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Response to Reviewers: We revised this in a document with formatting. This system appears to remove the
formatting, so I've attempted to delineate comments with a "Comment:" prefix and
responses with a "Response:" prefix.

Reviewer #1:

Comment: The manuscript "The probability of edge existence due to node degree: a
baseline for network-based predictions" presents novel work. But some of the sections
are written very briefly, so it is difficult to understand. The section that needs revision
are: Degree-grouping, The edge prior encapsulates degree, Degree can underly a
large fraction of performance and Analytical approximation of the edge prior. The result
section needs revision.

Response: We updated our phrasing in each section with the goal of making our
phrasing more clear. Our changes expand key areas of these sections for improved
readability.

Comment: Some other concerns are:
Academic adhar, Jaccard coefficient, preferential atachment etc are link prediction
methods. Why auther has termed them as edge prediction features.

Response: It is our understanding that the terms edge and link are interchangeable.
For example,
A graph in this context is made up of vertices (also called nodes or points) which are
connected by edges (also called links or lines). [Quoted from Wikipedia]
The terms "arc," "branch," "line," "link," and "1-simplex" are sometimes used instead of
edge (e.g., Skiena 1990, p. 80; Harary 1994). [Quoted from Wolfram Mathworld]
We use the term edge consistently throughout the paper.

Reviewer #2:

Comment:I n this manuscript, the authors introduce a network permutation framework
to quantify the effects of node degree on edge prediction. The importance of degree in
the edge detection task is self-evident, and the quantification of this effect is
undoubtedly groundbreaking. The experimental results on a variety of datasets
demonstrate the advanced nature of the method proposed by the authors. However,
some parts require further explanation from the authors and can be considered for
acceptance in a later stage.
1. The imbalance of the degree distribution has a significant impact on the results of
the edge detection task. In this manuscript, the author proposes a framework to
quantify this impact. It is important to note that the manuscript does not explicitly
mention the specific form in which the quantification is reflected, such as whether it is
presented as an indicator or in another form. Therefore, further explanation from the
author is needed to clarify this aspect.

Response: We thank the reviewer for this suggestion. We did not sufficiently highlight
the advantage of our approach. In short, the approach is to compare any desired
network or edge prediction metric to the distribution of this metric across random,
permuted graphs. This can be done at any level and using any metric, as permuted
graphs are identical in everything but content to the original. We have modified our
phrasing in the paper to make this more clear.

Comment: 2. The authors propose that researchers employ marginal priors as a
reference point to discern the contributions attributed to node degree from those
arising from specific performance. It would be helpful if the authors could elaborate
further on the methodology or provide a sample demonstration to clarify the
implementation of this approach.

Response: We updated the phrasing in our introduction. There was some ambiguity
between the edge prior and the network permutation approach for other edge
prediction features. Edge priors quantify edge probability given degree alone.
Permuted networks can also be evaluated using edge prediction methods to generate
a per-node-pair distribution of an edge prediction feature, against which the feature’s
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true value (in the unpermuted network) can be compared.

Comment: 3. For the XSwap algorithm, I wonder that if the authors could provide a
more detailed explanation of its workings, including a step-by-step implementation of
the improved XSwap. Furthermore, it would be beneficial if the authors could highlight
the significance of the improved XSwap algorithm in biomedical tasks.

Response: We provided a diagram of XSwap in our revision. The final point is
discussed further below in our response to point 7.

Comment: 4. The author presents the pseudocode of the XSwap algorithm in Figure 2,
along with the improved pseudocode after the author's enhancements. Both
pseudocodes are accompanied by explanatory text. However, I believe that expressing
them in the form of a figure would make it more visually appealing and intuitive.

Response: We agree the reviewer’s suggestion is an excellent one. We included a
brief diagram of XSwap in our revision.

Comment: 5. The authors introduce the edge prior to quantify the probability of two
nodes being connected solely based on their degree. I request the authors to provide a
detailed explanation of the specific implementation of the edge prior.

Response: We updated our phrasing to read as follows:
The edge prior can be estimated using the fraction of permuted networks in which a
given edge exists. In short, for a given node pair (a, b), given N permutations of the
network, and given that m of these permutation contain (a, b) , the prior for (a, b) is m /
N, which is also the maximum likelihood estimate for the binomial distribution success
probability.

Comment: 6. In the "Prediction tasks" section, the author utilizes three prediction tasks
to assess the performance of the edge prior. It is recommended to segment correctly
for better display of the content.

Response: We thank the reviewer for pointing out this oversight. We have split
paragraphs in that section according to the prediction task.

Comment: 7. The focus of the article might not be prominent enough. It is advisable for
the author to provide further elaboration on the advanced nature of the proposed
framework and its significance in practical tasks. This would help emphasize the main
contributions of the research and its relevance in real-world applications.

Response: We appreciate this comment and agree that our focus was not expressed
clearly enough. We trimmed and rephrased the abstract and the manuscript itself. We
hope that these changes have made our purpose more clear.
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A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist


The probability of edge existence due to 

node degree: a baseline for network-based 

predictions 

A DOI-citable version of this manuscript is available at 

https://doi.org/10.1101/2023.01.05.522939. 

