
Research Article
DILI, Autoimmune, Cholestatic and Genetic Diseases
Inhibition of the renal apical sodium dependent bile acid
transporter prevents cholemic nephropathy in mice with

obstructive cholestasis
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Background & Aims: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no
specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies.
Methods: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital
imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of
AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital
imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from
patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule
1) in patients with liver disease and hyperbilirubinemia.
Results: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal
TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by
AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice
with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels.
ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of
targeting ASBT to treat CN.
Conclusions: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting
renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Acute kidney injury (AKI) is a frequent complication in patients
with liver disease that leads to high morbidity and mortality1,2

and has several causes, particularly hemodynamic changes,
and infections.1,3 However, an underestimated and increasingly
acknowledged4,5 cause of AKI in liver diseases is cholemic
nephropathy (CN),2,6,7 which describes renal dysfunction
together with characteristic renal histological features such as
tubular cell injury and Hall’s stain-positive bilirubin casts. It has
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long been known that the risk of AKI is increased in jaundiced
patients.8,9 CN occurs in individuals with liver diseases of
different etiologies, including obstructive cholestasis, decom-
pensated cirrhosis/acute-on-chronic liver failure, alcohol-
associated hepatitis, and acute liver injury/failure.2,3 Despite
their different etiology, all these disorders are associated with
variable degrees of cholestasis. The frequency of CN is likely
underestimated in clinical practice since the diagnosis is based
on biopsy-proven tubular injury with bilirubin casts. However,
kidney biopsies in patients with hepatic dysfunction are often
aging.
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not performed because of a high risk of bleeding.6 Postmortem
kidney autopsy studies of patients with decompensated
cirrhosis and acute-on-chronic liver failure hospitalized
because of AKI showed histologically proven CN in 75% and
25% of the samples, respectively.10

Despite the association with cholestasis, the underlying
pathophysiological mechanisms of CN remain unclear.3,6

Common bile duct ligation (BDL) in mice caused renal tubular
epithelial cell (TEC) injury and histological as well as functional
alterations mimicking human CN, suggesting a pathogenic role
of bile acids (BAs).11 Increasing the hydrophilicity of the BA
pool either via norursodeoxycholic acid feeding or farnesoid X
receptor knockout ameliorated CN.12 These findings suggest
that elevated circulating BA levels lead to increased glomerular
filtration, resulting in elevated renal levels of BAs that are
cytotoxic to epithelial cells lining the tubules and collecting
ducts. Nevertheless, there is an ongoing debate about the
causal role of BAs vs. other cholephiles that are increased in
cholestasis, such as bilirubin or inflammatory mediators, in the
development of CN.2,13,14

Here, we used intravital imaging15,16 to directly observe
glomerular filtration and tubular BA reabsorption. We report that
massively increased reabsorption of BAs into proximal TECs in
cholestasis is critical for CN pathogenesis. Systemic inhibition
of the BA uptake carrier apical sodium-dependent BA trans-
porter (ASBT) with the novel compound AS0369 blocked BA
uptake from the tubular lumen and shows therapeutic potential
for the treatment of CN.

Materials and methods
A detailed description of all methods is provided in the sup-
plementary methods and in the supplementary CTAT table.

Renal biopsies of patients with CN and human serum

Renal biopsies from patients with CN (21) and without CN (11)
were collected from two cohorts: Hannover cohort (14 CN and 4
non-CN biopsies), and Erlangen cohort (7 CN and 7 non-CN bi-
opsies; Table S1A). Serum samples of patients with acute and/or
chronic liver disease (n = 67) and bilirubin >6 mg/dl undergoing
HVPG measurement ± transjugular liver biopsy at the Vienna
Hepatic Hemodynamic Lab were selected from a prospective
registry with a biobank (Table S1B). Healthy individuals (n = 36)
were volunteers from Dortmund (Table S1B). The clinical studies
were conducted according to the ethical guidelines of the 1975
Helsinki Declaration and its later amendments as approved by
the local ethics committees (no. 1262/2017, 4415, 22-150-D).
Informed consent was obtained from all participants.

Mice, induction of obstructive cholestasis, and AS0369
administration

Eight-to-10-week-old male and female C57BL/6N (Janvier
Labs, France) or Cyp2c70-/- and corresponding C57BL/6J wild-
type (Dawson, Karpen Lab) mice were used. All experiments
were approved by the local animal welfare committee (LANUV,
North Rhine-Westphalia, Germany, application number: 81-
02.04.2022.A286). To induce biliary obstruction, as a model for
severe cholestasis, the extrahepatic common bile duct was
ligated as previously described.16 A stock formulation of the
ASBT inhibitor AS0369 was prepared as a suspension, and
Journal of Hepatology, Febru
doses of 15, 30, 60 and 120 mg/kg b.w. were administered
orally by gavage twice daily.

Intravital imaging

Functional intravital imaging of mouse livers and kidneys was
performed using a two-photon microscope (Zeiss, Germany) as
previously described.15

Results

Enhanced uptake of BAs into renal TECs in obstructive
cholestasis

To study the mechanisms by which cholestatic liver disease
leads to nephropathy, the liver-kidney axis was analyzed time-
dependently in mice up to 12 weeks after BDL or sham opera-
tion. In agreement with previous studies,11,12,16 BDL led to
excessive accumulation of bile in the gallbladder, transient
elevation of plasma transaminases, and to time-dependent
elevation of plasma alkaline phosphatase activity (Fig. S1A-C).
Histological analysis of the liver showed progressive ductular
reaction, leukocyte infiltration, and fibrosis (Fig. S1D). Intravital
imaging of the liver after intravenous bolus injection of
fluorophore-coupled taurocholic acid (TCA) demonstrated effi-
cient uptake from the sinusoidal blood into hepatocytes within
minutes, followed by secretion into the bile canaliculi in control
mice. In contrast, TCA remained elevated in the sinusoidal blood
of BDL mice during the entire imaging period (Fig. S2; Video S1).

To visualize the transport of BAs in the kidney of mice with
obstructive cholestasis, a bolus of the fluorophore-coupled TCA
was administered into the tail vein on day 21 after BDL or sham
operation, and intravital videos were recorded. In the controls, a
transient, very weak increase of TCA-associated fluorescence
was quantified in the peritubular capillaries, then in the tubular
lumen and the corresponding TEC (Fig. 1A,B; Video S2A). After
BDL, the intensity of the TCA signal was higher and remained
increased in the peritubular capillaries (Fig. 1A,C; Video S2B). In
addition, a strong uptake of TCA via the apical membrane was
observed in some TECs, further named typeA,while only aminor
increase was seen in other TECs, named type B (Fig. 1A, C).
Thus, spatio-temporal intravital analysis revealed strongly
reduced BA uptake by the liver, consequently higher and
persistently increased blood concentrations, enhanced
glomerular filtration and enrichment of BAs in TECs after BDL.

To investigate whether these observations could be repro-
duced without the use of fluorescent markers, a time-resolved
comprehensive analysis of endogenous BAs was performed up
to 12 weeks after BDL (Fig. 1D). First, TCA, an abundant endog-
enous BA in mice, was analyzed in liver and kidney tissues by
matrix-assisted laser desorption ionization-mass spectrometry
imaging (MALDI-MSI). In liver tissue, BDL caused a transient TCA
increase on day 1, which decreased thereafter, but remained
abovecontrol values (Figs1E,FandS3). Incontrast, in thekidneys,
a progressive time-dependent increase in endogenous TCA was
detected after BDL (Figs 1E,F and Fig. S3). The results of MALDI-
MSI were confirmed by liquid chromatography-tandem mass
spectrometry analysis of endogenous BAs in tissue homogenate
(Fig. 1G). Blood concentrations of BAs were massively increased
at all time intervals after BDL (Fig. 1G). Altogether, these data
confirm theadaptive responseof the liver tocholestatic conditions
and suggest an impaired ability of the kidney to adapt.
ary 2024. vol. 80 j 268–281 269
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Fig. 1. Enhanced uptake of bile acids into renal tubular epithelial cells in obstructive cholestasis. (A-C) Stills from intravital videos of sham controls and mice 21
days after BDL, and corresponding quantifications. Red: TMRE; green: TCA; blue: Hoechst. Scale bars: 50 lm (Video S2). (D) Experimental schedule. (E,F). MALDI-MSI
analysis of mouse livers and kidneys at different time intervals after BDL, and corresponding quantifications. (G) LC-MS/MS analysis of BAs in liver and kidney tissues
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male mice. BDL, bile duct ligation; TCA, taurocholic acid; TMRE, tetramethylrhodamine ethyl ester. (This figure appears in color on the web.)

Renal ASBT inhibition prevents cholemic nephropathy
Key events of CN: proximal TEC death and leakiness of
peritubular capillaries

To study the consequences of chronic cholestasis on kidney
function and morphology, kidney injury biomarkers in blood and
urine, andkidneyhistopathologywereanalyzed time-dependently
after BDL. Urea decreased in urine and increased in blood
270 Journal of Hepatology, Febru
(Fig. S4A, B). Bilirubin increased in blood and urine of BDL mice
compared to controls (Fig. S4A, B). Creatinine concentrations
decreased in urine while the urinary output increased (Fig. S4C).
Macroscopically, a green discoloration of the kidneys was
observedafterBDL (Fig.S4D).H&Estaining showed tubular cystic
dilatation at week1 after BDL, increasing thereafter, and atweek 9
onwards, glomerular cysts were observed. Leukocyte infiltration
ary 2024. vol. 80 j 268–281
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and Hall’s positive casts occurred 3 days after BDL, with fibrosis
appearing at week 6 and intensifying thereafter (Fig. S4D).

