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I. TUBULAR ENABLES MEASUREMENTS OF
DEFORMING TISSUE SURFACES ACROSS

SYSTEMS

Our approach cartographically projects dynamic sur-
faces onto a fixed material frame of reference. As shown
in Fig. S1, this approach enables measurements which
would be otherwise challenging. First, minimizing tis-
sue motion in the material frame of reference enables cell
tracking on dynamic surfaces (Fig. S1A). This is shown
for a tracked quartet of cells in a w;48Y-GAL4/UAS-
CAAX:mCherry;klar/+ embryo, which has a fluorescent
plasma membrane marker in the midgut. We processed
this dataset as follows: after an iLastik pass to iden-
tify the interior of the midgut tissue, TubULAR’s default
level sets minimization captured the apical surface of the
endoderm by minimizing a Chan-Vese functional on the
output of the iLastik training. The result from each
timepoint was fed into the level sets optimization of the
subsequent timepoint to track the tissue surface across
all timepoints. We pushed this surface 2.5µm outward
to approximately intersect the endoderm midplane. We
then mapped this dynamic surface to a 2D material pa-
rameterization and tracked cells using a semi-automated
approach detailed in [1].

Second, we can measure coarse-grained fields such as
the anisotropy of fluorescent signals. In Fig. S1B, we
extract the orientation of the anisotropic tissue struc-
ture by applying a Radon transform [4, 5] to the pro-
jected surface of the circular muscle layer in the midgut
of a w;UAS-CAAX:mCherry/+;Mef2-GAL4,klar/+ em-
bryo. The circular muscle layer consists of long, thin cells
that ensheath the midgut endoderm, and we measure
their local orientation in the material frame of reference
to be tightly ordered at an angle of π/2, corresponding

to the ϕ̂ direction in the material frame.

Third, by tracking both cell motion and tissue motion
in dynamic tissue surfaces, we can distinguish the con-
tributions of cell rearrangments and cell shape changes
to tissue shape change, as depicted schematically in
(Fig. S1C). We work through an example of inferring
such ‘tissue tectonics’ in Section IX ‘Example of inferring
intercalation rates using TubULAR.’ Lastly, as depicted
schematically in Fig. S1D, our method also enables mode
decomposition of a system’s dynamics.
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FIG. S1. Across diverse systems, parameterization of tubes in a material (Lagrangian) frame enables cell
tracking on dynamic, curved surfaces, measurements of tissue anisotropy, decomposing tissue shape change
into cell rearrangements and cell shape changes, and mode decomposition. (A) Computational microscopy enables
dynamic tissue surface extraction and cell tracking. After selectively imaging the endodermal layer in a w;48Y-GAL4/UAS-
CAAX:mCherry;klar embryo, we track cells, with four highlighted that exhibit intercalations highlighted here. Scale bars are
10 µm. (B) Performing a radon transform on a patch of circular visceral muscle cells – which form a ‘palisade’ structure
ensheathing the midgut endoderm – returns a measure of tissue anisotropy aligned with the circumferential direction (ϕ = π/2,
violet). (C) Constructing material-frame pullback images facilitates measurements of tissue shape change, cell shape change,
and cell intercalation rates. (D) Following the tissue’s deformation enables mode decomposition of the dynamics, offering
descriptions with reduced complexity, shown schematically as a path of the system through mode space after performing
principal component analysis (PCA). (E-G) This method tracks deformations for organs and in vitro systems alike, including
the Drosophila midgut [1], the beating zebrafish heart [2], and a phase-separated droplet deforming in a cytoskeletal gel [3].
Scale bars are 100 µm for all panels. (G) We follow a DNA-nanostar-based droplet (red) deforming in an active fluid [3]. Here,
mechanical coupling between the interface of a liquid-liquid phase separated DNA droplet and a surrounding active microtubule
fluid (cyan rods) generates continuous deformation towards droplet breakup. In the time series, microtubule fluorescence within
10 µm of the interface is projected onto the deforming droplet surface.

Our approach finds applications across diverse sys-
tems (Fig. S1E-G). In addition to tracking the dynamics
of Drosophila midgut morphogenesis (Fig. S1E) and ze-
brafish heart beating (Fig. S1F) showcased in the main
text, we also applied TubULAR’s surface extraction and
visualization to the surface of a deforming DNA droplet
in a microtubule active fluid [3]. Fig. S1G shows a
snapshot of a DNA droplet in an active microtubule
gel. Briefly, DNA droplets are assembled from multi-
armed DNA nanostructures with self-interacting com-
plementary overhangs [6]. Kinesin motors are bound to
a subpopulation of the DNA nanostars in the system.
Active flows are generated by microtubule filaments de-
pleted through non-adsorbing polymers such as polyethy-
lene glycol (PEG) and powered by clusters of kinesin
motors. Kinesin motors convert chemical energy from
the environment and generate inter-filament sliding [7].
The DNA droplets are covalently bound to kinesin mo-
tors resulting in mechanical coupling between the mi-
crotubule bundles and the surface of the droplets. The
microtubules (light blue fluorescent intensity isosurfaces

in 3D rendering, black in grayscale TexturePatch time
series) align with the elongating DNA-nanostar droplet,
suggesting that droplet elongation is driven by micro-
tubule alignment.

II. TUBULAR PIPELINE COMPONENTS AND
SCOPE

While many existing tools aid tracking of cells in 3D,
our toolkit allows the user to measure tissue motion with
respect to fully parameterized, dynamic surfaces with
complex geometry (Fig. S2). TubULAR thereby extends
efforts that analyze tissue motion on static geometries [8],
quasi-2D surfaces [9, 10], and otherwise simple geome-
tries [11].
In addition to detailed documentation and example

pipelines available on GitHub, we summarize the steps
in our approach in Fig. S3. This gives a typical sequence
of method calls to extract surfaces, create an initial se-
quence of parameterizations constrained for minimal tis-
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sue motion in the pullback plane, and compute covariant
measures of tissue dynamics. Subsequent steps further
refine the material coordinate definition to remove resid-
ual motion in pullback images and read out measures
of velocity and strain in this Lagrangian frame (along
‘material pathlines’). The last set of steps visualize the
material motions, decompose them into divergence, curl,
rate of area change, and measures of anisotropic deforma-
tion like the Beltrami coefficient. Finally, methods com-
pute principal components of the tissue dynamics and
decompose movement into eigenfunctions of the Laplace-
Beltrami operator. Such eigenfunctions are akin to spher-
ical harmonics for a sphere or Bessel functions for a cylin-
der, but defined on an arbitrary surface. Fig. S4, mean-
while, gives an overview of the class structures included
in the toolkit.

The TubULAR workflow assumes individual TIFF
files for each timepoint matching a common nam-
ing convention. For example, Timepoint 000000.tif,
Timepoint 000001.tif, etc would be found in the same
directory. If the dataset has multiple channels, all chan-
nels to be used should be found within the same file for a
given timepoint, and the metadata instructs TubULAR
how to interpret the axis order.

An output directory for the data will be generated
upon instantiation of the TubULAR class. The direc-
tory structure information for inputs and outputs of the
class are stored in the dir property of the TubULAR
class instance. While multiple surfaces per timepoint can
be analyzed by separate class instances of TubULAR, the
default workflow is designed for a single surface per time-
point. For example, if the user would like to analyze the
relative motion between two concentric tissue layers, the
user could obtain a surface that lies approximately in
between the two layers. In this scheme, the output of
one TubULAR class instance rendering tissue texture at
some positive distance from the mesh surfaces could be
compared against the output of another TubULAR class
instance rendering tissue texture at some negative dis-
tance from the mesh surfaces. In such a scenario, the
two instances could share the same mesh directory (and
other properties) to ensure no differences in measured
motion arose from differences in the constrained map-
ping procedure.

III. INTEGRATION OF TUBULAR WITH
IMSANE

ImSAnE [12] is a tissue cartography package in MAT-
LAB used in the developmental biology community.
Since the aims of ImSAnE overlap with those of TubU-
LAR, we have implemented integration of the two toolk-
its in two ways: an ImSAnE Experiment class instance
can be passed to TubULAR, or all of TubULAR’s func-
tionality can be accessed entirely within ImSAnE.