 This manuscript (permalink) was automatically generated from greenelab/xswap-

manuscript@55ccf90 on December 29, 2023.  

Authors 

Michael Zietz1,2,3, Daniel S. Himmelstein1,4, Kyle Kloster5,6, Christopher Williams1, Michael W. 

Nagle7,8,9, Casey S. Greene1,10,11✉ 

1. Department of Systems Pharmacology and Translational Therapeutics, University of 

Pennsylvania, Philadelphia, PA 19104, USA 

2. Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 

19104, USA 

3. Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA 

4. Related Sciences, Denver, CO 80202, USA 

5. Carbon, Inc., Redwood City, CA 94063, USA 

6. Department of Computer Science, North Carolina State University, Raleigh, NC 27606, 

USA 

7. Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and 

Medical, Cambridge, MA 02139, USA 

8. Integrative Biology, Internal Medicine Research Unit, Worldwide Research, 

Development, and Medicine, Pfizer Inc., Cambridge, MA 02139, USA 

9. Human Biology Integration Foundation, Deep Human Biology Learning, Eisai Inc., 

Cambridge, MA 02140, USA 

10. Department of Biochemistry and Molecular Genetics, University of Colorado School of 

Medicine, Aurora, CO 80045, USA 

11. Center for Health AI, University of Colorado School of Medicine, Aurora, CO 80045, USA 

✉ — Correspondence possible via GitHub Issues or email to Casey S. Greene 

<casey.s.greene@cuanschutz.edu>. 

Michael Zietz [0000-0003-0539-630X]; Daniel S Himmelstein [0000-0002-3012-7446]; Kyle 

Kloster [0000-0001-5678-7197]; Christopher Williams [0000-0002-5613-3051]; Michael W Nagle 

[0000-0002-4677-7582]; Casey S Greene [0000-0001-8713-9213]. 

Manuscript Click here to access/download;Manuscript;manuscript-Jan 2,
2024.docx

https://doi.org/10.1101/2023.01.05.522939
https://greenelab.github.io/xswap-manuscript/v/55ccf900e5d69b9defd93e7b4341ae2cf3612720/
https://github.com/greenelab/xswap-manuscript/tree/55ccf900e5d69b9defd93e7b4341ae2cf3612720
https://github.com/greenelab/xswap-manuscript/tree/55ccf900e5d69b9defd93e7b4341ae2cf3612720
https://github.com/greenelab/xswap-manuscript/issues
https://www2.cloud.editorialmanager.com/giga/download.aspx?id=167841&guid=51b4c1ba-6d9c-46fd-b722-57121f55e6e6&scheme=1
https://www2.cloud.editorialmanager.com/giga/download.aspx?id=167841&guid=51b4c1ba-6d9c-46fd-b722-57121f55e6e6&scheme=1


Abstract 

Important tasks in biomedical discovery such as predicting gene functions, gene-disease 

associations, and drug repurposing opportunities are often framed as network edge prediction. 

The number of edges connecting to a node, termed degree, can vary greatly across nodes in 

real biomedical networks, and the distribution of degrees varies between networks. If degree 

strongly influences edge prediction, then imbalance or bias in the distribution of degrees could 

lead to nonspecific or misleading predictions. We introduce a network permutation framework to 

quantify the effects of node degree on edge prediction. Our framework decomposes 

performance into the proportions attributable to degree and the network’s specific connections 

using network permutation to generate features that depend only on degree. We discover that 

performance attributable to factors other than degree is often only a small portion of overall 

performance. Researchers seeking to predict new or missing edges in biological networks 

should use our permutation approach to obtain a baseline for performance that may be 

nonspecific because of degree. We released our methods as an open-source Python package 

(https://github.com/hetio/xswap/). 
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Introduction 

Networks contain information about relationships between entities (referred to here as “edges” 

between “nodes”). A node’s degree is the number of edges it has in the network. Networks 

contain many nodes, whose degrees can be aggregated to form the network’s degree 

distribution. Because different nodes can have very different degrees, real networks have a 

variety of degree distributions (Figure 1), and they commonly exhibit degree imbalance [1–4]. 

This is especially true for networks encoding biomedical knowledge or assays, where natural 

forces such as preferential attachment inherent to the problem domain combine with 

observation-based influences such as study methodology to create non-uniform degree 

distributions (Figure 1). 

https://github.com/hetio/xswap/


 

Figure 1: Biomedical networks are characterized by non-uniform degree distributions. 

Eight degree distributions are plotted for six edge types Hetionet v1.0 [5]. Hetionet integrates 

subnetworks for 24 different edge types, the degree distributions of which are analyzed 

separately. Furthermore, bipartite (e.g. Anatomy→expresses→Gene) and directed 

(e.g. Gene→regulates→Gene) graphs (Hetionet edge types) have both source and target 

degrees that must be assessed separately. Undirected edge types (e.g Compound–resembles–

Compound) have only a single degree distribution. Degree distributions are non-uniform and 

vary greatly between different networks. The y-axis is log10-scaled to accommodate the 

common occurrence where most nodes have low degree while a small portion of nodes have 

high degree. Several distributions have nodes that reach the maximum degree, corresponding 

to a node being connected to all other possible nodes. Zero-degree nodes are not displayed, 

since methodological limitations often result in edge data only existing for a subset of nodes. 