To differentiate proximal and distal tubules as well as col-
lecting ducts, kidney tissue was co-immunostained for aqua-
porin (AQP)1, TSC (thiazide sensitive NaCl cotransporter) and
AQP2 (Fig. 2A). Dilatation and casts were observed in the distal
tubules and collecting ducts at day 3 and week 1, respectively,
but not in proximal tubules. To understand themechanismof this
damage pattern, intravital imaging was performed using the
oxidative stress marker H₂DCFDA (Fig. 2B; Fig. S5A). Proximal
tubules were differentiated from distal tubules by their higher
TMRE (tetramethylrhodamine, ethyl ester) intensity (Fig. S5A, B).
As little as 4 h after BDL, oxidative stress was seen specifically in
proximal TECs, which intensified until day one. This seemingly
contradictory pattern, with dilatation and casts in distal TECs but
oxidative stress in proximal TECswas further studiedon intravital
videos using the cytotoxicity marker SYTOX green and the
mitochondrial marker TMRE. Already at day 1 after BDL, death of
proximal but not distal TECs occurred (Figs 2C and S5B). The
dead proximal TECs released cellular debris into the tubular
lumen from where it floated downstream (Fig. 2C; Video S3A).
Someof this detritus attached to the surface of distal tubules and
collecting ducts forming casts and leading to dilatation
(Fig. 2B,C; Video S3A). At week 3 after BDL, massive damage of
renal tubules occurred, coincidingwith green autofluorescence –
possibly due to bilirubin – in and around peritubular capillaries
(Figs 2B and S5A). To study if this autofluorescence is due to
leaky capillaries, immunostaining of endothelial cells was per-
formed using anti-MECA-32 antibodies. Severely compromised
peritubular capillaries were observed particularly at week 3 after
BDL and later (Fig. S6A). Intravital imaging was conducted using
Evans blue, which under normal conditions does not leak from
the capillaries.17 As expected, Evans blue remained within the
blood capillaries in sham-operated mice (Figs 2D,E and S6B;
Video S4A). In contrast, 3 weeks after BDL, strong leakage was
observed from peritubular capillaries into the interstitium (Figs
2D,E and S6B; Video S4B). At week 12, glomerular cysts man-
ifested as dilatation of Bowman’s space (Figs 2B and S5A; Video
S3B). The imaging data corresponded to the time course of the
proximal TECmarker KIM-1, which increased until week 1 before
plateauing and decreasing thereafter (Fig. 2F); the proximal and
distal TEC marker neutrophil gelatinase-associated lipocalin
(NGAL) remained elevated until the end of the observation
period,while the glomerular filtrationmarker cystatinC increased
only at the longest periods of 9 and 12 weeks after BDL (Fig. 2F).
Identification of renal ASBT as a possible therapeutic target
in CN

As shown above, BA enrichment in proximal TECs is a key early
event in CN progression. The main carrier responsible for
reabsorption of the non-sulfated BAs in TECs is ASBT18

(Fig. 3A). In contrast to the adaptive changes of BA trans-
porters in the liver (Fig. S7), renal Asbt expression was not
significantly downregulated up to 6 weeks after BDL (Fig. 3B).
Renal multidrug resistance-associated protein (MRP)2, which
pumps BAs into the tubular lumen, was only moderately altered,
whereas MRP4, which also exports BAs at the luminal apical
membrane, was significantly upregulated (Fig. 3C). Interestingly,
the basolateral BA exporters MRP3 and OSTa (organic solute
transporter alpha) were significantly upregulated after BDL
Journal of Hepatology, Febru
(Fig. 3D), suggesting that BAs may be more efficiently exported
into the interstitium, from where they can reach the peritubular
capillaries. In agreement with the RNA analysis, immunostaining
of ASBT in the kidneys of mice after BDL did not show major
changes compared to controls (Fig. 3E). Expression of ASBT
occurred at the luminal side of TECs and was exclusively
observed in AQP1-positive cells, a marker of proximal tubules
(Fig. S8A). This is consistent with the functional analysis where
fluorophore-coupled TCA showed a mosaic pattern with tubules
that either do or do not reabsorb BAs (Fig. S8B). MALDI-MSI
analysis of TCA supported the selective enrichment of TCA in
ASBT-positive proximal TECs (Fig. S8C).

To study the translational relevance of the preserved ASBT
expression in kidneys of cholestatic mice, a set of kidney bi-
opsies from patients with early and advanced stages of CN,
identified based on histopathological examination, was
analyzed. Importantly, ASBT expression was preserved in pa-
tients with CN even at the late stages of the disease (Fig. 3F).

Evaluation of a systemic ASBT-specific inhibitor

To investigate the possible role of renal ASBT in the develop-
ment of CN, we performed intervention studies with the novel
compound AS0369 which has an IC50 of 1.31 nM for mouse
ASBT and has >100-fold greater specificity for mouse ASBT vs.
mouse NTCP (sodium-taurocholate co-transporting poly-
peptide) (Fig. 4A). After administration of 10 mg/kg AS0369 (per
os) to wild-type mice, the mean Cmax in blood was 222 nM
(Fig. 4A; Fig. S9A) and the half-life was 2 h. Appreciable levels
of AS0369 were also found in kidney tissue and in urine
(Fig. 4A). To test the efficacy of AS0369 in the inhibition of renal
ASBT in vivo, a pilot experiment was designed using female
mice to allow for repeated urine collection by a urinary bladder
catheter. Starting from day 7 post-BDL, the mice received
various doses of AS0369 (15-120 mg/kg) orally twice per day
for 5 days (Fig. 4B). Urine samples were collected daily, and
blood samples were obtained 4-7 h post-dosing at day 5 for
determination of plasma AS0369 and BA concentrations (Figs
4B and S9B). The lowest dose tested (15 mg/kg) increased
urinary excretion of non-sulfated BAs (Fig. 4C). In contrast, little
effect was observed on sulfated BAs, which are poor sub-
strates of ASBT. Plasma concentrations of BAs were reduced
with all tested doses of AS0369, but doses of 30-120 mg/kg
were more effective than 15 mg/kg (Fig. 4D).

For a further pilot experiment with intravital imaging, a dose
of 60 mg/kg AS0369 was selected; this dose evoked excessive
increases in urinary BAs and was well tolerated. Interestingly,
twice daily administration of AS0369 for 2 days, beginning on
the day of BDL, strongly reduced the uptake of TCA into TECs
(Fig. 4E), ameliorated oxidative stress in proximal TECs and
tubular casts in distal tubules compared to vehicle-treated BDL
mice (Fig. 4F). Therefore, a dose of 60 mg/kg was used for
comprehensive efficacy studies.

Efficient prevention of CN by inhibition of renal ASBT

To evaluate the efficacy of AS0369 in the prevention of CN, a
study design with female mice subjected to BDL and simulta-
neously treated with AS0369 (60 mg/kg, twice daily) or with
vehicle for 6 weeks was performed. Sham-operated mice
treated with vehicle served as controls (Fig. 5A). Treatment with
AS0369 prevented mortality throughout the study period
ary 2024. vol. 80 j 268–281 271
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Renal ASBT inhibition prevents cholemic nephropathy
compared to �50% mortality in the vehicle-treated BDL group
(Fig. 5B). In addition, BDL-induced body weight loss was pre-
vented by treatment with AS0369 (Fig. 5C). The apparent body
weight recovery in the BDL vehicle group by 6 weeks may be
due in part to a dramatically increased gallbladder volume (Figs
5D,E and S10A). The BDL-associated increase in gallbladder
volume was reduced by AS0369 (Fig. 5E). Furthermore, kidneys
272 Journal of Hepatology, Febru
with a normal reddish-brown gross morphology were observed
in the AS0369-treated BDL mice compared to kidneys with a
greenish discoloration in the BDL vehicle group (Fig. 5D). The
kidney-to-body weight ratio was not significantly altered in all
groups, but the liver-to-body weight ratio showed a significant
increase in the BDL vehicle group compared to the sham
controls, which was ameliorated by AS0369 (Fig. S10B,C).
ary 2024. vol. 80 j 268–281
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Research Article
Next, the effect of systemic ASBT inhibition with AS0369 on
BA concentrations in relevant compartments was investigated.
Urinary and renal tissue BA concentrations in the sham controls
were very low, while they were elevated in response to BDL
(Fig. 5F). Nonetheless, BA concentrations in urine were
Journal of Hepatology, Febru
massively increased in the AS0369-treated vs. vehicle-treated
BDL mice and were strongly reduced in liver and kidney tissue
and in blood, whereas BA concentrations in bile were slightly
increased (Fig. 5F). In agreement, MALDI-MSI analysis of TCA in
liver and kidney tissues showed a strongly reduced signal in the
ary 2024. vol. 80 j 268–281 273
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Renal ASBT inhibition prevents cholemic nephropathy
AS0369-treated mice compared to the BDL vehicle-treated
group (Fig. 5G, H; Fig. S11). Treatment with AS0369 signifi-
cantly reduced total serum bilirubin, alkaline phosphatase, and
blood urea nitrogen, but not the liver damage biomarkers alanine
and aspartate aminotransferase (Fig. 5I). AS0369 particularly
reduced the TEC damage biomarker NGAL in urine (Fig. 5J). To
study the effect of AS0369 at the tissue level, histological anal-
ysis of the kidney was performed. A strong reduction in leuko-
cyte infiltration, fibrosis, tubule damage, cast formation, and
endothelial cell damage was observed in the AS0369-treated
BDL mice compared to vehicle-treated BDL mice (Figs 6A,B,
S12 and 13A). In agreement, expression of early growth
response protein 1, which plays a critical role in kidney fibro-
genesis, was upregulated in kidney tissue after BDL and reduced
to control levels by AS0369 (Fig. 6C). Furthermore, vascular
274 Journal of Hepatology, Febru
leakage of Evans blue into the interstitium of kidney tissue after
BDL was almost completely prevented by AS0369 (Figs 6D,G
and S13B; Videos S5A-C). Sirius red staining of the liver showed
periportal and perisinusoidal fibrosis in the vehicle treated BDL
mice (Fig. S14). Treatment with AS0369 reduced the peri-
sinusoidal fibrosis, and ameliorated canalicular dilata-
tion (Fig. S14).