We found existing methods within ImSAnE (and in
other software) to be unable to automatically follow

FIG. S2. TubULAR advances analysis from bare 3D
tracks to flows across and along dynamic surfaces.
(A) Many existing tools such as Imaris aid tracking isolated
cells or other objects in 3D. Such methods do not immediately
provide measurements of tissue deformations due to the lack
of reference surface. (B) TubULAR builds surfaces on which
motion is decomposed into in-plane and out-of-plane motion.
In this schematic, motion along the surface normal is blue
for outward and red for inward, while black arrows illustrate
tangential motion.

tissue-scale motions of the full surfaces demonstrated in
the main text. In Fig. S5, we highlight a comparison of
TubULAR against ImSAnE’s meshWrapper fitter. Here,
the surface is divided by five Voronoi patches (blue, red,
yellow, violet, and green colors in Fig. S5B). The patches
were chosen by identifying mesh vertices that are far
apart at t = t0 = 0 min, then point-matching each ver-
tex onto the subsequent timepoint. This point-matching
repeated throughout the timecourse of morphogenesis.
Individual patches of the surface can be fit in ImSAnE,
but the motion of these patches in pullback space can
be erratic (Fig. S5C). In contrast, TubULAR parame-
terizes the entire surface in a single coordinate chart,
modulo two endcaps at the anterior and posterior poles
(Fig. S5D). Here, we chose a 100 × 100 vertex paramer-
ization, with mesh vertices equally spaced in a rectangu-
lar grid in sϕ pullback coordinates, so the discretization is
visible in the surface normals. Tissue motion in the ma-
terial coordinates is minimized in this method, so that
coloring surfaces across different timepoints and overlay-
ing their pullback images results in a largely grayscale
image (Fig. S5E).
Fig 1F of the main text showed that pullback images

made via ImSAnE’s cylinderMeshWrapper likewise do
not have stabilized motion in the pullback plane. The
overall image also changed size from timepoint to time-
point. As shown in Fig. S6, we also found that existing
methods within ImSAnE that attempt to fit the entire
surface were not able to handle complex geometries such
as the folded midgut.

A. Passing ImSAnE to TubULAR

An ImSAnE Experiment class instance can be passed
to TubULAR as a first argument instead of a metadata
struct. If no meshes have been found using ImSAnE al-
ready, then this step can be done with the newly created
TubULAR instance, along with subsequent analysis. Al-
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FIG. S3. Example high-level pipeline for data analysis using TubULAR passes through constrained parameter-
ization, measurement of surface dynamics, refinement, and steps to interpret the results. Descriptions of typical
steps in a TubULAR pipeline are listed on the left, with the corresponding class method calls for each goal on the right.

ternatively, users may leverage any of ImSAnE’s surface
detection methods before passing the result to TubU-
LAR so long as the detection results in a series of meshes,
named as indicated in the metadata passed to TubULAR.
See the online documentation for further details.

B. Upgrades to ImSAnE integrate TubULAR’s
functionality

ImSAnE workflows proceed in two parts: surface
detection and surface fitting. ImSAnE now has an
integralDetector method for surface detection which
mirrors TubULAR’s getMeshes method. After surface
detection, the tubularFitter creates a TubULAR in-
stance and carries this object as a property. All func-
tions can be accessed within the ImSAnE Experiment
instance’s surfaceFitter.

IV. VALIDATION USING A SYNTHETIC
DATASET

We validated the performance of TubULAR using syn-
thetic data of a monolayer tissue arranged in a tube that
coils and uncoils. Maximum intensity projections of the

‘nuclei’-like and ‘membrane’-like channels of this data are
shown in Fig. S7A.

A. Dataset generation

To generate the dataset, the surface geometry was en-
coded numerically by specifying a noisy centerline that
coils with an amplitude that varies along the curve and
that varies over time. The centerline was defined as

x(ζ) =
R0

2
cos(2πζ)(1− cos(2πζ)) + ηx(ζ) (1)

y(ζ) =
R0

2
sin(2πζ)(1− cos(2πζ)) + ηy(ζ) (2)

z(ζ) = 5((2ζ − 1)3 + 1) +
R0

2
sin(2πζ), (3)

where ηx, ηy ∈ [0, 1] add noise to the curve, and R0 = (1+
3 sin [2π(t− 1)/20− 0.25)] /2 represents the signed ra-
dius of the tube’s coil. The width of the tube was chosen
to vary as max (0.02, 0.25 +R1 [cos(π(ζ + 0.5)) + 0.1]),
where ζ ∈ [0, 1] parameterizes the centerline curve.
We placed 120 nuclei-like blobs of intensity centered at

locations across the surface. Locations were chosen as a
solution to an iterative farthest-point search, so that nu-
clei are well-spaced from each other. We then performed
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FIG. S4. The TubULAR class and the DiscreteExteriorCalculus class within DECLab carry properties and meth-
ods, listed here for reference.

a Voronoi tessellation to create a channel mimicking ‘cell-
cell junctions’ (green in Fig. S7). The nuclei sizes were
determined based on the distance of each nucleus to the
nearest membrane location.

Fig. S7B shows the data projected on extracted sur-
faces for all timepoints.

B. Validation of tracked cell positions over time

How well can the TubULAR workflow capture posi-
tions of cells in this synthetic data? After extracting
surfaces shown in Fig. S7B, pulling back to the sϕ coor-

dinate system, and tiling the pullback image along the ϕ̂
direction, we identify nucleus locations by threshold sϕ
pullback images using Otsu’s method [14] and computing
centroids of each segmented object.

We then track the resulting positions, linking sets of
nucleus locations into trajectories using two separate ap-
proaches: (1) the Crocker-Grier algorithm [13] (‘CG’
method) or (2) ascribing the nearest nucleus in timepoint
ti+1 to each identified nucleus in timepoint ti (‘Nearest-
Neighbor’ or ‘NN method’). In the Nearest-Neighbor
method, if two cells at timepoint ti have the same near-
est neighbor in timepoint ti+1, then we choose to advance
only the closer of the two cells to that neighbor’s position.
The track of the cell which was farther away will therefore
terminate at this timepoint. Results of these two meth-
ods are shown in Fig. S8. Finally, we push those tracked

positions back into 3D onto the dynamic surfaces. This
process is illustrated in Fig. S9A.
Fig. S9B shows the positional error of identified nu-

clei obtained from tracking nuclei (via the Crocker-Grier
method) in the sϕ pullback images and pushing tracked
positions forward into 3D. This error is measured against
the known locations of nuclei input into the dataset cre-
ation process. Typical errors are below the width of
a single pixel. This error includes positional error in-
troduced from surface detection, potential errors during
object tracking, and systematic errors from object de-
tection. Only tracks that span all 20 timepoints of the
dataset are included (111 out of 120 possible particles).
As shown in Fig. S9C-E, the measured cell coordinates
match the true cell coordinates, with only a few errant
tracked positions.

C. TubULAR workflow improves tracking
performance

We compared our method of tracking objects in the sϕ
coordinate system, which is largely stabilized against ma-
terial motion, compared to directly tracking the true ob-
ject positions in 3D space. We find that by first tracking
in 2D with TubULAR using either the Crocker-Grier [13]
or a Nearest-Neighbor algorithm then pushing tracks into
3D, we greatly improve both the duration of individual
tracks that are automatically detected and the number
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FIG. S5. Previous methods fail to follow tissue motion, here illustrated by using the meshWrapper fitter native to
ImSAnE. (A) A detected surface results in a surface mesh triangulation to be parameterized. (B) Fitting the surface using
ImSAnE’s meshWrapper maps patches of the surface to the plane via a conformal map. (C) Pullback images from meshWrapper

reflect large tissue motions over time, precluding cell tracking, tissue tracking, or measurements of tissue velocity. The overall
image change, shape, and orientation varies from timepoint to timepoint. (D) In contrast, TubULAR parameterizes the full
surface in a single chart, modulo two endcaps which are cut from the surface at the anterior and posterior ends to ensure a
cylindrical topology. (E) Crucially, the resulting pullback images from TubULAR remain nearly stationary in the pullback
frame due to stabilization. Here we overlay the textured surfaces (cyan, magenta, and yellow) in the material frame. The
largely white cell membrane signal in the image reflects the stationary orientation of tissue in the pullback plane. Maps to the
material frame from different timepoints are here taken as the fully stabilized maps φ = J ◦ Φ ◦ Z ◦ f .

of tracks that successfully identify nuclei across all time-
points (Fig. S10). Both 2D segmentation and 3D segmen-
tation used Otsu’s method [14] on the nuclear channel
only (magenta in Fig. S7). Fig. S10 shows benchmarks
of the tracking results. To link positions into tracks,
we used the same two tracking algorithms in 2D vs 3D.
This implies that compared to our method, tracking the
3D positions of cells requires more advanced algorithms,

more manual corrections, or both. We also note here that
to interpret isolated 3D tracks as tissue deformations re-
quires additional analysis approaches, and these methods
are already handled in our toolkit.
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FIG. S6. Previous methods fail to parameterize complex surface geometries, here illustrated by using the
cylinderMeshWrapper fitter native to ImSAnE. (A) A detected surface results in a surface mesh triangulation to be
parameterized by an ImSAnE fitter. (B) Fitting the surface using cylinderMeshWrapper results in parameterization issues
because of build-in assumptions about the simplicity of the underlying cylinder-like surface. The surface is colored by the
normal vector of each face projected onto the anterior-posterior axis, so that green is pointing anteriorly and purple is pointing
posteriorly. (C) Pullback images from cylinderMeshWrapper reflect the artifacts from poor parameterization near deep folds
and surface overhangs. (D) The parameterized surface using TubULAR preserves surface normals and preserves mesh geometry.
The surface is colored as in panel (B). (E) The resulting pullback images from TubULAR do not have parameterization artifacts.

