Scenario where two subtypes are simulated with 10 years of difference
in age at diagnosis. (c) Scenario where two subtypes are simulated with 5 years of age
difference.

Supplementary Fig. 3. Additional simulation studies established the power of the
method to identify comorbidity. (a) Same analysis as Fig. 2 but simulated subtypes with
same age at diagnosis distribution. LDA outperforms ATM slightly as we have additional
regularisation when modelling topic loading as functions of age, while for LDA age is not
modelled. (b) AUPRC computed as in Fig. 2A with varying population size, average number
of diseases per individual, and number of distinct diseases. Each dot shows the mean of 20
simulations and the bar shows 95% confidence interval.
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Supplementary Fig. 4. Simulations confirming that ATM could accurately recover topic
loadings and topic weights. (a) We simulated data using 5 topics while fitting models of
varying topic numbers. To compute prediction odds ratios (see Methods), we used 80% of
data as training data to fit ATM and computed prediction odds ratio in the held out data,
where we use the topic loading computed from the training data and prior diseases to infer the
topic weights to predict the target diseases. The simulation was performed for 20 replications
for each topic number in the inference. (b-c) We assign each disease to a single topic based
on topic loading and compute the grouping accuracy as the proportion of disease pairs that
are correctly grouped to the same topic. The grouping accuracy remains high for varying
simulated population size and average disease per individual. (d) Recovery of topic
loadings. We evaluate the accuracy of topic loading inference by computing the cosine
similarity between inferred topic loading with the underlying truth. We match the inferred
topics with the true topics using correlation of topic weights, using a greedy procedure
(matching the first inferred topic from all true topics and then matching the next topic from
the remaining not-matched true topics) to ensure the matching is bijectively. (e) Recovery of
topic weights. We evaluate the accuracy of topic weight inference by computing the
correlation of inferred topic weights and with the underlying truth. The ordering of topics
uses the same strategy as in panel d. Points show the mean values across simulations and
error bars are the 95% confidence intervals.
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Supplementary Fig. 5. Prediction odds ratio across different model configurations. Each
dot represents one inference on a random training and testing split of the UK Biobank
individuals. The models are run with different topic numbers and parametric configurations
of topic loadings. Degrees of freedom (d.f.) from 2 to 7 represent linear, quadratic
polynomial, cubic polynomial, spline with one knot, spline with two knots, and spline with
three knots.The prediction odds ratios are computed on the testing data using topic loadings
inferred from the training data and topic weights inferred using previous diseases of testing
individuals. The odds ratios are between the odds that target diseases are within
model-predicted top percentile disease set versus the odds that target diseases are within the
prevalence-ordered top percentile disease set. Box plots show the distributions of the dots;
centre, box bonunds, and whisker ends denote median, quartiles, and minima/maxima.
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Supplementary Fig. 6. Evidence lower bound (ELBO) of different model configurations
on the entire dataset. Each dot represents one inference on a random training and testing
split of the UK Biobank individuals. The models are run with different topic numbers and
parametric configurations of topic loadings. Degrees of freedom (d.f.) from 2 to 7 represent
linear, quadratic polynomial, cubic polynomial, spline with one knot, spline with two knots,
and spline with three knots. Box plots show the distributions of the dots; centre, box bonunds,
and whisker ends denote median, quartiles, and minima/maxima.

Supplementary Fig. 7. Comparison of ELBO for collapsed variational inference and
mean-field variational inference. ELBO is computed by fitting the ATM using two
inference methods on the entire UK Biobank dataset, where the topic loadings are configured
as cubic polynomials. Models of different numbers of topics are fitted with 10 random
initialisations for both CVB and the VB (mean-field variational inference, which is a more
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commonly used inference method for Bayesian models). The ELBO of an inference method
is a lower bound that approximates the evidence function, which depends on the number of
topics and parametric form of topic loading, but not the inference methods; higher ELBO
means better inference accuracy. Box plots show the distributions of the dots; centre, box
bonunds, and whisker ends denote median, quartiles, and minima/maxima.