Next, the influence of ASBT inhibition on BA carrier expres-
sion in the liver and kidney and Cyp7a1 expression in the liver
was analyzed. AS0369 treatment did not significantly alter
expression of the BA carriers in the liver compared to the BDL
vehicle group, except that the BDL-induced upregulation of
MRP4 was ameliorated in response to AS0369 (Fig. S15A).
However, Cyp7a1 expression was upregulated after AS0369
treatment (Fig. S15A). In kidney tissue, AS0369 treatment
ary 2024. vol. 80 j 268–281
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Research Article
prevented the BDL-induced dysregulation of BA carrier expres-
sion except for MRP4 (Fig. S15B).

Since the main intervention study was performed in female
mice, we repeated the intervention experiment using male mice,
with the difference that urine was only collected at the end of the
6-week treatment. The results confirmed the remarkable pro-
tection against development of CN conferred by AS0369 and
showed that this effect is not sex specific (Figs S16 and S17).
Journal of Hepatology, Febru
RNA-sequencing reveals large effect size of ASBT inhibition

To perform an unbiased evaluation of the effect of ASBT inhi-
bition at the transcriptional level, kidney and liver tissues were
analyzed by RNA-sequencing. The kidney samples from BDL
mice treated with AS0369 clustered closer to controls than to
vehicle-treated BDL mice in a principal component analysis
(Fig. 7A), indicating a sizable effect of AS0369 treatment in the
kidney, which was also reflected by many significantly up and
ary 2024. vol. 80 j 268–281 275
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Renal ASBT inhibition prevents cholemic nephropathy
downregulated genes (Fig. 7B). To further investigate this effect,
genes were plotted by their log2-fold-changes over controls for
vehicle-treated (x-axis) and AS0369-treated (y-axis) BDL mice
(Fig. 7C), delineating five gene groups: genes in group 1a and 2a
were upregulated by BDL and downregulated by AS0369, either
completely to control levels (1a) or partially (2a). Conversely,
genes in 1b and 2b were downregulated in response to BDL,
which was either completely (1b) or partially (2b) prevented by
AS0369. Only relatively few genes were induced by AS0369
treatment but not affected by BDL, representing AS0369-
specific response genes (3a). Overrepresentation analysis
demonstrated an enrichment in inflammation-associated gene
276 Journal of Hepatology, Febru
ontology groups for genes upregulated due to BDL, while
the downregulated genes were associated with metabolic pro-
cesses (Fig. 7D). Correspondingly, genes upregulated by BDL
and downregulated to control levels by AS0369 (1a) were also
inflammation-associated, and genes downregulated by BDL and
increased to control levels by AS0369 (1b) also represented
metabolic gene ontology groups (Fig. 7E). The most down-
regulated gene upon ASBT inhibition in group 1a was the
extracellular matrix protein COL10A1, and the most upregulated
gene in group 1b was histidine decarboxylase, which catalyzes
the synthesis of histamine (Fig. 7F). Qualitatively similar conse-
quences of ASBT inhibition were observed in the livers of the
ary 2024. vol. 80 j 268–281
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same mice, but the effect was smaller (Fig. 7G-L). Nevertheless,
the overlaps of altered genes in the liver and kidney were higher
than randomly expected (Fig. S18). Altogether, the RNA-
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sequencing analysis demonstrated that AS0369 treatment
ameliorated BDL-induced gene expression in the kidney, while
the effects in the liver were smaller.
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Translational relevance

Large differences in BA synthesis and composition are known
between humans and mice. Therefore, we used the Cyp2c70-/-

mice with humanized BA spectrum19 that – like humans – have
lower total BAs but higher concentrations of the more toxic BA
chenodeoxycholic acid, and very low levels of hydrophilic
muricholate BA (Fig. 8A-C). AS0369 also increased sum BA
concentrations in the urine of the Cyp2c70-/- mice (Fig. 8A),
including BAs that are formed by humans but not (or only at
very low concentrations) by mice, such as taurochenodeox-
ycholic acid (Fig. 8B). Upon BDL, Cyp2c70-/- mice showed
aggravated kidney injury compared to wild-type mice, as
illustrated by higher levels of NGAL (Fig. 8C). Cyp2c70-/- mice
could not be analyzed for periods longer than 24 h after BDL,
because of their poor health status that was much worse
compared to that of wild-type mice. It took about 1 week for
AS0369 to reduce NGAL in WT mice after BDL (Fig. 5J).
However, in Cyp2c70-/- mice, a significant reduction in NGAL
was already seen at day 1 in male mice, with a trend in female
mice (Fig. 8C). Thus, AS0369 also enhances urinary excretion
of a humanized and more hydrophobic spectrum of BAs and
ameliorated BDL-induced kidney injury.

To address the translational relevance of the findings in
mice, we studied patients with acute and/or chronic liver dis-
ease with serum bilirubin >6 mg/dl (n = 67) and healthy volun-
teers (n = 36) and focused on the relationship between sum BA
and bilirubin concentrations in serum and the proximal TEC
damage marker KIM-1 (patient characteristics: Table S1B).
Besides liver enzymes, bilirubin, and BA, blood urea nitrogen,
cystatin C, NGAL, and KIM-1 were significantly increased in
patients compared to healthy volunteers (Fig. 8D). Among pa-
tients with acute and/or chronic liver disease, sum BA con-
centrations correlated positively with bilirubin levels (Fig. 8E)
and both bilirubin and BA correlated positively with KIM-1
(Fig. 8F,G). In a multiple linear regression model after back-
ward selection, only sum BA was kept as an explanatory vari-
able for KIM-1, while bilirubin, C-reactive protein (a marker of
systemic inflammation, which may contribute to kidney injury),
and ursodeoxycholic acid therapy were excluded (Fig. 8H).

Discussion
The mechanisms of CN pathogenesis remain poorly under-
stood, and no specific treatments are available.3,6 Therefore,
we studied the pathomechanisms of BDL-induced CN in mice
by intravital imaging and observed five subsequent events: i.
BA increase in blood and enrichment in proximal TECs (almost
immediately after BDL); ii. oxidative stress in proximal TECs (4 h
onwards); iii. death of proximal TECs with release of debris into
the tubular lumen, which travels downstream and forms casts
in the distal tubules and collecting ducts, followed by dilatation
of tubules (day 1-3 onwards); iv. peritubular capillary damage
and leakiness (week 3 onwards); and v. glomerular cysts (week
6 onwards).

ASBT is known to transport BAs from the tubular lumen into
TECs. Therefore, to study a possible causal relationship be-
tween BA enrichment and oxidative stress, as well as cell death
of proximal TECs, we utilized the systemically bioavailable
specific ASBT inhibitor, AS0369, which blocked the uptake of
BAs into TECs almost completely. A remarkable finding was the
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large effect size of AS0369, and the renal protective effects
associated with decreasing kidney BA levels. All CN hallmarks
(event i-v) were almost completely absent with twice daily
AS0369 administration over a 6-week period after BDL.

Targeting renal ASBT not only provides renal protective ef-
fects but also serves as a means of lowering overall BA load in
the body by increasing urinary excretion. Indeed, plasma BA
concentrations decreased strongly in response to AS0369.
Importantly, the elevated urine BA levels induced by AS0369
also offer a non-invasive biomarker of renal ASBT target
engagement which may have translational value. Plasma levels
of AS0369 dosed at 60 mg/kg were approximately 200 nmol/L
4-7 h after administration. Since AS0369 is tightly protein
bound (>99%), free plasma levels were approximately 1-
2 nmol/L which equates to the ASBT IC50, suggesting that the
observed efficacy was not due to off-target interactions.

While TEC death occurred within the first days after BDL
(event i-iii), compromised capillary endothelial cells were
observed at week 3 onwards (event iv). This led to peritubular
capillary leakage and is possibly explained by endothelial cell
damage caused by an elevated flux of BAs from the tubule
lumen into the interstitial space, although elevated circulating
BAs could also contribute. Nonetheless, AS0369 treatment
substantially improved renal peritubular capillary integrity.