D. Validation of cell velocities over time

Finally, we validated cell velocities by comparing the
difference in tracked positions over time with known cell
velocities of the synthetic dataset. We compared these
velocities against the known motion of nuclei used in the
dataset generation. As shown in Fig. S11, measured cell

velocities agree with true cell velocities within a few per-
cent, and the root-mean-squared (RMS) error of the ve-
locities is small compared to the magnitude of the mo-
tion.
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FIG. S7. A synthetic dataset features a tube with dramatic changes in geometry, and its projection onto a
surface generated in TubULAR captures the changes in shape. (A) The maximum intensity projection of ‘nuclear’
(magenta) and ‘membrane’ (green) channels for 20 timepoints show a tube coiling and uncoiling. Nuclear positions corresponded
to a farthest-point search of 120 locations on a prescribed surface with a time-dependent centerline and a (time-dependent and
space-dependent) radius around that centerline. The membrane channel was created by building a Voronoi tesselation of
the nuclear positions within the prescribed surface. Nuclei are given sizes based on their distance from the nearest ‘cell-cell
junction.’ The prescribed surface is distinct from the extracted surface, but the extracted surface accurately captures the
prescribed surface. (B) The projection of the dataset onto extracted surfaces shows both the changes in shape over time and
the movement of cells on the dynamic surface.

V. SURFACE EXTRACTION USING LEVEL
SETS

We now address details of steps that would appear in a
TubULAR workflow. In this section, we begin with sur-
face extraction. To extract whole-organ surfaces, we use
a level sets approach, combined with marching cubes [15]
and Laplacian smoothing. While the literature on level
sets segmentation is vast [16], we give a brief overview of
the relevant method here.

The process of surface detection is mapped onto an
optimization problem by defining a physics-inspired cost

functional [17, 18]:

F [c1, c2,S] = µ

∫
S
ds+ ν

∫
Ω

d3x (4)

+ λ1

∫
u>0

|I(x)− c1|dx+ λ2

∫
u<0

|I(x)− c2|dx, (5)

where c1 and c2 are the average values of the data inside
and outside, respectively:

c1(S) = ⟨I(x)⟩inside (6)

c2(S) = ⟨I(x)⟩outside. (7)

The first term is a surface tension that tries to smooth
out ruggedness in the surface. The second term is an
effective pressure that penalizes blow up in the enclosed
volume of the segmented regions. The final two attach-
ment terms incorporate the actual measured data into
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FIG. S8. Constrained parameterization, here shown
in the sϕ coordinate system, aids in tracking. Differ-
ent tracking results across all 20 timepoints (colored curves)
show almost no motion of nuclei despite large 3D motions of
each nucleus. The tracks overlie intensity data for an example
timepoint. Tracks obtained in the pullback plane via Crocker-
Grier [13] algorithm in (A) and using a nearest-neighbor ap-
proach in (B).

the optimization procedure. The third term attempts
to homogenize the intensities of voxels included in the
interior of the segmented volume and the fourth term
attempts to homogenize the intensities of the excluded
voxels by adjusting the surface position. Fig. S12 shows
an example segmentation.

A. Segmentation of the midgut and synthetic
datasets

To segment the surfaces of the midgut, synthetic
datasets, and droplets shown in Fig. S1G, we generate
a level set solution for a contiguous volume enclosing the
interior of the tube, partitioning space into a topolog-
ical sphere (the ‘filled’ tube) and its exterior, as shown
in Fig. S12. TubULAR next removes endcaps of the mesh
to create a topological tube (see later discussion). Be-
fore turning to endcap selection, we first note a variation
on the TubULAR strategy that we employed for the ze-
brafish heart.

B. Segmentation of the zebrafish heart

The zebrafish heart dataset posed particular challenges
requiring the application of some non-standard segmen-
tation procedures, which we summarize here. Rather
than attempt to segment the heart tissue by encapsu-
lating the enclosed space with a level set, we used the
level set methods to segment only the heart tissue. This
resulted in a binary level set solution of toroidal topology.
We applied a homotopic thinning procedure slice-by-slice
along the length of the tube to produce a point cloud ap-
proximating the mid-surface of the heart tissue. We then
fed a smoothed, up-sampled version of this point cloud
into our Poisson surface reconstruction algorithm to pro-
duce a closed, sphere-like mesh of the heart. The re-
sults at this point in the segmentation process were struc-
turally identical to those produced in a typical pipeline.

VI. ENDCAP SELECTION

Given extracted surfaces with sphere-like surface topol-
ogy (rather than a cylinder-like surface topology) from
the previous step, we remove two ‘endcaps’ and define a
virtual seam along which to unwrap a cylinder into the
plane. Endcaps are illustrated by red and green curves
in Extended Data Fig. 1, and the virtual seam is a dashed
purple curve. We define an endcap as a collection of con-
tiguous faces (at least one face) that are removed from
the mesh in order to map free boundaries to the plane.
As shown in Fig. S13, while removing a larger region

from each endcap leads to larger “blind spots” where
the surface is not parameterized, the resulting distortion
in the mapped image may be smaller. This can have
some practical advantages while segmenting or tracking
cells in the 2D pullback parameterization. The minimum
size of a removed endcap is a single face of the mesh
triangulation, in which case the triangular boundary of
the face would be mapped to u = 0 or u = 1. Removing
a single vertex would lead to its immediate neighborhood
(typically a hexagon) being mapped to u = 0 or u = 1.
By default, the locations of endcaps can be chosen

manually with an interactive point-and-click method in
a MATLAB Figure window. Subsequent timepoints will
point-match the chosen vertex onto the subsequent time-
point’s mesh triangulation, and this point-matching re-
peats through time.
Alternatively, the user can define a probability cloud

identifying a region of the 3D data that should be con-
sidered an endcap for each timepoint using iLastik. The
‘center of mass,’ defined as the weighted centroid of the
largest component of the probability cloud above a pro-
vided threshold, supplies a location to identify the end-
point. The mesh vertex nearest this center of mass is
then defined as the endpoint.
A mesh region near each endpoint is removed from the

mesh, as depicted in Fig. S13. The default behavior is
to remove a patch that lies within some (geodesic) dis-
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FIG. S9. The first step of method validation compares measured nuclear positions on the extracted surface to
the known input positions of nuclei in the synthetic dataset. (A) Schematic representation shows nuclear positions
in true coordinates, which are then intersected by a detected surface. A projection to 2D captures the intersection of the data
with the surface and maps those intensity values to the plane. We detect nuclei in the plane and track them across timepoints.
Pushing these trajectories into 3D on the dynamic surface provides the measured cell coordinates over time. (B) The measured
cell coordinates differ from the true (known) coordinates by a value that is typically far less than a pixel width. Median
differences for x, y, and z positions are shown by a black bar. (C-E) Measured cell positions across tracked cells match the true
input coordinates in each spatial dimension. For each plot, each blue datapoint represents a tracked cell (nucleus) position at
a single timepoint, and we include positions from all timepoints.

tance threshold on the surface from each endpoint. Other
methods are permitted, such as removing the largest con-
nected component lying within a ball of provided radius,
or removing a component of the mesh lying beyond a
user-specified x, y, or z plane.

VII. CONSTRAINED MAPPING TO THE
PLANE FOLLOWS TISSUE MOTION

To follow tissue surfaces as they deform, we begin with
an initial map at a reference timepoint that defines the
material coordinates, then construct maps to minimize
subsequent tissue motion in the pullback plane, and fi-
nally generate material pathlines in 3D. We denote the
dynamic map from the evolving surface to a fixed 2D ma-
terial coordinate system as φ(t). This dynamic map to a
fixed material coordinate system is built via a sequence of
four steps: φ(t) ≡ J ◦Φ ◦Z ◦ f , each of which is detailed
in this section. Briefly, f : S(x) → (u, v) is a confor-

mal map of the surface S to the unit square (via Ricci
flow or Dirichlet energy minimization). Z : u → s maps
each longitudinal coordinate u(t) to proper length s(u(t))
along the long axis of the tube-like surface. Φ : v → ϕ sta-
bilizes motion of the tissue along the circumferential axis.
Finally, J : (s, ϕ) → (s0, ϕ0) removes any residual motion
of the material in the pullback plane by subtracting op-
tical flow (obtained via particle image velocimetry). Let
us turn to each component in turn.