Degree is an important metric for differentiating between nodes, and it appears in many 

common edge prediction features [6]. However, reliance on degree can pose problems for edge 

prediction. First, bias in networks can distort node degree so that a difference in degree 

between two nodes in a given network may not reflect a true difference in number of 

relationships. Second, edge prediction methods that rely heavily on degree may be 

nonspecific—predicting trivial rather than insightful new relationships. 

Most biomedical networks are imperfect representations of the true set of relationships. Real 

networks often mistakenly include edges that do not exist and exclude edges that do exist. How 

well a network represents the true relationships it attempts to represent depends on a number of 

factors, especially the methods used to generate the data in the network [7–9]. We define 

“degree bias” as the type of misrepresentation that occurs when the fraction of incorrectly 

existent/nonexistent relationships depends on a node’s degree. Depending on the type of data 

being represented, degree biases can arise due to experimental methods, inspection bias, or 

other factors [7]. 

Inspection bias indicates that entities are not uniformly studied [10], and it is likely to cause 

degree bias when networks are constructed using hypothesis-driven findings extracted from the 

literature, as newly-discovered relationships are not randomly sampled from the set of all true 

relationships. Though there is a high correlation between the number of publications mentioning 

a gene and its degree in low-throughput interaction networks, the number of publications 

mentioning a gene has little correlation with its degree in a systematically-derived protein 

interaction network [11]. This suggests that many poorly connected genes in non-systematic 

protein interaction networks are due to inspection bias, i.e. a lack of study, rather than a lack of 



biological function. For networks with a large inspection bias, reliance on degree can lead to 

predictions that have good metrics when assessed by cross validation but little ability to 

generalize. 

Another reason why a reliance on degree can be unfavorable is that degree imbalance can lead 

to prediction nonspecificity. Nonspecific predictions are not made on the basis of the specific 

connectivity information contained in a network. For example, Gillis et al. examined the concept 

of prediction specificity in the context of gene function prediction and found that many 

predictions appear to rely primarily on multifunctionality and could be “potentially misleading 

with respect to causality” [12]. Degree imbalance leads high-degree nodes to dominate in the 

predictions made by degree-associated methods [13], which are effective predictors of 

connections in some biological networks [14]. Consequently, degree-based predictions are 

more likely nonspecific, meaning the same set of predictions performs well for different tasks. 

Depending on the prediction task, edge predictions involving very high degree nodes may be 

undesired, uninsightful, or nonspecific. While predictions based primarily on degree may be 

acceptable for some tasks, generating less obvious insights from networks requires drawing 

inferences from the specific connections and network structure between nodes. Model 

evaluation is challenging in this context: nonspecific or trivial predictions can dominate 

performance evaluations and may actually be correct, even if they are not the desired outputs of 

the predictive model. For example, predicting that the highest degree node in a network shares 

edges with the remaining nodes to which it is not connected will often lead to many correct 

predictions, despite this prediction being generic to all other nodes in the network. 

Degree is important in edge prediction, but it can cause undesired effects. Degree-based 

features should often be included in the interpretation of predictions to disentangle desired from 

non-desired effects and to effectively evaluate and compare predictive models. We sought to 

directly measure the effect of node degree on edge prediction methods. To do so, we developed 

a network permutation approach that allows any edge prediction method to be compared to an 

empirical baseline distribution. This method allows edge predictions to be evaluated in the 

context of degree and its effects on the prediction task. Our results demonstrate that degree-

associated methods are very effective for reconstructing a network using a subsampled holdout. 

However, these methods are ineffective for predicting edges between networks measuring the 

same biological processes in targeted and systematic ways because such networks have 

distinct degree distributions. Using multiple different networks, we provide evidence that degree 

has a strong effect on the probability of edge existence and that our permutation-based edge 

prior best quantifies this probability. 

Methods 

Network permutation 

Network permutation is a way to produce new networks by randomizing the connections of an 

existing network. Specialized permutation strategies can be devised that randomize some 

aspects of networks while retaining other features. Comparing between permuted and 

unpermuted networks gives insight to the effects of the retained network features. For example, 



an edge prediction method that has superior reconstruction performance on a network 

compared to its permutations likely relies on information that is eliminated by permutation. 

Conversely, identical predictive performance on true and permuted networks indicates that a 

method relies on information that is preserved during permutation. 

Network permutation is a flexible framework for analyzing other methods, because it generates 

complete networks that can be analyzed independently. We use network permutation to isolate 

degree and determine its effects in different contexts. Degree-preserving network permutation 

obscures true connections and higher-order connectivity information (e.g., community structure), 

while retaining node degree, and, thereby, the network’s degree sequence. Thanks to the 

flexibility of permutation, our framework can quantify the effect of degree on any network edge 

prediction method. 