The protective effect of AS0369 in the kidneys was also re-
flected in thegenome-wide analyses,whereAS0369 reduced the
number of genes deregulated by BDL to a larger degree in the
kidney than the liver. A plausible explanation for the stronger
effect in the kidney is that TECs are specifically protected against
BA overload by AS0369, since ASBT appears to be the sole
mechanism for reabsorption of non-sulfated BAs from the tubule
lumen. Conversely, hepatocytes continue to synthesize BAs and
AS0369 does not affect hepatocellular sinusoidal BA uptake via
NTCPandOATPs (organic anion transporting proteins). As such,
the liver BA content remains elevated above normal levels in this
model of complete biliary tract obstruction. These findings
generally agree with a recently published study, where whole
body ASBT knockout mice showed decreased liver damage 5
days after BDL.20 In addition, administration of an intestine-
restricted ASBT inhibitor in combination with the farnesoid X
receptor agonist obeticholic acid lowered the BA pool, and
ameliorated liver injury 2-days post-BDL.20

Systemic ASBT inhibition has multiple favorable conse-
quences in advanced liver diseases. Blocking renal ASBT
specifically protects a subset of TECs that are vulnerable to BA
toxicity and prevents CN (so-called organ-protection). More-
over, increased urinary elimination of non-sulfated BAs, which
lowers the overall BA pool, is favorable for all cell types
compromised by exposure to high levels of circulating BAs.
Importantly, in Cyp2c70-/- mice, that have a humanized BA
composition,19 we observed that AS0369 also enhanced uri-
nary excretion of the more toxic hydrophobic BAs, such as
taurochenodeoxycholic acid, and ameliorated kidney injury af-
ter BDL, indicating a possible human relevance.

An initial key event of CN in mice is the accumulation of BAs
in proximal TECs, cell death and the release of KIM-1 from this
cell type. Since KIM-1 is also considered a marker of proximal
TEC injury in humans,2 we analyzed KIM-1 in serum of patients
with acute and/or chronic liver disease and hyperbilirubinemia.
The sum BA concentration was the key explanatory variable in
ary 2024. vol. 80 j 268–281
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a multiple linear regression model with KIM-1 as the dependent
variable, suggesting that BAs may play a pivotal role in human
kidney injury in the context of liver dysfunction. The present
human data does not exclude that bilirubin (and possibly
additional cholephiles released from the liver) may be relevant,
considering that patients were selected based on a cut-off of
>6 mg bilirubin/dl. The latter was chosen as it denotes liver
dysfunction in the context of decompensated cirrhosis4 and an
analysis of 1,372 patients included in the above-mentioned
registry study found that profound elevations of BA are un-
common in patients with lower bilirubin values (data not
Journal of Hepatology, Febru
shown). Notably, mean arterial pressure (as a marker of circu-
latory dysfunction) was not included in our models, as all bar
two patients with mean arterial pressures of 64 mmHg had
pressures >−65 mmHg and C-reactive protein (as a marker of
systemic inflammation) was less closely associated with prox-
imal TEC injury than sum BA concentration.

At first glance, it may be surprising that the earliest key
events of CN occur in proximal tubules in the present mouse
study, as casts are observed in distal tubules in human bi-
opsies.2 The herein described mechanism resolves this
discrepancy, since debris from dead proximal TECs travels
ary 2024. vol. 80 j 268–281 279
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downstream in the tubule lumen to induce cast formation in
distal tubules and collecting ducts; compartments with a high
luminal osmolarity. In biopsies only the latter cast formation but
not the initial death events in proximal TECs can be detected. A
further translationally relevant component of the herein
described mechanisms is that ASBT expression is preserved in
patients with CN at the luminal side of proximal TECs.
280 Journal of Hepatology, Febru
In conclusion, a mouse model of CN identified BA enrich-
ment in TECs as a critical pathomechanism. Blocking renal
ASBT-mediated BA reabsorption prevented CN development
and systemically decreased BA concentrations. Taken
together, systemically available ASBT inhibitors reaching the
kidney may exert reno-protective effects in conditions of kidney
injury secondary to liver disease.
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Supplementary methods 
 
Renal biopsies of patients with cholemic nephropathy. A total number of 21 and 11 

renal biopsies from CN and non-CN patients, respectively, were collected from two 

cohorts, the Hannover cohort (14 CN and 4 non-CN biopsies) and the Erlangen cohort (7 

CN and 7 non-CN biopsies) (Table S1). The study was conducted according to the ethical 

guidelines of the 1975 Helsinki Declaration and was approved by the local ethics 

committee (no. 4415, 22-150-D). 

Animals and bile duct ligation. Eight-to-10-week-old male and female C57BL/6N 

(Janvier Labs, France) or Cyp2c70-/- and corresponding C57BL/6J wildtype (Dawson, 

Karpen Lab) mice were used. The mice were housed at standard environmental 

conditions with free access to water, and ad libitum feeding with Ssniff R/M-H, 10 mm 

standard diet (Ssniff, Soest, Germany). All experiments were approved by the local 

animal welfare committee (LANUV, North Rhine-Westphalia, Germany, application 

number: 81-02.04.2022.A286). To induce obstructive cholestasis the extrahepatic 

common bile duct was ligated at a position between the gallbladder and the duodenum, 

as previously described [1, 2].  

Preparation and application of AS0369. A stock formulation was prepared by dissolving 

AS0369 in the vehicle solution (0.5% methyl cellulose and 0.06% Tween 80) followed by 

sonication and vortexing for several minutes until a uniform suspension was obtained. 

The different doses of 15, 30, 60 and 120 mg/kg b.w. were prepared by diluting the stock 

formulation accordingly in the vehicle solution. The ASBT inhibitor (AS0369) and the 

vehicle were administered orally by gavage twice per day with an application volume of 4 

mL/kg b.w.  

Sample collection and processing. Blood sampling. Heart blood samples were 

collected from anaesthetised mice in syringes precoated with disodium 

ethylenediaminetetraacetic acid (EDTA), as previously described [3]. After centrifugation, 

plasma was separated and stored at -80 °C until used for analysis. Tissue sample 
collection. Prior to tissue collection, transcardial perfusion with PBS was performed to 

wash out the remaining blood. Liver tissue sample collection: the whole liver was excised. 
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Samples of 5 × 7 mm diameter were collected from the left liver lobe and fixed for two 

days in 4% paraformaldehyde (PFA) followed by washing in PBS and embedding in 

paraffin. In addition, samples of 5 × 7 mm diameter were collected from the left liver lobe, 

immediately frozen in liquid nitrogen and stored at -80 °C until analysis by MALDI-MSI. 

The remaining liver tissue was snap-frozen by freeze-clamping and milling in liquid 

nitrogen, and subsequently stored at -80 °C until RNA isolation. Kidney tissue sample 

collection: both the left and the right kidneys were excised. After removal of the 

surrounding capsule, the right kidney was divided longitudinally into two halves; one half 

was fixed in 4% PFA and embedded in paraffin, and the other half was immediately frozen 

in liquid nitrogen and stored at -80 °C until analysis by MALDI-MSI. The left kidney was 

snap-frozen by freeze-clamping and milling in liquid nitrogen, and subsequently stored at 

-80 °C until RNA isolation. Urine sample collection. 24-hour urine samples were 

collected in metabolic cages as previously described [4]. Spontaneous urine samples 

were collected from female mice using a urinary bladder canula (25 gauge; SAI Infusion 

Technologies) as previously described [5]. Bile sample collection. Bile samples were 

collected from the gallbladder. 

Biochemical analysis. Creatinine, urea, total bilirubin, and direct bilirubin from plasma 

and/or urine were determined using a C400 clinical chemistry analyzer (Pentra C400 

Option I.S.E, HORIBA ABX SAS, Montpellier, France). Biomarkers of liver damage 

(alanine transaminase, aspartate transaminase and alkaline phosphatase) were 

measured in mouse plasma using the Piccolo Xpress Chemistry Analyzer (Hitado, 

Germany) and the Piccolo General Chemistry 13 Panel Kit. The plasma samples from 

control and BDL mice were diluted 1:1 or 1:5 in normal mouse serum (S7273 -50ML, 

Sigma-Aldrich), respectively, prior to analysis. AS0369 was analyzed in plasma and 

tissue samples using LC-MS/MS. Quantification of bile acids with LC-MS/MS. Bile acid 

concentrations in plasma, urine, bile, liver tissue and kidney tissue were determined by 

negative electrospray (ESI) liquid chromatography tandem mass spectrometry (LC-

MS/MS) in multiple-reaction-monitoring (MRM) mode on an Agilent 6495B triple 

quadrupole mass spectrometer (Agilent, Germany) coupled to an Agilent Infinity II HPLC 

system as described previously [1]. Briefly, frozen tissue samples were homogenized in 

methanol: water 1:1 (v/v) in a FastPrep® 24 homogenizer (MP Biomedicals, Santa Ana, 
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USA) to a final concentration of 40 mg wet tissue/ml as described previously [6]. Aliquots 

of 5 µL of plasma or diluted bile (1:100), 30 µl of tissue homogenate, or 2 µl of urine were 

spiked with internal standard solution followed by protein precipitation with methanol and 

centrifugation. The supernatant was used for LC-MS/MS analysis. Urine samples above 

the calibration range were diluted with water 1:10 v/v to 1:50 v/v. LC-MS/MS parameters 

for measurement of bile acids and the internal standards are summarized in Table S2. 

Protein determination in tissue homogenates was performed with the PierceTM BCA 

protein assay kit. 

ELISA assays: Determination of NGAL concentrations Concentrations of NGAL/Lcn-

2 were determined in mouse urine and plasma using the Mouse Lipocalin-2/NGAL 

DuoSet ELISA kit plus the DuoSet ELISA Ancillary Reagent Kit 2 from R&D systems 

(DY1857 and DY008) according to the manufacturer’s protocol. The concentrations of 

NGAL/Lcn-2 in human serum were determined using the Human Lipocalin-2/NGAL 

Quantikine ELISA kit from R&D Systems (DLCN20) following the manufacturer’s protocol. 