A. Initial conformal map f

The first step is to build a conformal map to the plane.
A conformal map preserves angles but changes local ar-
eas, resulting in an image of the surface with smoothly
varying dilation of the tissue. We conformally flatten
the 3D surface to the plane using one of two methods.
The first option is Ricci flow, which results in a precisely
conformal output at the cost of being slow, while the sec-



11

FIG. S10. TubULAR aids automatic tracking and improves the fidelity of track trajectories. (A) In a synthetic
dataset of 20 timepoints, few tracks (obtained by linking 3D positions of nuclei) connected objects across more than ∼ 5
timepoints. In contrast, tracking with TubULAR resulted in most automatically-computed tracks connecting nuclei across all
20 timepoints. Dashed line denotes a track duration of 20 timepoints. (B) Similarly, we plot the fraction of tracks that span
all 20 timepoints, highlighting that while few 3D tracks connect across the full dataset, most tracks generated in the stabilized
2D pullback images and pushed into 3D span all 20 timepoints. The total number of tracks that span all 20 timepoints is
printed above each bar. The dataset had a total of 120 nuclei. ‘CG’ denotes ‘Crocker-Grier’ method for particle tracking with
the largest cutoff distance permitted by the method and ‘NN’ denotes ‘Nearest-Neighbor’ method, in which each identified
nucleus in time ti is connected only with the closest identified nucleus in time ti+1 in 3D space (for 3D tracking) or in the 2D
sϕ pullback coordinate space (for TubULAR tracking).

ond option is using a map minimizing a Dirichlet energy,
which in general is faster, but produces less conformal
results.

1. Ricci flow

Originally introduced by Hamilton in the context of
geometric topology, Ricci flow is a tool that enables the
design of (Riemannian) metrics with prescribed curva-
tures. A metric tensor g is a structure defined on the
surface (or ‘manifold’) that defines distances and angles.
Ricci flow deforms a metric proportionally to its intrin-
sic curvature, such that the curvature evolves according
to a nonlinear heat diffusion process and eventually be-
comes constant everywhere. In the continuous setting,
Ricci flow on 2D surfaces can be defined as

dg(t′)

dt′
= −2(K(t′)− K̄)g(t′), (8)

where g(t′) is the metric generated by the flow at pseudo-
time t′, K(t′) is the associated Gaussian curvature, and
K̄ is the target Gaussian curvature. Note that the pseu-
dotime t′ is simply a parameter defining the extent to
which the geometric flow has been allowed to evolve and
should not be confused with any physical time t related
to the actual dynamics of the system (e.g. the time evolu-
tion of physical shape during organ morphogenesis). To
create a map to the plane via Ricci flow, we set K̄ = 0;
the target metric is flat. The formal solution to Eq. (8)

is

g(t′) = e−2
∫ t′
0

(K(τ)−K̄) dτ g(0) = eΩ(t′) g(0), (9)

where the quantity eΩ(t′), called the conformal factor, is a
scalar field that isotropically shrinks or dilates patches of
the surface as the flow unfolds. It is apparent from Eq. (9)
that surface Ricci flow is conformal, i.e. preserves angles
defined by g(0). Explicitly, for two tangent vectors u and
v,

⟨u,v⟩g(t′)√
⟨u,u⟩g(t′) ⟨v,v⟩g(t′)

=
gij(t

′)uivj√
(gij(t′)uivj) (gij(t′)uivj)

=
eΩ(t′) gij(0)u

ivj√
(eΩ(t′) gij(0)uivj) (eΩ(t′) gij(0)uivj)

=
gij(0)u

ivj√
(gij(0)uivj) (gij(0)uivj)

=
⟨u,v⟩g(0)√

⟨u,u⟩g(0) ⟨v,v⟩g(0)
.

(10)

It has also been demonstrated that the Gaussian curva-
ture during the flow always remains bounded [19].
In practice, we work with surfaces represented by dis-

crete meshes rather than continuous functions. Surface
Ricci flow has intuitive geometric interpretations, which
directly inform the design of data structures in the dis-
crete setting. The surface can be represented as a mesh
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FIG. S11. Measured velocities using TubULAR agree with true velocities of the synthetic dataset. (A) An
example of true cell velocities for a sample timepoint in the synthetic dataset show the difference in cell positions between
the subsequent and current timepoint. (B) Measured cell trajectories evaluated at each tracked cell location match the true
cell velocities. (C) The difference (normed vector difference in 3D) between measured and true cell velocities is typically less
than 10% of the true velocity magnitude. The RMS fractional error of vector differences divided by the velocity across all
trajectories and all timepoints is 6%. (D) The difference (normed vector difference in 3D) between measured and true cell
velocities is typically less than 5% of the RMS value of the true speed. The RMS fractional error of vector differences divided by
the RMS velocity across all trajectories and all timepoints is 4.1%. Here |vRMS

true | =
√

⟨|vtrue|2⟩, where the average is taken over
all trajectories and all timepoints. (E) The RMS error in measured velocities (orange curve) is far smaller than the true RMS

velocity (blue curve) for any given timepoint. Here, |vtrue|RMS =
√

⟨|vtrue|2⟩, where the average is taken over all trajectories
within a given timepoint.

triangulation, and the metric tensor can be represented
as a set of positive edge lengths on this triangulation sat-
isfying the triangle inequality. To then flow the discrete
mesh triangulation to the plane, we follow a method re-
viewed in [19]. Briefly, we reformulate discrete surface
Ricci flow as a convex optimization problem over the
space of discrete metrics, which has a unique minimum
and can be solved efficiently using Newton’s method. In-
tuitively, given an initial metric, the method first con-
structs a ‘circle-packing metric,’ meaning it instantiates
a set of circles living at mesh vertices with consistent
conditions on how the circles intersect. Each variational
step in the minimization process flows the discrete metric
closer to the target curvature (zero in our case) in a way
that always maintains the integrity of the circle pack-
ing. The conformality of the discrete flow is ensured by
construction since it always maps (discrete) infinitesimal
circles into (discrete) infinitesimal circles.

An implementation of the discrete Ricci flow is in-
cluded as a custom package within TubULAR and
also as a fully independent, standalone package called
RicciFlow MATLAB. This method is slower but more pre-
cisely conformal than the second method we offer, dis-

cussed next. Note also that this method fixes the u po-
sition of the inner and outer boundary, but fixes the v
location of only one point shown as a black circle in Ex-
tended Data Fig. 1.

2. Annular orbifold map

The annular orbifold map is a second option for ob-
taining f that is typically faster than Ricci flow but less
precisely conformal. This approach follows the formal-
ism of Aigerman & Lipman [20], but applies these ideas
to a topological cylinder mapped to a rectangle that is
periodic along one dimension. Essentially, we produce a
parameterization that minimizes the Dirichlet energy, en-
forcing certain boundary conditions so that the resulting
parameterization is both seamless and globally bijective.
For a parameterization of the surface u = (u, v), the

Dirichlet energy is defined as

ED =
1

2

∫
||∇u||2dA, (11)

where ∇ is a gradient operator defined on the surface
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FIG. S12. Surface extraction using level sets aids in
capturing noisy or complex geometries. (A) In this toy
example, we segment a looped tube by first training in an
iLastik workflow to create a probability field recognizing in-
side (yellow denotes high probability) versus outside. (B) In
the default workflow, TubULAR generates meshes via an ‘ac-
tive contour’ (level sets) approach. To initialize a 3D sphere
to seed the growth of the estimated surface, the user can click
on a location in a 2D cross-section that lies within the surface.
(C) The resulting seed grows to fill the volume. In this toy
example, the isosurface (purple) already well approximates
the target surface. The initial seed (yellow sphere shown in
cutaway) grows to fill the volume enclosed by the isosurface
because those voxels contain similar (high) probability from
the step shown in panel (A).

in 3D. This energy penalizes ruggedness in u – that is,
ruggedness with respect to position on the surface in
3D space. As a result, its minimizers are smooth, well-
behaved parameterizations. Extrema of this energy func-
tional can be found according to a variational principle
by solving the associated Euler-Lagrange equation:

∇2u = 0. (12)

This is the Laplace equation. The associated solutions
are called harmonic maps. In practice, since u is un-
known, the operator ∇2 is taken to be the Laplace-
Beltrami operator defined on the input 3D surface. Ad-
ditionally, we demand that the anterior and posterior
endcaps of the cylindrical mesh are mapped to vertical
lines u = 0 and u = 1. We also enforce the ‘orbifold’
condition that ensures the v direction has the same pe-
riodicity regardless of u position. Conceptually, for the
‘cut path’ shown as the purple dashed curve in Extended
Data Fig. 1, each point on the path is represented by two
identified vertices in the flat uv plane – one on the ‘up-
per’ boundary and one on the ‘lower’ boundary in the uv
plane. The pair of vertices representing a given point on
the cut path must map to the same point in the plane,
modulo a vertical offset corresponding to the periodic
spacing along the azimuthal direction of the tube. These
boundary constraints ensure that the planar parameter-
ization retains the cylindrical topology of the 3D surface
under proper tiling of the plane. This entire problem,
including the constraints, can be cast as a single linear
system of the form