Several degree-preserving network permutation strategies have been developed including 

XSwap [15], FANMOD (Fast Network Motif Detection) [16], CoMoFinder (Co-regulatory Motif 

Finder) [17], DIA-MCIS (Diaconis Monte Carlo Importance Sampling) [18], and WaRSwap 

(Weighted and Reverse Swap Sampling) [19]. IndeCut proposed a method to characterize these 

strategies by their ability to uniformly sample from the solution space of all possible degree-

preserving permutations [20]. 

XSwap algorithm 

Hanhijärvi, et al. presented XSwap [15], an algorithm for the randomization (“permutation”) of 

unweighted networks (Figure 2A). The algorithm picks two existing edges at random ({ab, cd}) 

and—if the edges constitute a valid swap—exchanges the targets between the edges ({ad, cb}; 

Supplemental Table 1). This process is repeated a user-specified number of times. In general, 

the number of exchanges should be chosen to be sufficiently large that the fraction of original 

edges retained in the permuted network is near its asymptotic value as the number of 

exchanges increases to infinity. The asymptotic fraction of original edges retained in 

permutation depends on network density, and higher density networks require more swap 

attempts per edge to reach their asymptotic fraction (Figure 10). 

We modified the original XSwap algorithm by adding two parameters, allow_loops (a-a), and 

allow_antiparallel (a-b and b-a) that allow a greater variety of network types to be 

permuted (Figure 2B and Supplemental Table 1). The motivation for these generalizations is to 

make the permutation method applicable both to directed and undirected graphs, as well as to 

networks with different types of nodes, variously called multipartite, heterogeneous, or 

multimodal networks. Specifically, in the modified algorithm two chosen edges constitute a valid 

swap if they preserve degree for all four involved nodes and do not violate the user-specified 

parameters. 

When permuting bipartite networks, our method ensures that each node’s class membership 

and within-class degree is preserved. Similarly, heterogeneous networks should be permuted by 

considering each edge type as a separate network [21,22]. This way, each node retains its 

within-edge-type degree for all edge types. We provide documentation for parameter choices 

depending on the type of network being permuted in the GitHub repository 



(https://github.com/hetio/xswap). The original algorithm and our proposed modification are given 

in Figures 2 and 3. 

 

Figure 2: XSwap algorithm pseudocode. A. XSwap algorithm presented by Hanhijärvi, et al. 

[15]. B. Extension of the XSwap algorithm to other types of networks. 

https://github.com/hetio/xswap


 

Figure 3: Modified XSwap algorithm graphical explanation. 

Edge prior 

We introduce the edge prior to quantify the probability that two nodes are connected based only 

on their degree. The edge prior can be estimated using the fraction of permuted networks in 

which a given edge exists. In short, for a given node pair (a, b), given 𝑁 permutations of the 

network, and given that 𝑚 of these permutation contain (a, b), the prior for (a, b) is 𝑚/𝑁, which 

is also the maximum likelihood estimate for the binomial distribution success probability. Based 

only on permuted networks, the edge prior does not contain any information about the true 

edges in the (unpermuted) network. The edge prior is a numerical value that can be computed 

for every pair of nodes that could potentially share an edge; we compared its ability to predict 

edges in three tasks, discussed in prediction tasks. 

Analytical approximation of the edge prior 

Because network permutation can be computationally intensive, we also considered whether 

the probability of an edge existing across permuted networks has a simple closed-form 

expression. We were unable to find a closed-form solution giving the edge prior without 

assuming that the probability of any given edge existing is independent of all other potential 

edges, which, in general, is not valid. Nonetheless, we discovered a good analytical 

approximation to the edge prior, offering much improvement over a past attempt [23]. The new 

approximation is particularly good for networks with many nodes and fewer edges (Figure 4). 

Further discussion of this approximate edge prior and its derivation is available in the 

supplement. 

Let 𝑚 be the total number of edges in the network, and 𝑢𝑖, 𝑣𝑗 be the source and target degrees 

of a node pair, respectively. Our approximation of the edge prior is 



𝑃𝑖,𝑗 =
𝑢𝑖𝑣𝑗

√(𝑢𝑖𝑣𝑗)
2
+ (𝑚 − 𝑢𝑖 − 𝑣𝑗 + 1)

2
. 

 

Figure 4: The XSwap-derived edge prior can be analytically approximated. The analytical 

approximation is plotted against the XSwap-derived edge prior for three networks (edge types) 

from Hetionet. The strong correlation suggests that the approximation will be suitable for 

applications where computation time is a limiting factor. 

Prediction tasks 

We performed three prediction tasks to assess the performance of the edge prior. We compared 

the permutation-based prior with two additional predictors: our analytical approximation of the 

edge prior and the product of source and target degree, scaled to the range [0, 1] so that we 

could assess its calibration as well as its discrimination. We used 20 biomedical networks from 

the Hetionet heterogeneous network [5] that had at least 2000 edges for the first two tasks 

(Supplemental Table 1). 