Supplementary Fig. 8. Prediction log odds ratio of comorbidities. Diseases combinations
(comorbidities) are extracted from topics loadings that are trained on a training set, using max
value of average topic assignments (Methods). Roughly, the odds ratio of each disease
combination is computed by selecting all disease sets containing combinations of 2, 3, 4, and
5 diseases assigned to the same topic by max topic loading, and dividing incidences where
the disease sets appeared in one patient by the expected number in an independent testing set.
We show the comparison of ATM and PCA for all combinations of 2, 3, 4, and 5 diseases;
here we use PCA as we wish to show the superiority of topic modelling in identifying clusters
of disease compared to other low-rank methods that are not based on multinomial
distribution. Box plots show the distributions of the dots; centre, box bonunds, and whisker
ends denote median, quartiles, and minima/maxima.
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Supplementary Fig. 9. Top seven diseases in each comorbidity topic. Seven diseases that
have highest loading within the topic are shown for each comorbidity topic. Colour of the
curves reflect the ordering of Phecodes. We chose seven for best visual presentation.
Numerical results are reported in Supplementary Table 5.
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Supplementary Fig. 10. Additional topic sparsity analysis. (a) Sparsity of disease topic
loadings. Box plot shows the distribution of topic loading for disease of different incidence
numbers. (b) Sparsity of patient topic weights. Box plot shows the topic weight distribution
in decreasing order for individuals with different numbers of diagnosis. Centre, box bonunds,
and whisker ends denote median, quartiles, and minima/maxima.
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Supplementary Fig. 11. Age-dependent topic loadings of 13 inferred disease topics
across 233 diseases in the All of Us.We report topic loadings averaged across younger ages
(age at diagnosis < 60) and older ages (age at diagnosis > 60). Row labels denote disease
categories ordered by Phecode systems, with alternating blue and red color for visualisation
purposes; “Other” is a merge of five Phecode systems: “congenital anomalies”, “symptoms”,
“injuries & poisoning”, “other tests”, and “death” (which is treated as an additional disease,
see Methods). Topics are ordered by the corresponding Phecode system. This figure is an All
of Us equivalent of Fig. 3.

Supplementary Fig. 12. ATM infers disease topics from All of Us cohort which align
with topics from UK Biobank. (A) Prediction odds ratio using ATM model with different
topic numbers in All of Us. Each dot represents one of the five-fold cross validation within
the All of Us individuals. (B) Evidence lower bound (ELBO) of different ATM model
configurations on the entire All of Us dataset. Each dot represents one inference with random
initialization. The models are run with different topic numbers and same configurations of
topic loadings (spline model with one knot). (C) Prediction odds ratio on UK Biobank
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individuals using All of Us topic loadings. We divide the UKBiobank population into 10
jackknife blocks and each dot represents the prediction odds ratio on one leave-one-out
jackknife sample. Topic weights are inferred using prior diseases of UKBB individuals, using
loadings trained from All of Us. The odds ratios are between the odds that target diseases are
within model-predicted top two-percentile disease set versus the odds that target diseases are
within the prevalence-ordered top two-percentile disease set. Prediction odds ratio is 1.32
(s.e. = 0.0027) when using the optimal 13 All of Us topic to predict UK Biobank diagnoses.
We chose the top-two percentile to match the UK Biobank analysis as All of Us has 233 of
the 348 diseases analysed in the UK Biobank. (D) Correlations between UKB and AOU topic
assignments for 41 diseases with subtypes between AOU and UKB (red shade) are
significantly higher than expected (grey shade). The correlation between 41 AOU-UKB
disease pairs are reported in Table 2 and Extended Data Fig. 5. Grey shade is the distribution
of non-diagonal correlations in Extended Data Fig. 5. Grey and red vertical dashed line
reports the mean of the grey and red shades; P-value is for a two-sided t-test of the difference
of the mean. Box plots show the distributions of the dots; centre, box bonunds, and whisker
ends denote median, quartiles, and minima/maxima.