The optical density of the color-forming TMB substrate from both assays was measured 

at 450 nm using a microplate reader (Infinite M200 Pro, Tecan) and the concentration of 

NGAL/Lcn-2 of each sample was calculated from the standard curve. Determination of 
Kim-1 concentrations. Concentrations of Kim-1 were determined in mouse urine and 

plasma using the Mouse KIM 1 ELISA Kit from Abcam (ab213477) according to the 

manufacturer’s protocol. The concentrations of Kim-1 in human serum were determined 

using the Human Serum TIM-1/KIM-1 HAVCR Quantikine ELISA kit from R&D Systems 

(DSKM100). The optical density of the color-forming TMB substrate from both assays 

was measured at 450 nm using a microplate reader (Infinite M200 Pro, Tecan) and the 

concentration of KIM-1 of each sample was calculated from the standard curve. 

Determination of cystatin C concentrations. Concentrations of Cystatin C were 

determined in plasma using the Mouse Cystatin C ELISA Kit from Abcam (ab201280) 

according to manufacturer’s protocol. For human serum samples the Human Cystatin C 

Quantikine ELISA kit from R&D Systems (DSCTC0) was used following the 

manufacturer’s instructions. The optical density of the color forming TMB substrate from 

both assays was measured at 450 nm using a microplate reader (Infinite M200 Pro, 
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Tecan) and the concentration of Cystatin C of each sample was calculated from the 

standard curve. 

 

Determination of IC50 of AS0369. Mouse IBAT- (10,000 cells) or LBAT- (20,000 cells) 

overexpressing cells were seeded in 96-well plates in 200 µl MEM-alpha medium 

supplemented with 10% FBS containing Puromycin (10 µg/ml) and incubated at 37°C in 

5% CO2 for 48 hrs. The incubation medium was decanted from the wells and cells were 

washed two times with 300 µl of basal MEM-alpha medium (FBS-free). Each time after 

decanting the medium, plates were tapped against paper towel to ensure maximum 

removal of residual media. Test inhibitor dilutions (highest test concentration being 10 

µM, 3-fold serial dilution, 10 points) prepared in DMSO were added in incubation mix 

(maintaining 0.2% final DMSO concentration) containing 0.25 µM 3H-Taurocholic acid 

and 5 µM of cold taurocholic acid. 50 µl of incubation mix containing test inhibitors was 

then added to the wells (in duplicate) and the plates were incubated for 20 min in a CO2 

incubator at 37°C. After incubation, the reaction was stopped by keeping the plates on 

ice water mix for 2-3 minutes and then the incubation mix was aspirated completely from 

the wells. The wells were washed two times with 250 µl of chilled unlabeled 1 mM 

taurocholic acid dissolved in HEPES-buffered (10 mM) HBSS (pH 7.4). The plates were 

tapped against a paper towel after every washing step to ensure maximum removal of 

blocking buffer. 100 µl of MicroScint-20 was added to the wells and kept overnight at room 

temperature before reading the plates in TopCount NXT™ Microplate Scintillation and 

Luminescence Counter from PerkinElmer under 3H Test protocol (set at 120 seconds 

reading time per well). 

Histopathology. Hematoxylin and eosin (H&E) and Sirius red staining were performed 

in 4 µm thick PFA (4%)-fixed paraffin-embedded liver and kidney tissue sections. 

Hematoxylin staining was performed using the Discovery Ultra Automated Slide 

Preparation System, as previously described [7]. Eosin staining was performed according 

to a standard protocol [3]. Sirius red staining was done using a commercially available kit, 

according to the manufacturer’s instructions. To visualize bilirubin casts in kidney tissues, 

Hall’s staining was performed using 4 µm-thick PFA (4%)-fixed paraffin-embedded kidney 

tissue sections using a commercially available kit (StatLab), according to the 
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manufacturer’s instructions. The principle of this staining technique is that oxidation of 

bilirubin in acidic medium results in formation of biliverdin which can be distinguished by 

its green color [8]; the cell cytoplasm stains yellow, while collagen appears red.   
Immunohistochemistry. Immunostainings were performed using 4 µm-thick PFA (4%)-

fixed paraffin-embedded liver and/or kidney tissue sections using the Discovery Ultra 

Automated Slide Preparation System, as previously described [9, 10]. Antibodies and 

their concentrations are given in Table S3. Nuclei were visualized by counter-staining with 

Mayer’s hematoxylin. Whole slide scanning was performed using the Axio Scan.Z1.  

Image analysis. High-resolution whole slide scans (~1 Gpixel each) were preprocessed 

using CLAHE, a widely used image processing technique improving the contrast in 

images by stretching the intensity distribution of the pixels [11] implemented in the 

software TiQuant [12]. The resulting data was segmented in a two-step process, starting 

with a Random Forest classification [13]  to distinguish tissue and non-tissue regions, and 

a region of interest within the tissue typically emphasized by staining. Random forest 

classification is an accurate and robust machine learning technique, whereby features 

are chosen based on the highest information gain. The model to classify each pixel was 

manually trained by a subset of images for each staining but was applied to all images 

using the software QuPath [14]. In a second segmentation step, we refined the 

segmentation result using the TiQuant software by a semantically informed application of 

morphological operators that considered known structure shape, size, and localization in 

tissue to further improve the segmentation accuracy. The diameter of the bile canaliculi 

network was measured using a pruned skeletonization of the bile network segmentation 

by averaging the diameter of the maximally inscribed spheres along the skeleton[15].    

Intravital imaging. Functional intravital imaging of livers and kidneys of anesthetised 

mice was performed using an inverted two-photon microscope LSM MP7 or LSM880 

(Zeiss, Germany), as previously described [9, 16-18]. Before recording, the mice received 

bolus tail vein injections of Hoechst 33258 (nuclear marker), TMRE (mitochondrial 

membrane potential marker), SYTOX green (cell death marker), 2ʹ,7ʹdichlorofluorescein 

diacetate (H₂DCFDA; a non-fluorescent probe that passes passively into cells, de-

esterified intracellularly, and turns to the green-fluorescent dichlorofluorescein (DCF) 

upon oxidation) and/or anti-CD31 antibody (endothelial cell marker) (Table S4). To allow 
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administration of further functional dyes/markers while recording, a mouse catheter (SAI-

infusion, IL, USA) was fixed in the tail vein. To analyse bile flux in the liver and kidneys, 

fluorescently labelled taurocholic acid (TCA) or the bile acid analogue CLF was 

administered via the tail vein catheter as a bolus (Table S4) [9]. To check the integrity of 

peritubular capillaries, a bolus of the leakiness marker Evans blue [19] was administered 

and intravital recording was done using the LSM880 confocal microscope (Table S4). At 

least three mice were analysed for each of the experimental scenarios shown in the result 

section.  

Video analysis. As preprocessing for quantification of intravital imaging, rigid-body 

registration was performed using StackReg [20] to compensate for tissue motion (e.g., 

due to respiration and heartbeat) in the time series. Two-dimensional projections were 

created from these stabilized videos by z-projection using the average, maximum, and 

standard deviation operators. The autocontext segmentation workflow of the ilastik 

interactive image segmentation software (version 1.3.3post1) [20] was used to segment 

the tissue compartments in these 2D projections. The analyzed compartments were 

peritubular capillaries and TMRE positive tubular epithelial cells in the kidney time series 

showing TCA uptake, and capillaries and interstitium in the time series visualizing Evans 

blue dynamics. In the liver, the considered compartments were sinusoidal capillaries, 

hepatocytes, and bile canaliculi showing TCA flux. Mean raw TCA / Evans blue intensities 

were measured per compartment and frame. Additionally, the mean TCA signal in the 

TMRE positive cell compartment was measured per tubule, and tubules were 

subsequently separated into two groups based on their maximum mean TCA intensity 

over time using k-means clustering. 
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Synthesis of TCA-FITC 
TCA-FITC was synthetized according to the following scheme: 
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Synthesis of TCA-NPC. A mixture of taurocholic acid (250 mg, 0.465 mmol), 4-

nitrophenyl chloroformate (4-NPC) (465 mg, 2.31 mmol), and triethylamine (TEA) (0.5 ml) 

in DMF (2.5 ml) was stirred at 0 °C for one hour under argon and then, the reaction was 

left at room temperature for the next day. The crude product was purified by the addition 

of ethyl acetate (30 ml) in an ice bath to obtain yellowish precipitation separated by 

centrifugation for 10 mins at 4000 rpm. The precipitate was washed three times with ethyl 

acetate and then dried under vacuum. The obtained product was dissolved in water and 

then lyophilized to obtain a white powder with a yield of 90%. Synthesis of TCA-NH2. To 

a solution of TCA-NPC (325 mg, 0.48 mmol) in DMF (4 ml), 4-methyl morpholine (4-MMP) 