In the first task, we computed the degree-based predictors (edge prior, scaled degree product, 

and analytical prior approximation), and predicted the original edges in the network by rank-

ordering node pair edge predictions by the node pairs’ predictor values. We used node pairs 

that lacked an edge in the original network as negative examples and those with an edge as 

positive examples. To assess the methods’ predictive performances, we computed the area 

under the receiver operating characteristic (AUROC) curve for all three predictors. 

In the second task, we sampled 70% of edges from each of the networks, computed predictors 

on the sampled network, then predicted held-out edges. For this task, negative examples were 

node pairs in which an edge did not exist in either original or sampled network, while positive 

samples were those node pairs without an edge in the sampled network but with an edge in the 

original network. 

The third task evaluated the ability of the edge prior to generalize to new degree distributions. 

We used two domains where networks were available which shared nodes but had different 

degree distributions. Protein-protein interactions (PPI) and transcription factor-target gene (TF-

TG) relationships had networks created both by literature curation of low-throughput, 



hypothesis-driven research and by high-throughput, systematic, hypothesis-free 

experimentation. For the PPI networks, we used the STRING network, which incorporates 

literature-mining to find relationships [24] and a combination of the high-throughput, proteome-

scale interaction networks from Rual et al. [10] and Rolland et al. [11]. We used a transcription 

factor-target gene (TF-TG) literature-derived network from Han et al. [25] and a high-throughput 

network from Lachmann et al. [26]. The pairs of networks for PPI and TF-TG data sources are 

ideal because in one we expect inspection bias and in the other we do not. 

As a further basis of comparison, we added a time-resolved co-authorship network, which we 

partitioned by time to create two separate networks. We created the co-authorship network of 

bioRxiv bioinformatics preprints using the Rxivist [27,28] database, which was generated by 

crawling the bioRxiv server. Unlike the other two networks, co-authorship does not have degree 

bias, as the network faithfully represents all true co-author relationships. We include this 

network to offer a comparative prediction task in which the degree distributions between training 

(posted before 2018) and testing (posted during or after 2018) are not dramatically different 

(Figure 5A). The goal of the third prediction task is to determine predictor generalizability for 

network reconstruction between different degree distributions, especially predicting a network 

without degree bias using predictors from a degree-biased network. Further information about 

the networks used can be found in the supplement. 

Degree-grouping 

Our method for degree-preserving permutation produces randomized networks that share few of 

their edges with the original network. As permutation preserves only node degree, node pairs 

with equal degree are equivalent in permutations. For a given node pair, degree grouping treats 

other node pairs with the same degrees as additional permutations [29]. We used this strategy 

to augment the number of predictor values for each node pair in permuted networks, allowing 

node pairs to have more permuted predictor values than permuted networks. Degree grouping 

greatly increased the effective number of permutations for nodes with frequently observed 

degrees. We used degree grouping throughout our analyses. 

Implementation and source code 

We implemented our modified version of the XSwap algorithm as an open-source Python 

package. The package contains modules for permuting networks, computing the edge prior, and 

converting networks between adjacency matrix and edge list formats. Additionally, we include 

the analytical approximation of the edge prior and functionality to assign unique identifiers to 

nodes. The Python package is available on the Python Packaging Index under the name 

“xswap”. The full source code is freely available under the BSD 2-Clause License 

(https://github.com/hetio/xswap). 

The edge swap mechanism—implemented in C++ for greater speed—uses a bitset to avoid 

producing edges which violate the conditions for a valid swap. While the full bitset 

implementation is faster for smaller networks, our package uses a compressed bitset [30] when 

a network would occupy memory above a user-adjustable threshold. In addition to the validity 

conditions already described, our package allows specific edges to be excluded from 

https://github.com/greenelab/hetmech/pull/96
https://pypi.org/project/xswap/
https://github.com/hetio/xswap


permutation, and every network permutation returns both a permuted network and summary 

information about the numbers of swaps attempted, performed, and the reasons why invalid 

swaps were rejected. 

In addition to the Python package, all code to generate the analyses and figures is available at 

https://github.com/greenelab/xswap-analysis. This repository has been deposited to Zenodo 

along with large data files ignored by Git [31]. The manuscript was written using the Manubot 

software [32], which allows anyone to provide feedback or modifications via the public repository 

at https://github.com/greenelab/xswap-manuscript. An archival copy of project repositories is 

available in GigaDB [33]. 

Findings 

Node degree bias is prevalent 

We found examples of node degree bias in the PPI and TF-TG networks we investigated. 

Figure 5 shows node degree in separate networks for the same type of data. For the PPI 

networks, the literature-derived network has a larger mean degree and a longer tail than the 

systematic network, while in the TF-TG networks this relationship is reversed. Because the TF-

TG network contained far more transcription factors than target genes (144 and 1406, 

respectively), the distributions of target degrees were far more compact than those of source 

degrees. Unlike the PPI and TF-TG networks, the co-authorship networks were split by date of 

first co-authorship and did not exhibit a great difference in their degree distributions. All three 

types of networks (PPI, TF-TG, and co-authorship) exhibit degree imbalance to varying extents. 