Supplementary Fig. 13. Distribution of topic loading across diseases and topic weights
across patients for All of Us. (A) Box plot of disease topic loading as a function of rank;
disease topic loadings are computed as a weighted average across all values of age at
diagnosis. (B) Box plot of patient topic weight as a function of rank. Centre, box bonunds,
and whisker ends denote median, quartiles, and minima/maxima. This figure is an All of Us
equivalent of Fig. 4B-C.
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Supplementary Fig. 14. correlation between topic loadings from UK Bibank (y-axis) and
All of Us (x-axis) for three age slices. The figures are the age-specific versions for Fig. 5C.
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Supplementary Fig. 15. Topic distribution for the 52 diseases that have at least 500 cases
assigned to distinct topics. For each disease, we computed the average topic assignments as
the proportion of diagnoses assigned to each subtype. The box plot shows the distribution of
the subtype proportion from the largest (leftmost boxes) to the smallest; centre, box bonunds,
and whisker ends denote median, quartiles, and minima/maxima. For nearly all diseases, the
cases are concentrated into three subtypes, with very few cases assigned to other topics.
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Supplementary Fig. 16. Comorbidity subtype distribution over age for 52 diseases.
Diseases shown are ordered by 13 phecode systems: infectious diseases, neoplasms,
endocrine/metabolic, hematopoietic, mental disorders, neurological, circulatory system,
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respiratory, digestive, neoplasms, genitourinary, dermatologic, and musculoskeletal.
Numerical results are reported in Supplementary Table 11-12.

Supplementary Fig. 17. Stacked bar plots of age-dependent subtypes in All of Us.
Disease topics in All of Us are mapped to their most similar UK Biobank topics; colours are
the same as Supplementary Fig. 16. The figures are for 4 representative diseases in Fig. 6A
(type 2 diabetes, asthma, hypercholesterolemia, and essential hypertension); for each disease,
we include all subtypes with at least one diagnosis.
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Supplementary Fig. 18. Heritability and PRS are not associated with age and subtype
size. (a) We plot heritability deviation from all cases versus age deviation from all cases of 41
subtypes (from 14 diseases that have heritability z-score above 5). The heritability is
estimated by first performing mixed-effect association analysis using BOLT-LMM on
imputed SNPs from the British Isle Ancestry then using LDSC. (b) Heritability for the
subtypes plotted with the sample size of the subtype. (c-d) Excess PRS from Fig. 6B plotted
against the age and the sample size (denoted by the ratio of samples between subtype and all
cases) for the subtypes. The dots and the bars show the mean and 95% confidence interval
across all subfigures.
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Supplementary Fig. 19. Excess genetic correlation (rg) between disease subtypes across
disease subtypes. Lower left panel shows the rg of disease-subtype or subtype-subtype pairs
subtracted by the rg of corresponding disease-disease pairs. Each row or column represents a
disease or subtype. For disease-disease pairs, the excess rg is not defined in the lower left
panel, since the difference is 0. The upper right panel shows rg of corresponding
disease-disease pairs, where values could be duplicated as the same disease could have
multiple subtypes. The 89 diseases or subtypes are chosen here by heritability z-score > 4 and
rg z-score > 4 with at least one other disease or subtypes. We kept 57 rows and columns for
better visualisation by removing 32 diseases that have subtypes included. A star means FDR
< 0.1, while a shade means a nominal statistical significance at P = 0.05 (for a z-score test).
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Supplementary Fig. 20. Comparison of excess genetic correlation (rg) between subtypes
using summary statistics from case-control matched by topic weights (x-axis) and not
matched by topic weights. The analysis is performed on subtypes of four diseases: type 2
diabetes, hypercholesterolemia, hypertension, and asthma. The excess rg (shown in panel (A)
of Fig. 7) of two case-control matching strategies across 28 subtype pairs are compared and
the effect lies along the diagonal line. The excess genetic correlation attenuated slightly when
topic weights are matched, while it can not explain all the excess rg.
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Supplementary Fig. 21. Simulation analysis verified the SNP x topic interaction tests are
calibrated when no actual interaction exists.We show the false positive rate of two models
under five simulated model structures where no actual interaction exists (Methods). The false
positive rate is computed as the power to detect interaction effects using model 1 (red; linear
model) and model 2 (green; with non-linear main effect term) under P-value=0.05. The five
structures evaluated are (1) SNP causal to topic and topic causal to disease; (2) SNP causal to
disease and disease causal to topic; (3) SNP is causal to both topic and disease; (4) and (5)
SNP is causal to both topic and disease with nonlinear effects. Genotypes are simulated using
the MAF from the 888 disease associated SNPs that were analysed in the SNPxTopic
interaction tests. Points show the mean values across simulations and error bars are the 95%
confidence intervals; all tests are for the interaction regression coefficients.
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Supplementary Fig. 22: Power to detect true SNP x topic interaction effect under
simulation. (a) We simulated data with 10,000 individuals, topic-to-disease main effect size
equal to 2, interaction effect from 0.04 to 0.4, and SNP-to-disease main effect size
proportional to the interaction effect (0.02 to 0.2); disease diagnoses are generated using
gaussian liability with top 20 percentile as cases. We tested for the SNP x topic interaction
using model 1 and model 2 and computed the power of discovering the true interaction. (b)
We simulated data with 10,000 individuals and an interaction effect equal to 0.4. Instead of
simulating a single SNP effect, we simulated 2 to 20 variants that all interact with topic
weight. We then test the SNP x Topic interaction in model 1 and model 2 with one variant at
a time, which is the same strategy as most GWAS interaction tests. We note the power of
model 2 is lower than model 1, while we still choose model 2 as it is better calibrated
(Supplementary Fig. 21). Points show the mean values across simulation and error bars are
the 95% confidence intervals.
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Supplementary Fig. 23. Additional 39 SNPs (mapped genes in the parentheses) that
have different effect sizes in different quantiles of topic weights. For each example, we
report main SNP effects (log odds ratios) specific to each quartile of topic weights across
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individuals, for both the focal SNP (blue dots) and background SNPs for that disease and

