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XSwap parameter settings for network types

Table S1:  Applications of the modi�ed XSwap algorithm to various network types with appropriate parameter choices.
For simple networks, each node’s degree is preserved. For bipartite networks, each node’s number of connections to the
other part is preserved, and the partite sets (node class memberships) are preserved. For directed networks, each
nodes’ in- and out-degrees are preserved, though parameter choices depend on the network being permuted. Some
directed networks can include antiparallel edges or loops while others do not.

Network
type

Degree
preserved

Figure
allow_antiparall
el

allow_loops

simple all False False

directed in/out Depends on networks
Depends on
networks

bipartite
Depends on
directedness

True True

Performance of the XSwap algorithm

The performance of the XSwap algorithm depends on a number of network properties. We de�ne
network density to be the number of edges divided by the number of potential edges. Increasing
network density lowers the asymptotic fraction of edges changed, as greater density prevents the
algorithm from removing certain edges. Random graphs generated with a preferential attachment
mechanism (via Barabási–Albert) can have a lower fraction of their edges swapped, asymptotically, as
compared to uniform random graphs (via Erdős–Rényi).



Figure S1:  Higher density networks have lower asymptotic fractions of edges swapped and take more attempts
to reach these values. The Barabási–Albert model produces scale-free random graphs, while Erdős–Rényi generates
random graphs where all edges are equally likely.

Approximate edge prior

To approximate the edge prior, we began by making two simpli�cations. First, we assumed
independence between node pairs. This assumption does not actually hold for the XSwap algorithm,
though it is a reasonable simpli�cation for large, sparse networks. Second, we assumed that the
XSwap process is stationary. This assumption also does not actually hold, but it was made because it
signi�cantly simpli�es the problem. A single node pair has two possible states, “edge” and “no edge”.
These states are not transient, and they are not periodic so long as more than one possible swap
exists in the network. In almost all cases, then, our simpli�ed model of the algorithm gives the state of
a node pair as an ergodic process, independent of other node pairs.

Let  represent the existence of edge  For a given node pair, , then, let  represent the
transition probability from the “no edge” state to the “edge” state in one successful iteration of the
XSwap algorithm. Let  represent the probability of the opposite transition (“edge” to “no edge”) in

one successful iteration. With “no edge” represented as  and “edge” represented as , the
transition matrix, , is given by the following:

The stationary distribution of this system should correspond to the distribution when the number of
swaps goes to in�nity. It can be found by computing the eigenvectors of the system, as we know that
the stationary distribution vector,  satis�es . The eigenvector , normalized to sum to 1 as
a probability vector, is given by

The asymptotic edge probability is therefore
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Since node pairs are being treated as independent, the probability of an edge being created in one
successful iteration, given that the edge does not currently exist, is the ratio of the number of edge
choices involving nodes  and  to the total number of possible swaps, . Let  represent the
degree of source node  and  represent the degree of target node .

Similarly, the probability of an edge being eliminated in one iteration is the ratio of the number of
edge choices involving  and any other valid edge to the total number of possible swaps. Let  be
the total number of edges in the network.

The approximate edge prior is, therefore,

Unfortunately, we found that the above edge prior approximation is a poor approximation in many
cases. We found that the following modi�ed form (introduced in Methods) a�ords a superior
approximation:

Interestingly, this expression can be derived by normalizing the eigenvector  to be a unit vector in

the 2-norm instead of the 1-norm; that is, we use the value  instead of .
Because the modi�ed form of the approximation o�ers a much superior �t to the data, we chose to
include only the modi�ed version in the released Python package, and we used the modi�ed form
throughout our analysis.

Networks used for comparison

Data Network Nodes Edges

Hetionet AdG Source: 402, Target: 20945 102240

AeG Source: 402, Target: 20945 526407

AlD Source: 402, Target: 137 3602

AuG Source: 402, Target: 20945 97848

BPpG Source: 11381, Target: 20945 559504
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CCpG Source: 1391, Target: 20945 73566

CbG Source: 1552, Target: 20945 11571

CcSE Source: 1552, Target: 5734 138944

CdG Source: 1552, Target: 20945 21102

CrC 1552 6486

CuG Source: 1552, Target: 20945 18756

DaG Source: 137, Target: 20945 12623

DdG Source: 137, Target: 20945 7623

DpS Source: 137, Target: 438 3357

DuG Source: 137, Target: 20945 7731

GuG 20945 265672

GcG 20945 61690

GiG 20945 147164

GpMF Source: 20945, Target: 2884 97222

GpPW Source: 20945, Target: 1822 84372

PPI

Sampled 3992 255522

Literature 3992 364743

Systematic 3916 12913

bioRxiv

Sampled 4587 30686

<2018 4615 43691

All time 4615 44963

TF-TG Sampled Source: 142, Target: 1396 2689

Literature Source: 144, Target: 1406 3496

Systematic Source: 144, Target: 1417 29177

Edge prediction features

In the table that follows, let  denote the set of neighbors of node . Let  represent the
normalized Laplacian adjacency matrix, and let  be a vector with all ones except for a one in the -
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th position.  For a directed graph, let  denote the set of nodes that node  points to and 
the set of nodes that point to . All de�nitions that follow are the score between nodes  and .

Table S2:  Edge prediction features.

Feature De�nition Citation

Jaccard index [1]

Preferential attachment score [1]

Resource allocation index [2]

Adamic/Adar index [3]

Random walk with restart score [4,5]

Inference score [6]
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