(0.11 ml, 0.96 mmol) was added at 50 °C and left stirred for one hour. Then, 

ethylenediamine (EDA) (3.22 ml, 48.1 mmol) was added dropwise at room temperature 

for 30 mins and the reaction was left for the next day. The reaction was evaporated, and 

acetonitrile was added to remove the unreacted 4-MMP and EDA and the product was 

precipitated and filtrated. The precipitated product was redissolved in 1M DMF and 

recrystallized by the addition of ethyl acetate and dried under vacuum. The yield was 92% 
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with an Rf = 0.25 (DCM:MeOH 5:1) stained by ninhydrin. Synthesis of TCA-FITC. A 

solution of TCA-NH2 (50 mg, 0.05 mmol) in anhydrous methanol (1.5 ml) was added to a 

solution of FITC (29 mg, 0.075 mmol), TEA (0.2 ml) in anhydrous methanol (2.5 ml) under 

argon and stirred at 45 °C for 24 hours. After that, the reaction was evaporated and 

purified by column chromatography with a mobile phase DCM: MeOH (5:1) with a yield 

of 60%. The 1H NMR spectrum confirms the successful synthesis of the TCA-FITC as in 

the 

figure below:  
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The chemical structure of the FITC-labelled taurocholic acid is given in the figure below: 
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MALDI-MS-Imaging. Frozen specimens were sectioned serially into 5-µm-thick tissue 

sections using a Leica CM 3050 S cryostat. The sections were thaw-mounted on 

IntelliSlides (Bruker Daltonics, Bremen, Germany), dried in a desiccator, and stored at -

20 °C until analysis. The tissue sections were sprayed (4 layers) with 5 mg/mL 2-

mercaptobenzothiazole in acetone/water (5:1) using an HTX Imaging-Sprayer (HTX 

Technologies LLC, Chapel Hill, NC, USA) at 65 °C at 10 psi nitrogen. The flow was 120 

µL/min. MALDI-measurements were accomplished on MS1-level in negative mode with 

a tims TOF FleX without ion-mobility separation in a mass range from 85-800 m/z and 

calibrated internally using the 2-mercaptobenzothiazole matrix peak and taurocholate. 

Data was interpreted using Scils Lab MVS, Version 2021 c. 

 

Gene expression analysis 
RNA isolation and cDNA synthesis. Liver and kidney RNA was isolated from milled 

frozen tissue using the RNeasy Mini Kit, according to the manufacturer’s protocol. cDNA 

synthesis was performed from 2 µg of isolated RNA using the High-Capacity cDNA 

Reverse Transcription Kit. qRT-PCR assays. qRT-PCR analyses were performed with 

cDNA using TaqMan 7500 Real-Time PCR, TaqMan universal PCR Master Mix, and 
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TaqMan gene expression assays (Table S5) (ThermoFisher Scientifics, Oberhausen, 

Germany). The gene expression values were normalized to the housekeeping gene 

GAPDH and further calculated with the ΔΔCt method. The values were expressed as fold 

changes over control samples.  

RNA-sequencing and bioinformatics. RNA-seq of liver and kidney tissues was 

performed as previously described [21]. Transcript quantification of RNA-seq data and 

mapping of the FASTQ files were performed with the software Salmon, version 1.4.1, 

using the option ‘partial alignment’ and the online provided decoy-aware index for the 

mouse genome [22]. Further analyses were performed with R, version 4.2.2 [23]. To 

summarize the transcript reads on gene level, the R package tximeta was used [24]. For 

pre-filtering, genes with less than 10 reads across all mice (18,872) were removed, so 

that 16,855 genes remained for further analyses. The following analyses were performed 

separately for kidney and liver samples. Differential gene expression analysis was 

calculated using the R package DESeq2 [25]. A general linear model with one factor and 

levels “sham vehicle”, “BDL vehicle” and “AS0369 BDL” was fitted to calculate 

differentially expressed genes (DEGs). DEGs were then calculated for the comparisons 

“sham vehicle vs. BDL vehicle” and “sham vehicle vs AS0369 BDL”. For more reliable 

effect estimates, adaptive shrinkage was applied [26]. This leads to shrinkage of log-2 

transformed fold-changes (log2(FCs)) towards zero if expression changes are mostly due 

to noise, whereas relevant log2(FCs) are preserved. For each comparison, a gene was 

considered to be differentially expressed if the effect size fulfils log2(FC) > log2(1.5) for 

upregulation (log2(FC) < -log2(1.5) for downregulation) and the estimate is significantly 

different from zero (i.e., no effect) with a false discovery rate (FDR)-adjusted p-value padj 

< 0.05. DiPa (Nell) plots were generated as recently described [27]. Enrichment analysis 

for biological processes gene ontology (GO) terms was applied separately for up and 

down regulated genes for the above described comparison “sham vehicle vs. BDL 

vehicle” and two of the areas defined in the differentiation pattern (DiPa) plot (Fig 7C, I) 

using the R package topGO [28]. P-values of GO groups were FDR-adjusted and 

considered significant if the adjusted p-value was smaller than 0.05. To compare DEGs 

between liver and kidney, Venn diagrams were used, and the corresponding overlap 

ratios were calculated as previously described [29]. The overlap ratio between two sets 
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of genes indicates the degree of overrepresentation in the overlap of the two gene sets 

compared to a random situation. If the ratio is higher than 1, the number of genes in the 

overlap is higher than randomly expected. The overlap ratio is calculated as follows: If 

nuniverse is the total number of analyzed genes, n1 and n2 are the numbers of DEGs in gene 

set 1 and 2, and O is the number of genes present in both sets, then: Overlap ratio = (O 

 nuniverse) / (n1  n2).  

 

Statistical analysis. Mouse data. Data were analyzed using Prism software (GraphPad 

Prism 9.5.0 Software, Inc., La Jolla, CA, USA). Statistical group comparisons were done 

using Tukey’s, Dunn's, or Šídák's multiple comparisons test, or unpaired t-test, as 

indicated in the figure legends. Statistical analysis of genome-wide gene expression was 

done using R (version 4.2.2) [23]. Serum data of liver disease patients and healthy 
volunteers. Correlation between sum bile acids, total bilirubin, and KIM-1 in serum was 

calculated by the Spearman correlation test. In the multiple linear regression analysis 

(stepwise backward selection) KIM-1 (pg/mL) was the dependent variable, while sum bile 

acids (µmol/L), total bilirubin (mg/dL), C-reactive protein (mg/dL), and UDCA therapy (yes, 

no) were tested as covariables. Mean arterial pressure (mmHg) was not analysed as a 

covariable, because only three patients showed values smaller than 70 mmHg. 

Differences in serum values between patients and controls were tested by the two-sided 

Wilcoxon test for unpaired data. The analyses were performed with SPSS version 29. 
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Supplementary video legends 
 
Video S1: Reduced uptake of bile acids at the blood side of hepatocytes after bile duct 
ligation. A. Control mouse; B. Bile duct-ligated mouse (day 21). The time in the left corners 
indicates the minutes after TCA injection into the tail vein. Red: TMRE; green: TCA; blue: Hoechst. 
The videos correspond to Suppl. Fig. 2 

Video S2: Zonated enrichment of TCA in renal tubular epithelial cells after bile duct ligation. 
A. Sham control mouse; B. Bile duct-ligated mouse (day 21) showing zonated enrichment of TCA 
in renal tubular epithelial cells (asterisk). The time in the left corners indicates the minutes after 
TCA injection into the tail vein. Red: TMRE; green: TCA; blue: Hoechst. The Videos correspond 
to Fig. 1A, B of the main manuscript. 

Video S3: Time-resolved events after BDL. A. Intravital imaging of cell death (SYTOX green 
positive) of proximal tubular epithelial cells, release of cell debris into tubular lumen (example in 
the yellow circle) and cast formation in the distal tubules (white circles) and collecting ducts (blue 
circles). The proximal tubules are indicated by higher intensity of the mitochondrial potential 
marker TMRE. Green: SYTOX green; blue: Hoechst; red: TMRE. The video corresponds to Fig. 
2C of the main manuscript. B.  Intravital imaging of glomerular filtration of CLF (white circles) and 
leakage in the interstitial tissue of a 9-week BDL mouse. Note the dilatation of the Bowman’s 
capsule after glomerular filtration of CLF (circles). Red: TMRE; green: CLF; blue: Hoechst. The 
video corresponds to Fig. 2B of the main manuscript. 
 
Video S4: Renal peritubular capillary leakiness after BDL. Intravital imaging of Evans blue 
in 6-week sham-operated (A) or BDL (B) mice. Minutes after tail vein injection of Evans blue 
are given in the left corners. The videos show leakage of Evans blue into the interstitial tissue 
(asterisk) in the BDL but not in the sham-operated mouse. Magenta: Evans blue; blue: CD31 
(endothelial cell marker). The videos correspond to Fig. 2E, F of the main manuscript.  
 