topic (genome-wide significant main effect (P < ) but non-significant SNP x topic5×10−8

interaction effect (P > 0.05); grey dots). Dashed red lines denote aggregate main SNP effects
for each focal SNP. Error bars denote 95% confidence intervals. Grey lines denote linear
regression of grey dots, with grey shading denoting corresponding 95% confidence intervals.
P-values for interaction are for testing the interaction regression coefficients; P-values for
top/bottom differences are for two-sided t-test. Numerical results are reported in
Supplementary Table 19.

Supplementary Fig. 24: QQ plot of SNP x topic interaction for all GWAS SNPs (P <

). (a) We show the interaction between SNP-topic where the topics define disease5×10−8

subtypes. We focus on the subset of subtypes whose disease have z-score larger than 4 toℎ2

ensure there is enough GWAS signal for testing. The P-values are for testing the interaction
effects with nonlinear topic-to-disease main effects (Model 2 in Supplementary Fig. 21). The
median for observed p-value is 0.35. (b) As a control to show the calibration of the tests, we
plot the QQ-plot over the same set of GWAS SNPs, but over the topic that are not identified
as subtypes of the disease by ATM. The median for observed p-value in the Null test is 0.47.
The observed small inflation of test statistics (0.47 < 0.5) is caused by the correlation
between topics (i.e. a SNP that interacts with a subtype-topic is expected to have weak
interaction with other non-subtype topics as the topic weights sum to one).
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Supplementary Fig. 25. Comparison of simulated diagnosis per individual versus true
UK Biobank data. Histogram of number of distinct diseases per patient from the UK
Biobank HES dataset and from the simulated exponential distribution with mean = 6.1.
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Supplementary Fig. 26. Examples of simulated vs. inferred topic loadings from ATM.
The left panel shows the topic loadings used to simulate 10,000 individuals; the right panel
shows the inferred topic loadings using topic loadings parametrized as cubic polynomials.
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