These results indicate that, depending on the methods by which the represented data were 

generated, networks of the same type of data may have overall degree distributions that differ 

greatly (Figure 5A), and they may even assign very different degree to the same nodes (Figure 

5B). 

https://github.com/greenelab/xswap-analysis
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Figure 5: A. Degree distributions of networks with and without degree bias can be very different. 

Data on PPI and TF-TG were split between literature-derived and systematically-derived 

networks. In both cases, the networks exhibit large differences in degree distribution. Co-

authorship relationship networks split by date of first co-authorship roughly share their degree 

distributions. B. Comparison of individual node degrees between different networks. Not only 

are the overall degree distributions different, but individual nodes can have systematically 

different degrees between two networks. Uniform random sampling produces linearly-correlated 

node degree, while non-random sampling produces non-correlated degree. Systematically-

derived networks are not uniformly sampled from literature-derived networks or vice versa. 70% 

of literature edges were sampled with uniform probability for the “Subsampled holdout” network. 

The edge prior encapsulates degree 

We evaluated degree as an edge prediction feature using the edge prior. In the first prediction 

task, we computed three predictors—the XSwap edge prior, an analytical approximation to the 

edge prior, and the (scaled) product of source and target node degree—on networks from 

Hetionet. We then evaluated the extent to which these predictors—treated as predictions 

themselves—could reconstruct the 20 networks (Supplemental Table 1). The XSwap-derived 

edge prior reconstructed many of the networks with a high level of performance, as measured 

by the AUROC. Of the 20 individual networks we extracted from Hetionet, 17 had an edge prior 

self-reconstruction AUROC >= 0.95, with the highest reconstruction AUROC at 0.9971 (network 

was the Compound–downregulates–Gene edge type). Meanwhile, the lowest self-reconstruction 

performance (AUROC = 0.7697) occurred in the network having the fewest node pairs (network 

was the Disease–localizes–Anatomy edge type). 



 

Figure 6: Degree can predict edges within a given network but does not generalize to 

networks with different degree distributions The edge prior is able to reconstruct the 

networks on which it was computed (Task 1, “unsampled”, 20 different networks) with high 

performance. When computed on a sampled network, the edge prior can reconstruct the 

unsampled network with slightly lower performance (Task 2, “sampled”, 20 different networks). 

However, when computed on a completely different network (having a different degree 

distribution) of the same type of data, the edge prior’s performance is greatly reduced (Task 3, 

“separate”, 3 different networks). The performance reduction from computing predictors on 

sampled networks is real but far smaller compared to a new degree distribution. This indicates 

that while degree can be effective for network reconstruction, it is far less effective in predicting 

edges from a different degree distribution. 

The three predictors that we compared were highly correlated (Spearman rank correlation over 

0.984 for all 20 networks). The three predictors also had very similar AUROC reconstruction 

performance values for the first, second, and third prediction tasks (max difference < 0.027) 

because AUROC is rank-based. The edge prior was slightly better than the approximations in 

12 of 20 networks. However, while the AUROC results were similar, the predictors were very 

different in their levels of calibration—the ability of the model to correctly estimate edge 

existence probabilities. The edge prior was very well calibrated for all networks in the first and 

second tasks, and it provided the best calibration of the three predictors for each of the 

prediction tasks (Figure 7A). As the edge prior was not based on the networks’ true edges, 

these results indicated that degree sequence alone was highly informative and that permutation 

was the only approach in our comparison that provided a well-calibrated model. 



 

Figure 7: The edge prior accurately assigns the probability of edge existence. A. 

Calibration curves for full network reconstruction of 20 networks from Hetionet. For every unique 

predictor value on the horizontal axis, the fraction of node pairs with that predictor value having 

an edge in the network is shown on the vertical axis. The permutation-based edge prior’s 

calibration was superior to the other two strategies based on degree. B. Calibration curves for 

sampled network reconstruction. The edge prior shows superior calibration in the 20 Hetionet 

networks. C. Individual Hetionet edge type calibration estimated by the two-component 

decomposition of the Brier score, in which lower scores indicate better calibration. The edge 

prior has excellent calibration in unsampled and sampled networks, and each considered 

method is sensitive to shifts in the degree distribution. 

The second prediction task mirrored the first task, but it involved reconstructing networks based 

on subsampled networks with only 70% of the original edges. Because edges were sampled 

uniformly without replacement, the subsampled networks share similar degree distributions to 

the original networks (see Figure 5B). Unlike in the first task, edges that were present in the 



sampled network were not tested and therefore are not included in the performance metrics. 

The results of the second prediction task further demonstrate a high level of performance for 

degree-sequence-based node pair predictors (Figure 6). The edge prior was able to reconstruct 

the unsampled network with an AUROC of greater than 0.9 in 14 of 20 networks. As was 

observed in the first task, node pair predictors computed in the second task were highly rank-

correlated, meaning the AUROC values for different predictors were similar. While performance 

was slightly lower in the second task than the first, many networks were still well-reconstructed. 

The edge prior was the best calibrated predictor for both tasks. 