Au = b. (13)

Any conformal parameterization of the surface will be
a minimizer of the Dirichlet energy. To see this, let us
specialize for a moment to the case of planar transfor-
mations f : C → C. Let z = x + i y denote a complex
coordinate defined over the input domain being param-
eterized (the analogue of the input 3D surface) and let
f = u + i v be a complex representation of the param-
eterization. A conformal parameterization must satisfy
the Cauchy-Riemann condition

∂z̄f = 0. (14)

It is therefore clear that any conformal mapping must
also be harmonic since ∇2f = 4∂z∂z̄f = 0. Similar gen-
eralized arguments prove the harmonicity of 2D confor-
mal parameterizations of 3D surfaces. In practice, the
boundary conditions we enforce preclude the possibil-
ity of a truly conformal mapping. However, the results
are generally a good approximation of a discrete confor-
mal mapping, especially in the bulk away from the mesh
boundaries. The high quality of Dirichlet energy min-
ima as approximations to discrete conformal mappings
has also been observed in a variety of settings [20]. We
note that the conformality of the parameterizations can
be improved by replacing the Dirichlet energy with the
so-called conformal energy, EC = ED−A(u), where A(u)
denotes the area of the domain of parameterization [21],
though such methods are not currently implemented in
TubULAR. This improvement in conformality comes at
the expense of increased computational cost and usually
do not preserve angles as well the conformal Ricci maps
anyway.
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FIG. S13. Removing endcaps from the tube facilitates mapping to the plane, and larger endcaps can lead to
smaller areal distortion in the mapping at the expense of a less complete surface parameterization. To map
a tube-like object to the plane, we first remove small endcaps, defined on either end as regions within a given distance from
specified endpoints. This provides two non-periodic boundaries which are mapped to u = 0 and u = 1. The size of the removed
endcap can affect the distortion of the image in the map. This can be a problem if the distortion is so large as to affect the
quality of cell segmentation or the fidelity of velocimetry measurements in the 2D pullback projections. (A) Removing a small
portion of the tube at each end leads to large distortions near the endcaps. The distortion map is shown in color both on
the 3D surface and on the 2D uv conformal parameterization. Auv denotes the area of a given triangle in the discrete mesh
triangulation in the uv plane, while A3D is the area of the corresponding triangle in the embedding space. (B) Removing a larger
portion of the tube at each end leads to lower distortions near the endcaps for this example surface in the uv parameterization.
(C) Similarly, in the sϕ parameterization, the example surface shows largest area distortion near the endcaps. Asϕ denotes the
area of a given triangle of the mesh in the sϕ pullback parameterization. (D) Increasing the size of endcap likewise reduces
areal distortion in the mapping.

3. Independence of mapping on choice of longitudinal seam

The position of the mapped surface coordinates should
intuitively be independent of the choice of ‘cut path’
along the long axis of the organ for unrolling the cylinder.
For the Ricci flow case, this is true by construction: we
map to an annular domain (with one endcap boundary
mapped to the unit circle and the other endcap boundary
mapped to a circle near the origin), then take a complex
logarithm of these coordinates to acquire a rectilinear
representation (Extended Data Fig. 1). For the annular
orbifold map, we must enforce this path independence.

Inspired by the topology-preserving orbifold mappings
of spherical surfaces [20], we enforce a set of boundary
conditions to ensure that the parameterization in the
plane respects the cylindrical topology of the 3D surface.
Namely, we demand continuity in the boundary compo-
nents of the 2D meshes associated with the virtual seam,
such that, if one were to tile these meshes in the plane,
moving across this boundary from one tile into another
would be physically indistinguishable from crossing over
the virtual seam on the 3D cylindrical surface. This map-
ping ensures that the edges composing the cut path takes
on a unique shape in the domain of parameterization, and
the shape of these edges would be identical whether or

not the edges are components of the cut path.

There is one caveat to this independence: the cut path
will change the output pullback map if it winds around
the tube relative to the centerline with a different wind-
ing number (Fig. S14). Therefore, we take measures to
enforce this topological constraint. For the first time-
point mapped to the plane (t0), we choose a cut path to
be the geodesic connecting the two endcaps. For subse-
quent timepoints (and previous timepoints, if any), we
ensure the winding number does not change relative to
this path’s winding (Fig. S14).

While several options are available for enforcing this
constraint, the default behavior in TubULAR uses an
approximation to the centerline and measures the wind-
ing of the cut path around this centerline curve. The
details of this centerline construction are not particu-
larly important, since the curve’s purpose is to provide a
topological constraint – not a geometric one – on the cut
path chosen, whose own geometry is immaterial so long
as it does not wind around the centerline. Nevertheless,
we give a brief description here: for each timepoint, we
measure an approximate centerline via fast marching (see
Section VIII). We connect the endpoints by a curve that
spans the interior of the mesh found by minimizing the
‘time of travel’ with a speed of travel through any given
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FIG. S14. Our parameterization scheme is independent of the choice of longitudinal seam (cut path), but only
given the proper topological constraint on the winding of that seam. A potential complication in a TubULAR
pipeline may arise if a tube is undergoing substantial coiling. The longitudinal seam is first chosen as a geodesic connecting
two endpoints (or a piecewise geodesic path for t ̸= t0 if complex winding of the path is detected), as shown in small insets in
the top left of panels (a), (b), and (c). These longitudinal seams (or ‘cut paths’) need to exhibit a winding number about the
centerline curve that matches the winding of the cut paths for adjacent timepoints, or else the map to the pullback plane will
be sheared along the v direction. In this example for a synthetic dataset, the reference timepoint is given in panel (c). There,
a geodesic defines the phase v around the tube in the (u, v) plane. In panel (a), a geodesic path for a different timepoint does
not satisfy the same winding around the centerline. The default behavior in TubULAR is then to seek a different path that
does match the topology of the adjacent timepoint. In panel (b), a piecewise geodesic path, which appears subtly different but
winds differently around the centerline, does enable a conformal map with the same topology as that of panel (c).

voxel determined by the distance transform of the seg-
mented data volume [22]. If a geodesic path is found
to change its winding from one timepoint to the next,
the path is perturbed to more closely match the previous
one in space until the topology is preserved. We found
this ‘trial and error’ approach to be far faster than con-
structing an explicitly-topologically-equivalent curve (for
example, after Ricci flow to an annular domain). The
relevant TubULAR methods provide options for choos-
ing different approaches if needed, including the explicit
construction method.

B. Quasiconformal map Φ ◦ Z to (s, ϕ) coordinates

We then introduce a further coordinate transforma-
tion which we found aids in surface stabilization. We
found that directly measuring optical flow in (u, v) coor-
dinates is impeded by large jitter in the mapped tissue
image from timepoint to timepoint. Furthermore, the
potentially large variations in dilation across the confor-
mal map leads to nonuniform sampling of tissue motion
across the embedding surface. For example, mapping a
tube with a constriction will lead to large dilation of the
constricted region, with the rest of the tube compressed
to smaller areas in the uv plane. We therefore built a
more constrained approach to remove motion, which we
found to aid in subsequent refinement of the tissue sta-
bilization and more evenly sample the tissue in the pull-

back plane. We denote this second planar parameteri-
zation (s, ϕ), and we compare this parameterization to
the (u, v) parameterization found previously in Fig. S15.
We find this (s, ϕ, t) parameterization aids in both vi-
sualization and enables more accurate velocimetry mea-
surements than other choices we considered, particularly
when large variations appear in the effective radius of the
surface along its long axis. This second map, which we
denote Φ ◦ Z, is a quasi-conformal transformation (i.e.
a smooth transformation with finite anisotropic distor-
tion [23]) of the initial (u, v) coordinates.

For the reference timepoint t0 considered first, the co-

ordinate directions ŝ and ϕ̂ are the same as the û and v̂
directions from the conformal mapping to the plane. Fur-
thermore, at this initial timepoint, ϕ = v is identical to
the intrinsic circumferential axis of the conformal map.
The sole difference is that s parameterizes a longitudinal
position along the long axis of the organ at t = t0. In
particular, we compute s as the average geodesic length
along the surface from the anterior endcap to a set of
uniformly-sampled points with fixed horizontal coordi-
nate in the conformal pullback space (Fig. 2A-C of the
main text). Intuitively then, s this is the average path
length required to travel on the surface from the anterior
face to a given location along curves of constant ϕ.