Video S5: ASBT inhibition prevents the leakiness of renal capillaries after BDL. Intravital 
videos of mice after tail vein injection of Evans blue. A. sham + vehicle; B. A BDL mouse treated 
with vehicle showing leakage of Evans blue into the interstitial tissue (asterisk) within minutes 
after tail vein injection; C. BDL + AS0369. Magenta: Evans blue; blue: CD31. The videos 
correspond to Fig. 6D-G of the main manuscript. 
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Supplementary figures  

 
Fig. S1: Clinical chemistry and histology of the liver after BDL. A. Gross pathology. B. 
Plasma activities of ALT and AST. C. ALP activity. *p< 0.05; **p< 0.01; ***p< 0.001 compared to 
the corresponding sham controls, Šídák's multiple comparisons test. D. Histological analysis by 
hematoxylin and eosin (HE) staining (Scale bars: 50 µm), analysis for ductular reaction by the 
cholangiocyte marker K-19, immune cell infiltration by the pan-leukocyte marker CD45 (scale 
bars: 10 µm), and fibrosis as evidenced by Sirius red staining; scale bars: 50 µm. 
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Fig. S2: Reduced uptake of bile acids at the blood side of hepatocytes after BDL. A. Stills 
from intravital videos in control mice (sham) and 21 days after BDL. The time indicates minutes 
after tail vein injection of fluorophore coupled TCA; scale bars: 50 µm; Red: TMRE; green: TCA; 
blue: Hoechst. The stills correspond to Suppl. Videos 1A and 1B. B. Quantification of the TCA 
signal in the blood sinusoids, hepatocytes, and bile canaliculi of the sham (upper panel) and the 
BDL (lower panel) mice. 
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Fig. S3: Transient versus progressive enrichment of TCA in liver and kidney, respectively, 
after BDL. Cryosections of whole organ sections were analyzed by MALDI-MSI and the TCA 
signal was superimposed onto K-19 (liver, upper panel) or H&E (kidney, lower panel) staining. 
The corresponding quantifications are given in Fig. 1F of the main manuscript. 
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Fig. S4: A, B. Biomarkers of kidney injury in blood and in urine, and urine output; data are 
presented as means ± SEM; n= 5 mice per group. *p< 0.05; **p< 0.01; ***p< 0.001 compared to 
the corresponding sham controls, Šídák's multiple comparisons test. . D. Histology of the kidney 
after BDL. The images show the gross pathology; HE staining with cast formation (arrow on week 
1), cystic dilatation of renal tubules (arrows at weeks 3 and 6), and glomerular cysts (arrows at 
weeks 9 and 12; the blue arrow at week 12 indicates atrophy of glomerular capillaries); the pan-
leukocyte marker CD45 (scale bars: 50 µm); Hall’s stain to visualize ‘bile casts’ in green (arrow; 
scale bars: 50 µm); and fibrosis based on Sirius red staining (scale bars: 100 µm).  
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Fig. S5A: Sequence of events in the pathogenesis of cholemic nephropathy. Overview 
images of the kidneys at different time intervals after BDL showing the following sequence of 
events: (1) zonated oxidative stress in the proximal tubular epithelial cells (BDL 4 hours, arrow – 
day 1), (2) cell death of proximal tubular epithelial cells (days 1-3), (3) cast formation in distal 
tubules (day 3, arrows), (4) peritubular capillary leakiness (weeks 3 and 12), and (5) glomerular 
cysts (week 12, circles). Red: TMRE (the proximal TEC can be differentiated from distal tubules 
by their higher TMRE intensity); green: DCF (oxidative stress marker); blue: Hoechst; scale bars: 
100 µm. The images correspond to Fig. 2B of the main manuscript. 
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Fig. S5B: Zonation of cell death in proximal tubular epithelial cells on day 1 after BDL. The 
proximal tubular epithelial cells differ from the distal tubular epithelial cells by the higher intensity 
of the mitochondrial potential marker TMRE. Red: TMRE; green: SYTOX green (cell death 
marker); blue: Hoechst; scale bars: 100 µm. The images correspond to Fig. 2C of the main 
manuscript. 
 
 
 

Fig. S6: Endothelial damage and leakiness of peritubular capillaries after BDL. A. 
Immunostaining with antibodies directed against the endothelial cell antigen MEC-32; scale bars: 
50 µm. B. Intravital imaging after tail vein injection of Evans blue in control mice and 3 as well 6 
weeks after BDL. Magenta: Evans blue; green: rhodamine123; scale bars: 100 µm. 
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Fig. S7: Expression of bile acid transporters (A-C) and Cyp7a1 (D) in the liver at different 
time intervals after BDL. **p< 0.01; ***p< 0.001 compared to the corresponding sham controls; 
Šídák's multiple comparisons test. 
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Fig. S8: Zonated expression of ASBT and bile acid uptake in renal tubular epithelial cells. 
A. Co-immunostaining of ASBT together with the proximal tubule marker AQP1 and the distal 
tubule marker TSC in renal tissue of control mice. B. Intravital imaging of fluorophore coupled 
TCA in the kidneys of control mice and of mice three weeks after BDL showing zonated 
enrichment of TCA in proximal (white rectangle) but not the distal (pink rectangle) tubular 
epithelial cells after BDL. C. MALDI-MSI imaging of TCA superimposed onto ASBT 
immunostaining in kidney tissue of a BDL mouse (day 1) showing zonated enrichment of TCA 
in regions with ASBT positive renal tubular epithelial cells. 
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Fig. S9: A. Pharmacokinetics of AS0369 in wild-type mice after oral administration of 10 mg/kg. 
B. Plasma, bile and urinary concentrations of AS0369 in BDL mice after repeated twice daily oral 
application of various doses for 5 days; the analysis was done 4-7 hours after administration of 
the last dose of AS0369. 
 
 
 
 
 
 
 
 
 
 
 

Fig. S10: A. Body weight of mice with BDL after administration of AS0369 or the vehicle, and 
sham operated mice with vehicle, with and without exclusion of the bile volume. B, C. Liver-to-
body weight and kidney-to-body weight changes of mice with BDL after administration of AS0369 
or the vehicle and sham operated mice with vehicle. **p< 0.01; ***p< 0.001 compared to the 
corresponding sham controls, Tukey's multiple comparisons test. 
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Fig. S11: ASBT inhibition reduces accumulation of bile acids in liver and kidney tissues 
after BDL. MALDI-MSI analysis of TCA was performed in mice of the three treatment groups 
illustrated in Fig 5A of the main manuscript. The upper panel shows the MALDI signal of TCA 
superimposed onto K-19 staining of liver tissue cryosections. The lower panel shows the MALDI 
signal of TCA superimposed onto ASBT staining of kidney tissue cryosections. The corresponding 
quantifications are given in Fig. 5H of the main manuscript. 
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Fig. S12: ASBT inhibition prevents renal tubular epithelial cell damage and fibrosis. Whole 
organ sections of the kidney of mice according to the treatment schedule of Fig 5A stained with 
H&E (upper panel) and Sirius red (lower panel). The corresponding quantifications are given in 
Fig. 6B of the main manuscript. 
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Fig. S13: ASBT inhibition prevents formation of Hall’s positive bile casts and the leakiness 
of peritubular capillaries. A. Bile casts (arrows) visualized by Hall’s stain; scale bars: 50 µm. B. 
Intravital imaging after tail vein injection of Evans blue (overviews); scale bars: 100 µm. The 
images correspond to the three treatment groups illustrated in Fig 5A of the main manuscript. 
 
 
 

 
Fig. S14: Influence of ASBT inhibition on the liver. Histopathology (H&E and Sirius red), 
ductular reaction (K-19), leukocyte infiltration (CD45), and bile canaliculi (CD13) stainings; scale 
bars: 50 µm. The mice correspond to the three treatment groups illustrated in Fig 5A of the main 
manuscript. 
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Fig. S15: RNA levels of bile acid carriers in liver and kidney tissue, and of Cyp7a1 in the liver. 
The mice correspond to the three treatment groups illustrated in Fig 5A of the main manuscript. 
*p< 0.05; **p< 0.01; ***p< 0.001, ***p< 0.0001 compared to the sham controls, Dunn's multiple 
comparisons test. 
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Fig. S16: Inhibition of ASBT prevents cholemic nephropathy in male mice after BDL. A. 
Experimental schedule. B. Bodyweight loss. C. Survival analysis. D. Gross pathology of the livers 
and kidneys. E. Gallbladder bile volume. F. Bile acid concentrations in blood and urine. G, H. 
MALDI-MSI of TCA in liver and kidney and corresponding quantifications. I. J. Clinical chemistry. 
*p< 0.05; **p< 0.01; ***p< 0.001 compared to the sham controls, Dunn's multiple comparisons 
test. 
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Fig. S17: Influence of ASBT inhibition on hepatic and renal histology. The treatment groups 
of the mice are illustrated in Suppl. Fig 17A. A. Liver histopathology. B. Kidney histopathology. 
C-D. Whole organ sections of the kidneys. E. Quantifications of CD45 and Sirius red signals in 
kidney tissue. 
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Fig. S18: Overlap analysis of differential genes in the kidney and liver. A. Overlap of up and 
downregulated genes due to BDL in kidney and liver. B. Overlap of the ASBT inhibitor (AS0369) 
response in the liver and kidney. The gene sets correspond to group 1a (left) and group 1b (right) 
of the DiPa plots shown in Fig 7C and 7I of the main manuscript. The overlap ratio indicates by 
which factor the number of genes in the overlap of both sets exceeds a randomly expected result. 
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Supplementary tables 
 
Table S1A. Renal biopsies with and without cholemic nephropathy 

Erlangen cohort 
n Sex Age (years) Disease Serum creatinine (mg/dL) 
1 Male 49 

Zero-time nephropathy 

0.44 
2 Female 61 0.62 
3 Male 16 0.59 
4 Female 57 0.78 
5 Male 43 1.05 
6 Male 24 0.98 
7 Male 39 0.8 
8 Male 63 

Bile cast nephropathy 

9 
9 Male 75 7.9 
10 Male 62 3.7 
11 Male 62 3.8 
12 Male 23 0.65 
13 Male 52 3.53 
14 Male 33 N.A. 