In the third prediction task, we computed the three edge predictors for paired networks 

representing data from PPI, TF-TG, and bioRxiv bioinformatics pre-print co-authorship. The goal 

of the task was to compare predictive performance across different degree distributions for the 

same type of data. We find that the task of predicting systematically-derived edges using a 

network with degree bias is significantly more challenging than network reconstruction, and we 

find consistently lower performance compared to the other tasks (Figure 6). The edge prior was 

not able to predict the separate PPI network better than by random guessing (AUROC of 

roughly 0.5). Only slightly better was its performance in predicting the separate TF-TG network, 

at an AUROC of 0.59. We find superior performance in predicting the co-authorship 

relationships (AUROC 0.75), which was expected as the network being predicted shared 

roughly the same degree distribution as the network on which the edge prior was computed. 

The results of the third prediction task show that a difference in degree distribution between the 

network on which predictors are computed and the network to be predicted can make prediction 

significantly more challenging. 

The edge prior can be considered a baseline edge predictor that accurately captures degree’s 

contribution to the probability of an edge existing. The edge prior’s low performance in the third 

task indicates that degree is less helpful for edge prediction tasks in which training and testing 

networks do not share their degree distributions. Many biomedical prediction tasks can be 

framed as edge prediction tasks between different degree distributions. In drug repurposing, for 

example, existing compound-disease treatment relationships are unlikely to be randomly 

sampled from all true treatment relationships. However, all treatment relationships between 

existing compounds and diseases are desirable outputs in prediction. Edge predictions can be 

based on both underlying biological properties and network degree distributions. However, 

predictions based on biological properties may be more consistent and generalizable than those 

based on degree. Degree’s influence on edge prediction accuracy measures can reveal the 

relative contributions of these two factors. 

Degree can underly a large fraction of performance 

We evaluated the extent to which edge prediction performance is due to degree. To begin, we 

chose the STRING PPI network for the comparison and computed five edge prediction features 

(Supplemental Table 2). The goal of the task was to reconstruct the network on which the 

features were computed. All five features were correlated with degree (Figure 8), which we 

quantified for a node pair using the product of source and target degrees. We expected features 

based on degree to show strong performance for a network reconstruction task without holdout, 

as found in the first prediction task. 



 

Figure 8: Common edge-prediction metrics correlate with node degree. Five common 

edge-prediction features (Supplemental Table 2) are correlated with node degree on the 

STRING PPI network [24]. All five features show a positive relationship with degree, though the 

magnitude of this correlation is highly variable. The preferential attachment index is 

understandably perfectly correlated because it is equal to the product of source and target 

degree. Each panel indicates the Pearson correlation (“r”) between feature and degree in the 

lower right corner. 

We used two permutation-derived null values to evaluate reconstruction and contextualize 

performance. First, the performance of the edge prior was compared to determine the 

performance attributable to the degree sequence of the PPI network. The first comparison gave 

insight into the ability of the PPI network to be reconstructed by degree. Second, the five edge 

prediction features were computed on 100 permuted networks and used to reconstruct the 

unpermuted network. Each permuted network corresponded to AUROC values quantifying the 

performances of features computed on it. The second comparison gave insight into the 

performance of each feature if the feature was only capturing degree. 

 

Figure 9: Identifying the fraction of a metric’s performance resulting from degree alone. 

Network reconstruction performances by five edge prediction features. Dotted red line indicates 

performance of the edge prior. Each feature was computed on both the unpermuted and 100 

permutations of the STRING PPI network. 

The edge prior encapsulates nonspecific predictions due to degree, and it reconstructed the PPI 

network with an AUROC of 0.797 (dotted red line in Figure 9). In the second comparison, edge 



prediction features computed on permuted networks had performance equal or lower to their 

performances on the unpermuted networks. This indicated that four out of five edge prediction 

features discern more than node degree for the prediction task. The preferential attachment 

index is the product of source and target degree, and its performance did not differ from the 

edge prior or the feature’s performance when computed on permuted networks. 

This comparison quantified the performance of degree toward the prediction task and assessed 

degree’s effect on five edge prediction features. The edge prior provided the baseline level of 

performance attributable to degree alone. Comparing the performances on permuted networks 

to the performance of the edge prior reveals the extent to which a feature measures degree. 

Features whose performances on permuted networks were below that of the edge prior only 

imperfectly measured degree (eg: Jaccard index), whereas features whose performances 

equaled the edge prior completely captured degree (eg: preferential attachment index). 

Features can also capture information beyond degree, and our method can quantify this 

performance. For example, the superior performance on unpermuted networks relative to 

permuted networks indicated that RWR, resource allocation, Jaccard, and Adamic/Adar indices 

captured more than degree in this prediction task. These results aligned with the definitions of 

each feature and validated that our permutation framework accurately assessed reliance on 

degree. 