In more detail, we define the (s, ϕ) domain of param-
eterization as follows. The sϕ parameterization is less
conformal but which more equally represents different
patches of tissue that initially experience different dila-
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FIG. S15. A quasiconformal mapping from (u, v) to (s, ϕ) aids in spatially uniform surface sampling and ve-
locimetry for refined tissue tracking. (A) The constrained conformal map to the plane at a time 90 minutes after the
onset of constrictions (t = 90 min) demonstrates large variations in the sampling density along the longitudinal direction (top).
Note the high density of circumferential hoops near constrictions and near the posterior tip. (B) After creating the conformal
mapping to (u, v), the TubULAR workflow constructs an second map to a parameterization in which the surface is more evenly
sampled along the longitudinal axis and in which motion in the v direction is subtracted off. Note the more uniform longitudinal
density of circumferential hoops (top) and the difference in the curve ϕ = 0 at this later timepoint, which matches the previous
position of the material along ϕ = 0 at earlier timepoints. At time t = t0 = 0 min, ϕ = v, while at this later timepoint, ϕ ̸= v.

tion in the map f from 3D embedding x to 2D pullback
u = (u, v). This empirically improves measurements of
tissue velocity in plane for our shapes, and we expect the
additional transformation will improve other tissues that
are elongated in quasi-axisymmetric geometries. Circum-
ferential ‘hoops’ of tissue surrounding the centerline that
are equally sampled along the centerline will be equally
spaced in the pullback coordinates (Fig. 2C of the main
text and Fig. S15). The map Φ ◦ Z from the previous
(conformal) frame (u, v) to the (s, ϕ) coordinate system
is defined by

s(u) =

∫ u

0

〈
ds(u′, v)

du′

〉
v

du′, (15)

and

ϕ(u, v) = v − ϕ0(u). (16)

Equation 15 ensures that circumferential hoops sampled
at equally spaced distances (as measured by their average
proper distance) along the longitudinal axis are equally
spaced in pullback space.

Equation 16 removes tissue motion along ϕ at each
longitudinal position s. The form of ϕ0(u) is such that
motion of the tissue along each hoop is cancelled out in
the pullback to acheive a more Lagrangian parameteriza-
tion. For t = t0, ϕ0(u) = 0 and (s, ϕ) = (s, v) defines the

material coordinate frame. For other timepoints, ϕ0(u) is
chosen to minimize the difference in positions of material
points at the current timepoint relative to the previous
(next) timepoint for t > t0 (t < t0). To minimize the
difference in material positions, we consider each sam-
pled value of s in turn, which represents a circumferential
‘hoop’ in 3D (see Fig. S15). We numerically minimize the
sum of squared Euclidean distances of uniformly-sampled
points along this circumferential hoop from the mapped
3D locations at a previously-solved timepoint closer to
t0. These hoops can be visualized in 2D as vertical strips
in the (s, ϕ) pullback coordinates.

If the tissue already appears relatively stationary in
the uv parameterization, then accumulated errors from
repeated optical flow measurements between images of
the tissue in the uv plane may be sufficiently small. In
this case, the user may toggle the option for stabiliza-
tion method so that ϕ0(u) is defined by maximizing the
cross correlation between the intensity data lying within
each circumferential hoop (si < s < sj) and the inten-
sity data in the previous pullback lying near the same
u coordinate. This option uses phase correlation of the
pullback image itself and compares each strip in pullback
space (corresponding to a hoop in 3D data space) to the
previous image. If optical flow is an unreliable measure
in this step, we have found that shifting these slices along
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ϕ (which is a periodic dimension) to minimize the differ-
ence in 3D space defines ϕ0(u) gives satisfactory results,
and further processing in the next stages of the pipeline
remove any residual material motion in the (s, ϕ) plane.

C. Refined Lagrangian parameterization of the
surface, φ = J ◦ Φ ◦ Z ◦ f

After the previous constrained parameterization into
the plane via Φ ◦Z ◦ f , which minimizes much of the tis-
sue motion in the parameterization plane, we accomplish
further refinement via computing pathlines in the do-
main of parameterization using particle image velocime-
try (PIV) [24]. Advecting mesh vertices along these path-
lines in the 2D pullback space, then pushing these 2D co-
ordinates into 3D along φ−1(t) provides the positions of
material points as they deform. This provides the surface
shown in Fig. 1D of the main text, for instance. Pull-
back images in the material coordinates defined from the
refined Lagrangian parameterization then show minimal
tissue motion, as highlighted in Extended Data Fig. 2.

VIII. AUXILIARY GEOMETRIC
DESCRIPTORS OF SURFACE DYNAMICS:
CENTERLINE AND EFFECTIVE RADII

In addition to following tissue motion, our parame-
terization scheme naturally produces a unique route to
compute a useful version of the organ’s centerline. This
definition of centerline has several advantages over other
definitions, including the built-in association of each cen-
terline point with a set of points on the organ surface (a
set of mesh vertices) that span a circumferential ‘hoop’.
Because of this association, the notion of an ‘effective ra-
dius’ at each point along the centerline naturally follows,
as shown in Fig. S16.

A. Constrained parameterization defines a
system-spanning centerline of the surface

Centerline construction leverages the surface parame-
terization in 3D space already created from the previous
step (φ = J ◦ Φ ◦ Z ◦ f). Hoops for which s = constant
define an effective circumferential hoop for increments
along the length of the organ, and the average 3D po-
sition of each circumferential hoop defines its centerline
point. Connecting mean points of adjacent hoops along
the length of the organ defines a centerline of the object.

This construction offers several advantages to previ-
ous methods of centerline construction, as illustrated
in Fig. S16. Homotopic thinning techniques lead to a
curve that does not typically span the entire tube, and
also results in branches where the surface features rough-
ness or protrusions (Fig. S16A). Fast-marching based
methods (used earlier to measure a crude approximation

to the centerline) can deviate from the ‘center’ of a mate-
rial cross-section if the tube has bulges or pinched geom-
etry such as in Fig. S16B. Neither homotopic thinning
nor fast marching immediately provide an association
between surface points and points along the centerline.
In contrast, our method provides a single (branch-free)
system-spanning curve with built-in association between
surface points and centerline points.

B. Constrained parameterization defines an
effective radius along the surface

We define an effective radius as the average distance
from each point in a uniform sampling of a ring of con-
stant s (computed via the mapping to the pullback plane)
to the centerline, which is composed of the mean po-
sitions of all circumferential rings. We note that this
measurement of effective radius could be done on the
(u, v) coordinate parameterization and would give iden-
tical results, since curves of constant u are also curves of
constant s. The effective radii r(s) are therefore equal to
those indexed by u: r(s(u)) = r(u).
For the midgut dataset, we used this feature to define

t0, which we set to be the onset of constrictions. We iden-
tified constriction locations as rings of constant s whose
effective radii r(s) are local minima (so that ∂sr(s) = 0).
The first timepoint exhibiting such a minimum defined
t0.
For the zebrafish heart, we used this feature in Fig. 4D

of the main text.

IX. EXAMPLE OF INFERRING
INTERCALATION RATES (‘TISSUE
TECTONICS’) USING TUBULAR

Tissues can change shape by several mechanisms. Cells
area changes, cell shape changes, cell rearrangements (in-
tercalations), and cell divisions can all contribute [26].
Our approach aids in measuring these contributions. We
demonstrate this by resolving tissue-scale convergent ex-
tension into cell shape change and oriented cell interca-
lation contributions in the gut, which exhibits no cell
divisions. In convergent extension, different axes of the
tissue converge and extend. An example of tracked cells
demonstrating these both cell shape changes and cell re-
arrangements is shown in Extended Data Fig. 3. Note
that each cell changes neighbors (through cell intercala-
tions) and also changes its shape in a way to extend along
the longitudinal (horizontal) axis and converge along the
circumferential (vertical) axis.
We can separate contributions of cell shape change

from contributions of cell rearrangements using our La-
grangian parameterization, as we did in [1]. First note
that by imprinting the cell segmentation at time t0 = 0
hr onto the surface and advecting the polygonal segmen-
tation along material pathlines in 3D, we measure the
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FIG. S16. Our method provides a geometric route to centerline extraction which offers several benefits over
traditional approaches. (A-A”) An approximate centerline can be built from homotopic thinning methods [25]. This simple
method has several downsides, including that the curves do not span the whole system, and pruning of the curve is needed when
the surface is not sufficiently smooth. Associating the mesh surface and the curve poses conceptual challenges as well. (B-B”)
An alternative – which is implemented in an auxiliary step for constraining surface parameterization in TubULAR – minimizes
the ‘time of travel’ within the segmented volume from selected endpoints, where the speed of travel through a given voxel is
weighted by its signed distance from the mesh surface [22]. While this offers system-spanning centerline curves, the curves
deviate from the center of the object when the surface is puckered, as in panel B’. Additionally, no association between the
mesh surface the the curve is given by this method. For contorted tubes such as the fly midgut, nearest distance matching gives
spurious associations. (C-C”) Constructing centerlines based on the coordinate parameterization to the material frame offers
advantages for finding a single curve without branching with explicit associations between surface points and the centerline.
This construction enables examination of the constriction cross-sections in the main text.

effect of tissue-scale motions on the advected imprinted
virtual cells. This provides a measurement of virtual cell
deformations at each point where a cell resided at t0.
Note that the material coodinates are constructed such
that cell rearrangements that produce no net motion stay
in place (see Section VII ‘Constrained Mapping to the

Plane Follows Tissue Motion’). Advection our virtual,
imprinted cells is therefore given by the time-dependent
pushforward of material coordinates of each virtual cell
boundary. We can then directly compare the tissue-scale
shear to the actual shape change of cells segmented at
different timepoints. Without explicitly tracking cells,
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the difference between the tissue-scale shear and the cell
shape change is attributed to net oriented cell intercala-
tions. Extended Data Fig. 3C shows the decomposition
of tissue shear into cell shape change and inferred inter-
calations using this method.