Hannover cohort 
n Sex Age (years) Disease Serum creatinine (mg/dL) 
1 Female 62 

Zero-time nephropathy 

N.A. 
2 Female 64 N.A. 
3 Female 68 N.A. 
4 Female 56 N.A. 
5 Male 54 

Minimal Change 

N.A. 
6 Male 56 N.A. 
7 Male 11 N.A. 
8 Male 18 N.A. 
9 Male 47 N.A. 
10 Male 59 

Cholemic Nephropathy 

N.A. 
11 Male 61 N.A. 
12 Female 51 N.A. 
13 Male 73 N.A. 
14 Male 52 N.A. 
15 Male 10 N.A. 
16 Male 33 N.A. 
17 Male 50 N.A. 
18 Male 65 N.A. 

 
 
 
 
 
 
 
 



 31 

Table S1B. Characteristics of patients with liver diseases and healthy volunteers  

Patients (n=67) with liver disease and total 
bilirubin >6 mg/dL 

Healthy volunteers (n=36) 
without known liver and kidney 

disease 

 
 

P-
value1  Media

n 
25%-

Percentile 
75%-

Percentile 
Median 25%-

Percentile 
75%-

Percentile 
Age 
(years) 

49.5 39.0 58.3 41.5 31.0 57.8 ns 

Total 
bilirubin 
(mg/dL) 

15.9 7.7 22.2 0.80 0.70 1.00 <0.001 

Sum bile 
acids 
(µmol/L) 

151.2 63.0 266.9 3.25 1.80 5.33 <0.001 

KIM-1 
(pg/mL) 

805.1 582.1 1608.8 48.5 29.3 75.8 <0.001 

NGAL 
(ng/mL) 

102.5 55.6 199.9 65.5 51.3 83.0 0.009 

Cystatin C 
(ng/mL) 

1148.
5 

782.1 1643.0 806.5 700.5 958.0 <0.001 

Creatinine 
(mg/L) 

790 600 1010 850 800 1000 ns 

AST (U/L) 98.0 69.0 171.0 22.0 20.0 26.0 <0.001 
ALT (U/L)  56.0 42.0 115.0 17.5 14.0 21.0 <0.001 
ALP (U/L) 160.0 103.0 248.0 60.5 54.0 69.0 <0.001 
GGT (U/L) 133.0 56.0 286.0 15.5 12.0 24.5 <0.001 
CRP 
(mg/dL) 

1.86 0.48 3.42 nt nt nt  

Sex Male: n=41 (61.2%); Female: n=26 
(38.8%) 

Male: n=13 (36.1%); Female: n=23 
(63.9%) 

 

UDCA 
therapy 

Yes: n=21 (31.3%); No: n=46 (68.7%) no  

Mean 
arterial 
pressure 
(mmHg) 

<65: n=2 (3.0%); ≥65: n=65 (97.0%) nt  

Condition 

• Alcoholic liver disease: n=30 
(44.8%) 

• Acute liver injury: n=8 (11.9%) 
• Cholestatic liver disease: n=7 

(10.4%) 
• Post-transplant: n=7 (10.4%) 
• Alcoholic liver disease plus 

viral: n=2 (3.0%) 
• NASH: n=3 (4.5%) 
• Hepatic malignancy: n=2 (3.0%) 
• Other: n=8 (12.0%) 

 
 

 none 

1P-value of the Wilcoxon test for independent variables, two-sided test, comparing patients and healthy volunteers. 
ns: not significant; nt: not tested. 
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Table S2: List of bile acids and internal standards with MRM transitions and MS 
parameters for quantification by LC-MS-MS. 

Analyte Internal Standard Precursor Ion Product Ion CE (V) 
ω-Muricholate (ωMCA) d5-ωMCA 407.3 407.3 0 
α-Muricholate (αMCA) d5-αMCA 407.3 407.3 0 
ß-Muricholate (ßMCA) d5-βMCA 407.3 407.3 0 
Tauro-α/ß-muricholate (TαßMCA) d4-TßMCA 514.3 80.1 74 
Tauro-ω-muricholate (TωMCA) d4-TßMCA 514.3 80.1 74 
7-Dehydrocholate (7-DHCA) d4-TßMCA 405.3 405.3 38 
Hyodesoxycholate (HDCA) d4-UDCA 391.3 391.3 0 
Cholate (CA) d4-CA 407.3 343.4 36 
Glycocholate (GCA) d4-GCA 464.3 74.0 40 
Taurocholate (TCA) d4-TCA 514.3 80.1 74 
Chenodeoxycholate (CDCA) d4-CDCA 391.3 391.3 0 
Taurochenodeoxycholate (TCDCA) d4-TCDCA 498.3 80 80 
Deoxycholate (DCA) d4-DCA 391.3 345.3 32 
Taurodeoxycholate (TDCA) d4-TDCA 498.3 80.1 78 
Ursodeoxycholate (UDCA) d4-UDCA 391.3 391.3 0 
Tauroursodeoxycholate (TUDCA) d4-TUDCA 498.3 80.0 74 
Lithocholate (LCA) d5-LCA 375.3 375.3 0 
Taurolithocholate (TLCA) d4-TLCA 482.3 80.1 78 
Cholic acid sulfate (CA-S) d4-CA-S 487.2 96.9 58 
Taurocholic acid sulfate (TCA-S) d4-TCA-S 594.2 514.3 32 
Internal Standard 
d5-ω-Muricholate (d5-ωMCA)  413.3 413.3 0 
d5-α-Muricholate (d5-αMCA)  413.3 413.3 0 
d5-ß-Muricholate (d5-ßMCA)  413.3 413.3 0 
d4-Tauro-ß-muricholate (d4-TMCA)   518.3 80.1 74 
d4-Cholate (d4-CA)   411.3 347.2 40 
d4-Glycocholate (d4-GCA)   468.3 74.0 40 
d4-Taurocholate (d4-TCA)   518.3 80.1 74 
d4-Chenodeoxycholate (d4-CDCA)   395.3 395.3 0 
d4-Taurochenodeoxycholate (d4-
TCDCA)   502.3 80.0 86 

d4-Deoxycholate (d4-DCA)   395.3 395.3 38 
d4-Taurodeoxycholate (d4-TDCA)   502.3 80.0 82 
d4-Ursodeoxycholate (d4-UDCA)   395.3 395.3 0 
d4-Tauroursodeoxycholate (d4-
TUDCA)   502.3 80.0 74 

d5-Lithocholate (d5-LCA)   380.3 380.3 0 
d4-Taurolithocholate (d4-TLCA)   486.3 80.1 90 
d4-Cholic acid sulfate (d4-CA-S)  491.3 98.0 58 
d4-Taurocholic acid sulfate (d4-TCA-S)  598.3 518.3 32 
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Table S3. Antibodies used for immunohistochemistry. 
 

Target Primary antibodies Secondary antibodies 
Antibody Dilution Antibody Dilution 

Cholangiocyte Anti-cytokeratin 19 
antibody, rabbit 1:500 Ultra-Map anti rabbit 

HRP 

Automatic 
Discovery 
Ready to 

use 

Bile canaliculi Recombinant anti-CD13 
antibody, rabbit 1:16000 Ultra-Map anti rabbit 

HRP 

Leukocytes Anti-CD45 antibody, rat 1:400 Omni-Map anti rat 
HRP 

Endothelial 
cells 

Anti-MECA-32 antibody, 
rat 1:250 Ultra-Map anti rat HRP 

ASBT Anti-ASBT antibody, goat 1:500 Ultra-Map anti goat 
HRP 

ASBT Anti-ASBT antibody, 
rabbit 1:50 Ultra-Map anti rabbit 

HRP 

AQP1 Anti-AQP1 antibody, 
rabbit 1:10000 Ultra-Map anti rabbit 

HRP 

TSC Anti-TSC antibody, rabbit 1:2000 Ultra-Map anti rabbit 
HRP 
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Table S4. Fluorescent markers and functional dyes used in the study. 

Fluorescent 
marker Marker for Dose 

[mg/kg] Vehicle Two-photon 
excitation range [nm] 

Hoechst 33258 Nuclei 5 PBS 700-800 

TMRE mitochondrial 
membrane potential 0.96 Methanol: 

PBS (1:1) 740-820 

Cholyl-lysyl-
fluorescein Bile acid analogue 1 PBS 740-820 

2ʹ,7ʹDichlorofluor
escein diacetate Oxidative stress 0.5 DMSO 900-950 

SYTOX green Cell death 1.2 DMSO: 
PBS (1:100) 900-950 

Fluorescein-
coupled TCA Bile acid analogue 1 PBS 740-820 

Fluorescent 
marker Marker for Dose 

[mg/kg] Vehicle Confocal excitation 
range [nm] 

Anti-CD31 Endothelial cells 0.08 PBS 381 - 459 

Evans blue Capillary leakiness 0.5 PBS 646 - 709 

Rhodamine123 Mitochondrial 
membrane potential 0.8 Methanol: 

PBS (1:1) 498 - 532 
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Table S5. TaqMan gene assays. 
Gene TaqMan Assay ID 

Abcb11 Mm00445168_m1 

Abcc2 Mm00496899_m1 

Abcc3 Mm00551550_m1 

Abcc4 Mm01226381_m1 

Cyp7a1 Mm00484150_m1 

Egr1 Mm00656724_m1 

GAPDH Mm99999915_g1 

Slc1a2 Mm01275814_m1 

Slc10a1 Mm00441421_m1 

Slc10a2 Mm00488258_m1 

Slco1b2 Mm00451510_m1 

Slc51a Mm00521530_m1 
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