Discussion 

We focus on edge prediction in biomedical networks. Our overall goal is to predict new edges 

with specificity, so that predictions reflect particular connectivity rather than generic node 

characteristics. Our permutation framework measures the predictive performance attributable to 

degree to provide a baseline expectation for edge pairs. We expect that non-specificity due to 

degree is not a unique property of biomedical networks. For example, if node A connects to 

nearly all other nodes in a network, predicting that all remaining nodes share an edge with node 

A will likely result in many correct—though nonspecific—predictions, regardless of the type of 

data contained in the network. Node degree should be accounted for to make correct 

predictions while being able to distinguish specific from nonspecific predictions. Prediction 

without reliance on node degree is challenging because many effective methods for edge 

prediction are correlated with degree (Figure 8). 

The effects of node degree are obvious when edge prediction features are functions of degree. 

For example, the resource allocation index is the sum of inverse degree of common neighbors 

between source and target nodes (in the symmetric case), while preferential attachment is the 

product of source and target degree [34,35]. However, because many other edge prediction 

methods are not explicitly degree-based, it is important to have a general method for comparing 

the effects of node degree on edge prediction methods. 

We developed a permutation framework to quantify the edge probability due to degree. We term 

this probability the “edge prior”, and we have identified two applications. First, a probability 

associated with every node pair can be treated as a classification score. Ordering these scores 

provides an assessment of performance based solely on degree, which can be used as a 

baseline for other classifiers. Second, node pair probabilities can be used to adjust edge 



prediction features depending on the task. If degree is a desired feature, then the edge prior can 

be treated like a Bayesian prior probability. Alternatively, if degree is not a desired feature, then 

the edge prior can be used to calibrate features and thus potentially enhance predictive 

specificity. 

Figure 9 illustrates the utility of the edge prior and permutation framework for two purposes. 

First, it contextualizes feature performances relative to the baseline of nonspecific, degree-

based predictions, quantified by the edge prior. Degree has varying utility for different edge 

prediction tasks. The edge prior’s performance on a task quantifies the utility of degree toward 

the task. This comparison is useful because specific predictions (based on more than degree 

alone) are more valuable for some applications than nonspecific ones and because degree can 

be an expression of bias in many real-world networks. 

Second, Figure 9 compares five edge prediction features computed on and unpermuted 

networks. This comparison identified the fraction of each feature’s performance attributable to 

degree. Some features, such as the preferential attachment index, perfectly and exclusively 

measure degree. The Adamic/Adar index also almost completely captures degree because its 

performances from permuted networks are nearly at the performance of the edge prior. 

However, the Adamic/Adar index had much higher performance when computed on the 

unpermuted network, indicating that it also extracts higher-order information. This analysis, 

enabled by network permutation, measured the extent to which features rely on degree for a 

specific prediction task by assessing performance beyond the degree-based, nonspecific 

baseline. 

Conclusion 

We developed a network permutation framework and open source software implementation that 

quantifies the probability of edge existence due to degree and can assess the fraction of feature 

performance attributable to degree. We demonstrated the superiority of the edge prior over 

other degree-based features for quantifying the effect of degree on the probability of edge 

existence. The XSwap methods and software provide a context for evaluating edge prediction 

methods and specific predictions for reliance on degree and, therefore, nonspecificity. Network 

edge prediction is a common task in biological and biomedical research, and it can be greatly 

influenced by degree. Degree should be considered directly in prediction approaches to avoid 

making nonspecific or trivial predictions due to degree imbalance or bias. A careful accounting 

of degree’s effects enables contextualized model evaluation and can help to quantify 

nonspecificity in biomedical network edge prediction. 
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Algorithm 1 XSwap

Input: Undirected graph G, distribution ρ, number of steps T
Output: Edge-swapped graph Gs

for i=1,...,T do
Select two edges (i, j), (k, l) ∈ E(Gs)
if (i, l) 6∈ E(Gs) and (k, j) 6∈ E(Gs) then

E(Ĝs)← (E(Gs) \ {(i, j), (k, l)}) ∪{(i, l), (k, j)}
Gs ← Ĝs with probability min(ρ(Ĝs)/ρ(Gs), 1)

end if
end for

Algorithm 2 Modified XSwap

Input: Directed or undirected graph G number of steps T , and
booleans allow antiparallel and allow loops

Output: Edge-swapped graph GT

Initialize: G0 ← G
for i=1,...,T do

Select two edges (i, j), (k, l) ∈ E(Gi−1)
condition 1 ← (i, l) ∈ E(Gi−1) or (k, j) ∈ E(Gi−1)
condition 2 ← !allow antiparallel and ((l, i) ∈ E(Gi−1) or
(j, k) ∈ E(Gi−1))
condition 3 ← !allow loops and (i, l)
if condition 1 or condition 2 or condition 3 then
Gi ← Gi−1

else
E(Gi)← (E(Gi−1) \ {(i, j), (k, l)}) ∪ {(i, l), (k, j)}

end if
end for
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0. Given an undirected graph, G0,T=2 steps, and allow_antiparallel=False, 
allow_loops=False

FB

A E

C G

1. Select two edges at random.

FB

A E

C G

2. Check conditions. Since (A-E) and 
(A-F) already exist, G1 ← G0.

FB

A E

C G

3. Select two edges at random.

FB

A E

C G

4. Check conditions. Neither (A-G) nor (C-E) 
exists, no loops or parallels created. Swap 
edges. Below is G2.
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