Note that this method measures net intercalations.
Therefore, one T1 event forming a new cell-cell junction
aligned with the longitudinal direction can be canceled
by a T1 event forming a new cell-cell junction aligned
with the circumferential direction. Indeed, in the midgut
many more cell intercalations occur than are measured
by the net difference [1].

X. SURFACE VELOCITIES AND DISCRETE
EXTERIOR CALCULUS

3D velocity vectors arise naturally from our approach
via mapping the endpoints of 2D PIV vectors into their
respective 3D surfaces. Geometrically, displacement vec-
tors v extend from one coordinate x0 in 3D on the sur-
face at time t0 to a different coordinate x1 on the de-
formed surface at time t1. When t0 and t1 are adjacent
timepoints, this defines the 3D tissue velocity at t0 as
v = (x1 − x0)/(t1 − t0). This is shown in Fig. 1B of
the main text. We then decompose the velocity into a
component tangential to the surface v∥ and a normal
component vn.

A. Analyzing tangential velocity fields with
discrete exterior calculus

The tangential velocity fields v∥ can then be further
analyzed using our implementation of discrete exterior
calculus (DEC). DEC discretizes the methods of exterior
calculus in the continuous setting for application on sim-
plicial complexes such as mesh triangulations [27]. DEC
is built using a straightforward set of discrete differen-
tial forms, defined on mesh vertices, edges, and faces.
On a (curved) 2D surface, the only such forms are 0-
forms (scalars), 1-forms (analogues of vector fields), and
2-forms (oriented areas). The DEC also defines represen-
tations of the exterior derivative d and the Hodge star ⋆
in terms of simple linear operations. These elemental op-
erations are maps between the different spaces of k-forms
on the mesh (k ∈ {0, 1, 2}). Roughly, the exterior deriva-
tive d acting on a k-form ω yields a (k+ 1)-form β = dω
that encapsulates how rapidly ω changes in every possi-
ble direction. By definition, successive application of the
exterior derivative d2ω = 0 for all k-forms ω. Note that
this is important for the Helmholtz-Hodge decomposition
discussed later. Since there are no 3-forms on a surface,
dβ = 0 for any 2-form β. The Hodge star ⋆ acting on
a k-form ω generates a (2 − k)-form that is ‘dual’ to ω
in the sense that they can be combined together to form
an oriented 2D patch whose area is the “size” of ω. This
technology can be exploited for a wide variety of appli-

cations in discrete geometry processing. In particular, it
allows us to easily compute gradients of the velocity field
(or other vector/tensor fields) on curved surfaces.
For a given mesh, instantiating DECLab’s

DiscreteExteriorCalculus class generates the el-
emental operators, d and ⋆, for each possible pairing of
k-form types, i.e. for a 1-form ω the operation dω = β
generates a 2-form β. When strung together, these oper-
ators generate familiar mathematical operations such as
the divergence, curl, and Laplacian – except now these
operators take care to incorporate the curvature and
geometry of the triangulated surface. For completeness,
we enumerate some familiar differential operations in the
language of exterior calculus. Let φ denote a scalar field
(0-form), let v∥ denote a tangential vector field, and
let ♭/♯ denote the musical isomorphisms that transform
vector fields into 1-form fields and 1-form fields into
vector fields, respectively. Then, common differential
operations in the language of exterior calculus are:

∇φ → (dφ)♯ (17a)

∇2φ → ⋆d ⋆ dφ (17b)

∇ · v∥ → ⋆d ⋆ (v ♭
∥) (17c)

∇× v∥ → (⋆d(v ♭
∥))

♯ (17d)

∇2v∥ = ((⋆d ⋆ d+ d ⋆ d⋆)v ♭
∥)

♯. (17e)

B. DECLab validation

Fig. S4 shows the properties and methods of this
class, and the online GitHub documentation provides ex-
ample usage and benchmarks for accuracy, also shown
in Fig. S17 and in Fig. S18. Fig. S17 demonstrates the
accuracy of derivatives of surface quantities calculated
using DEC relative to analytic results on a triangulation
of the unit sphere with 32,768 faces. Fig. S18 shows the
accuracy of DEC derivatives as a function of mesh reso-
lution on triangulations of the unit sphere with increas-
ing numbers of faces. We see that triangulations with
∼1,000 faces (a relatively coarse approximation) already
compute discrete derivatives in high agreement with an-
alytic results (≲ 5% median fractional error). The scalar
field used for this comparison was

S = cos(4ϕ) cos θ sin θ4 − cos θ2, (18)

where (θ, ϕ) are the usual spherical angles and the tan-
gential vector field was

v =

 xz(z2 − 1/4)− y
yz(z2 − 1/4) + x

(x2 + y2)(1/4− z2)

 (19)

where the 3D Cartesian coordinates (x, y, z) should be
interpreted as being restricted to the surface of the unit
sphere.
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FIG. S17. DECLab operators reproduce analytic results, with some mesh-dependent errors. Examples of computed
curl ((⋆d(v ♭))♯), divergence (⋆d ⋆ (v ♭)), gradient ((dφ)♯), and Laplacian (⋆d ⋆ dφ) fields on the surface of a sphere show little
relative error, plotted as histograms for each case. Values are compared with analytic results for the tested vector fields v in
(A) and (B) and scalar fields ϕ in (C) and (D). Further details and example code are available on the GitHub documentation
page.

Note that the implementation of the gradient operator
given in Eq. (17a) is actually identical to the familiar
gradient operator derived from piecewise-constant linear
finite elements [28], i.e.

(∇φ)T = (φj − φi)
(xi − xk)

⊥

2AT

+ (φk − φi)
(xj − xk)

⊥

2AT
, (20)

where φ is some scalar function defined on the counter-
clockwise ordered vertices [xi,xj ,xj ] comprising a trian-
gle T , AT is the area of that triangle, and the symbol ⊥
denotes a counter-clockwise rotation by 90

◦
in the plane

of the triangle. The Laplacian operator given in Eq. (17b)
is identical to the cotangent construction of the Laplace-
Beltrami operator with inverse Voronoi area weights [28].

C. Helmholtz-Hodge decomposition of vector fields
on dynamic surfaces

Our DECLab implementation includes a simple interface
to generate a Helmholtz-Hodge decomposition of tangen-
tial vector fields [27]. Briefly, a Helmholtz-Hodge decom-
position of a tangential velocity vector field on a surface
breaks up that vector field into three physically distinct
classes of motion: dilational, rotational, and harmonic.
The dilational (or “curl-free”) velocity exclusively me-
diates local area change in the absence of out-of-plane
deformation. The rotational (or “divergence-free”) ve-
locity encapsulates the extent to which in-plane motion
will cause a material patch to circulate around a closed,
oriented loop on the surface. Any swirling or vortical
motion on the surface will be captured by this compo-
nent. Finally, the harmonic velocity is, by construction,
“everything else.” Tubular geometries can support non-
trivial harmonic velocities, such as uniform flows along
or around the tube.

Let v denote the 1-form field associated with the tan-
gential surface velocity. In general, any surface velocity
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FIG. S18. Increasing mesh resolution improves the
quality of surface derivatives calculated using DEC.
We apply derivatives to scalar and vector fields defined on
triangulations of the unit sphere with increasingly fine reso-
lution (i.e. number of mesh faces). As resolution increases,
median fractional error relative to analytic results diminishes.
See Eq. (17) for definitions. (A) Error in the gradient of a
scalar field relative to analytic values. (B) Error in the surface
Laplacian of a scalar field. (C) Error in the divergence of a
tangential vector field. (D) Error in the surface Laplacian of
a tangential vector field. (E) Error in the curl of a tangential
vector field.

field can be decomposed in the following way

v = dφ+ δβ + h, (21)

where d is the exterior derivative, ⋆ is the Hodge star,
and δ = ⋆d⋆ is the codifferential. The codifferential act-
ing on a k-form β generates a (k−1)-form ω = δβ. To get

a sense of the meaning of this operator, note that if we
define an appropriate inner product on k-forms ⟨⟨u, v⟩⟩
that quantifies the “overlap” between u and v (just like
the familiar dot product of 3D vectors), then the overlap
between (k + 1)-forms dω and β is equal to the overlap
between k-forms ω and δβ, i.e. ⟨⟨dω, β⟩⟩ = ⟨⟨ω, δβ⟩⟩.
Analogously to the exterior derivative d, one can show
that δ2β = 0 identically. The dilatational part of the ve-
locity field, dφ, is given by the exterior derivative of the
scalar potential φ. One can show that this contribution
must be curl-free by considering the form of the “curl”
on surfaces given in Eq. (17d) and applying the iden-
tity d2φ = 0. The rotational part of the velocity field,
δβ, is given by codifferential of the vector potential β
(confusingly β is actually a 2-form despite the common
naming convention). Similarly, one can show that this
contribution must be divergence-free by considering the
form of the divergence given in Eq. (17c) and applying
the identity δ2β = 0. Finally, h is a harmonic 1-form (i.e.
(dδ + δd)h = 0) encompassing the remaining aspects of
v that are neither dilatational nor rotational. By con-
struction, there is no potential field (neither scalar nor
vector) that can be associated to h – it is simply what-
ever is left over after subtracting away dφ and δβ from v.
Each term and potential function is given by the method
helmholtzHodgeDecomposition.

D. Lagrangian measures of time-integrated tissue
strain

Endowing the evolving surface with a set of Lagrangian
coordinates enables the construction of amaterial metric.
The metric tensor, g(t), is a geometric object enabling
the measurement of distances and angles between nearby
points on the surface. The rate-of-deformation tensor
describes how lengths and angles change locally as the
surface deforms in time:

dgij(t)

dt
= ∇iv∥j

+∇jv∥i
− 2 vn bij , (22)

where v∥i, i ∈ {1, 2}, and vn denote the tangential and
normal components, respectively, of the Lagrangian sur-
face velocity, ∇i denotes the covariant derivative with re-
spect to the ith tangential coordinate, and bij denote the
components of the second fundamental form – another
geometric tensor object that measures surface curvature.
Essentially, Eq. (22) tells us that lengths and angles de-
form under the surface motion when there are gradients
in the tangential velocity and/or when there is normal
motion in curved regions of the tissue.
We can then integrate the rate-of-deformation tensor

along pathlines to construct a Lagrangian measurement
of cumulative tissue strain, i.e.

ε(t) =
1

2

∫ τ=t

τ=0

dτ
dg(τ)

dτ
=

1

2
(g(t)− g(t0)). (23)
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In the language of geometric elasticity, this is equivalent
to the Green-St. Venant strain tensor [29], defined rela-
tive to the ‘undeformed’ reference configuration at time
t = 0. The strain tensor can be decomposed into a di-
latational (isotropic) component

1

2
Tr

[
g
−1

(t0)ε(t)
]
g(t0), (24)

and the deviatoric component

Dev
[
ε(t)

]
= ε(t)− Tr

[
g
−1

(t0)ε(t)
]
g(t0)/2. (25)

XI. ANALYSIS OF BEATING ZEBRAFISH
HEART DYNAMICS

In the absence of cell proliferation, the relationship
between local tissue area rate of change, in-plane diver-
gence, and out-of-plane motion is [30]:

∇ · v∥ − 2Hvn =
1

2
Tr

[
g
−1

ġ
]
, (26)

where ∇ · v∥ is the in-plane covariant divergence of the
in-plane tissue velocities v∥, H is the mean curvature of
the surface, vn is the normal (out-of-plane) velocity, and
Tr

[
g−1ġ

]
/2 is the rate of local area change. We find the

two terms on the left hand side are not equal, and in fact
are anti-correlated. We measure their cross correlation
between their circumferentially-averaged values, each of
which is a function of the longitudinal coordinate, s, and
of time, t: ⟨∇ · v∥⟩ϕ(s, t) and ⟨2Hvn⟩ϕ(s, t′). Fixing the
spatial coordinate but varying the time delay between
measured values ∆ = t − t′ returns a sinusoidal correla-
tion function parameterized by the time delay ∆. This
curve fits well to

C(∆) ≈ A cos
(
2π(∆− ∆̃)/T

)
. (27)

The time shift corresponding to the maximum correla-
tion – such that the in-plane and out-of-plane deforma-
tions would be in phase – is ∆̃, which we report in the
main text. This analysis gives insight into the kinematic
properties of the tissue: tissue compressibility dominates
the kinetics, prompting further modeling of the heart’s
mechanical cycle.

Fig. S19 shows details of the three highest PCA modes
of the heart dynamics, expanding on the results presented
in the main text.

XII. LIMITATIONS OF TUBULAR

While limitations are sketched in the main text, here
we present a more detailed discussion on the limitations
of TubULAR.

A. Topology

Our current implementation is focused on following
single tubes. This means that the TubULAR functional-
ity does not naturally handle tissue surfaces that dynami-
cally branch, split, merge, or intersect. For instance, our
methods would fail to follow portions of the tube that
pinch off from the primary structure to form a separate
surface. Systems with fixed, but non-cylindrical topology
represent another class of systems that are not captured
in toto using this implementation. For example, branch-
ing tubes in the circulatory system would require analyz-
ing multiple segments independently. Handling complex
networks or branched tubular structures represents a fu-
ture challenge, as does handling topological changes over
time.

B. Quality of volumetric intensity data

Our method is designed for 3D microscopy techniques
such as confocal or light-sheet imaging with sufficient res-
olution to resolve features in the surface of interest. We
note that some 3D imaging techniques such as (micro)
CT scans may not provide sufficient texture (variation
in intensity along the surface) to measure residual mo-
tion in the pullback images using PIV. For instance, a
uniformly bright fluorescing tissue/surface could lead to
limited information about in-plane motions. More specif-
ically, if the (s, ϕ) parameterization output by Φ ◦ Z ◦ f
acting on the curved surface is a featureless image, the
map J cannot be determined from the data. Without J ,
the surface stabilization can rely only on surface geom-
etry in 3D. Motions of cells or other objects within the
surface that do not affect the 3D surface geometry would
not be captured without measuring the map J (and/or
measuring optical flow in the pullback plane using the
phiMethod=’texture’ option) and interpreting the re-
sulting ‘velocity’ fields without this step should be done
with care.

C. Temporal resolution

Poor temporal resolution may result in large changes
in geometry per timepoint. In such a case, mapping the
surface at timepoint t1 via the conformal map f or via
Φ◦Z◦f may result in a sϕ parameterization that is so far
from the previous map of timepoint t0 that connecting
the material points between the two images may be dif-
ficult. Using landmarks to constrain the mapping to the
plane for timepoints t ̸= t0 represents a natural extension
of TubULAR’s capabilities for such cases.
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FIG. S19. Higher order PCA modes contribute little to the description of the developing zebrafish heartbeat.
(A-C) Comparison of the first three PCA modes of heart beating dynamics shows that past the second mode, higher-order
modes become noisy and do not capture directional pumping. (D-F) Projections of dynamics involving mode 3 (and higher
modes) show nearly zero subtended area, unlike the dominant two modes, which sweep out a large area in mode space.

D. Extreme geometry changes

TubULAR was built to handle surfaces with exagger-
ated and dynamic geometries. That being said, it is
worth highlighting that surfaces with extreme geometries
may still pose inherent difficulties during analysis. Sur-
faces that are far from axisymmetric or with wild vari-
ation in their average radius along the centerline may
exhibit more distortion in the 2D pullback space. This
distortion can make tangential velocity extraction more
challenging, especially in scenarios where the data has
only coarse temporal resolution.

Another potentially problematic case may arise if the
length of the centerline is far greater than (or far less
than) the scale of the lateral dimensions of the tube.
Such surfaces may yield parameterizations with extreme
aspect ratios. Ultimately, it should be possible to suc-
cessfully analyze such systems with proper care (the late-
stage Drosophila midgut exhibits all of these extreme
geometric features and has been successfully handled),
however it may require non-default tuning of TubULAR

parameters by the user. For example, adjustment of the
aspect ratio via the a fixed parameter of the TubULAR
class instance can aid in appropriate scaling of the tissue
images.

E. Winding

As discussed in Section VIIA3 ‘Independence of map-
ping on choice of longitudinal seam’, dynamic tubes that
coil (or uncoil) over time can be challenging to follow
in a pullback frame due to the fact that the shortest
path (geodesic) connecting a given set of anteroposte-
rior endcap vertices may abruptly change its winding
around the centerline as the coiling or uncoiling proceeds.
Mathematically, this reflects the coupling between writhe
and twist [31]. While we have implemented multiple ap-
proaches in TubULAR to overcome this challenge, the
default behavior might not immediately track the correct
windings, so that some tuning of the algorithm’s param-
eters may be required. For example, while analyzing the
synthetic dataset of Fig. S7, we chose t0 = 10 to aid in
preserving the winding for all previous and subsequent
timepoints.
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C. Blasse, B. Aigouy, H. Brandl, G. Myers, G. Sal-
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